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design load
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Abstract. This paper presents topology optimization of geometrically and materially nonlinear structures
using a bi-directional evolutionary optimization (BESO) method. To maximum the stiffness of nonlinear
structures under prescribed design load, the complementary work is selected as the objective function of
the optimization. An optimal design can be obtained by gradually removing inefficient material and
adding efficient ones. The proposed method can be applied to a series of geometrically and/or materially
nonlinear structures. The results show considerable differences in topologies and stiffness of the optimal
designs for linear and nonlinear structures. It is found that the optimal designs for nonlinear structures are
much stiffer than those for linear structures when large design loads (which result in significantly
nonlinear deformations) are applied. 

Keywords: bi-directional evolutionary structural optimization (BESO); topology optimization; comple-
mentary work.

1. Introduction

Topology optimization is to find the best distribution of material in the design domain and many

methods have been developed in last several decades (Bendsøe and Kikuchi 1988, Bendsøe and

Sigmund 2003, Xie and Steven 1993, 1997). Among them, the evolutionary structural optimization

(ESO) method has been under continuous development since it was first proposed by Xie and

Steven in the early 1990s. The basic concept is that by slowly removing inefficient materials, the

structure may evolve towards an optimum. Bi-directional evolutionary structural optimization

(BESO) is an extension of ESO which allows for materials to be added to the structure at the same

time as the inefficient ones to be removed (Yang et al. 1999, Huang and Xie 2007). 

Most works dealing with the optimization methods have been concerned with the optimization of

structures with linear material and small deformation behaviour. However, the linear assumptions

are not always valid for applications involving nonlinear material and large deformation. Using the

sensitivity/gradient based optimization methods, a number of papers has considered topology
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optimization of geometrically nonlinear structures (Buhl et al. 2000, Bruns and Tortorelli 2003,

Pedersen et al. 2001). Topology optimization of materially nonlinear structures has also been

conducted by several researchers (Yuge and Kikuchi 1995, Bendsøe et al. 1996, Pedersen 1998,

Maute et al. 1998). However, reports on topology optimization with both geometrical and material

nonlinearities are still very limited.

In this paper, the topology optimization of geometrically and materially nonlinear structures will

be studied using the BESO method (Huang and Xie 2007). The paper is organized as follows:

Section 2 formulates the basic problem of optimization. In Section 3, sensitivity analysis has been

conducted using an adjoint method proposed by Buhl et al. (2000) and sensitivity number which

denotes the variation of objection function due to removing an element is derived. Section 4

explains the procedure for removing and adding material. Section 5 presents and discusses the

numerical results for linear and nonlinear structures. Concluding remarks are made in Section 6.

2. Problem statement and nonlinear analysis

In many industrial applications, the maximum stiffness of a structure is pursued. Consider a

nonlinear structure subjected to a applied load which increases monotonously with displacement up

to a maximum, F, the corresponding nonlinear force-displacement curve is depicted in Fig. 1. To

maximize the structural stiffness, the natural choice of the objective function is the minimization of

the displacement, U
* or end compliance F

T
U

*, in the deflected configuration (Buhl et al. 2000).

However, minimization of the end-compliance may result in degenerated structures which can only

support the maximum load they are designed for. To prevent this problem and make sure that the

structure is stable for any load up to the maximum design load, one may minimize the

complementary work. Thus, the optimization problem for maximizing stiffness can be formulated

with the volume constraint using the element as the design variable 

Fig. 1 Typical load-deflection curve in nonlinear finite element analysis with force control
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Minimize (1a)

Subject to (1b)

(1c)

where U is the displacement vector. n is the number of increments in the load vector. The size of

the increment is determined by . Vj is the volume of an individual element and V* the

prescribed total structural volume. The binary design variable xj declares the absence (0) or presence

(1) of an element. M is the total element number in the system.

For nonlinear problems, the nonlinear equilibrium  must be found using an iterative

procedure whereas the equilibrium of a linear problem is found from the solution of a linear system

of equations. The residual force, R, is defined as the error between the internal force vector and

external force vector as

(2)

The internal force vector can be expressed by

(3)

Where C
e is a matrix which transforms the nodal force vector of element to the globally nodal

force vector and Fe the nodal force vector of element.

Normally, the equilibrium (2) is solved incrementally and iteratively using the Newton-Raphson

method, which requires the determination of the tangent stiffness matrix in each step as

(4)

The details on nonlinear analysis may be consulted to nonlinear finite element analysis book, e.g.,

Crisfield (1991). The objective of this paper is to present optimization formulation and sensitivity

numbers for nonlinear structures. 

3. Sensitivity number

Consider a nonlinear structural system corresponding to design independent loads. If we assume

the design variable continuously varies from 1 to 0, the sensitivity of the complementary work with

respect to a change in design variable x is

(5)

Following the work of Buhl et al. (2000), an adjoint equation is introduced by adding a series of

vectors of Lagrangian multipliers  into the objective function as
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(6)

where Ri is the average residual force in ith incremental step approximately by

(7)

Because Ri is equal to zero, the modified objective function (6) is same as the original objective

function (1a). Thus, the sensitivity of the modified objective function is

(8)

It is assumed a linear force-displacement relationship in a small increment, that is 

. Substituting it into (8), the sensitivity of the modified objective function can

be re-written as

(9)

In order to eliminate the unknowns  , λi is chosen as

(10)

This equation defines the adjoint structures. From the linear assumption of force-displacement

relationship in a small increment, the increment of the force can be approximately expressed by

(11)

Comparing Eq. (10) with Eq. (11), λi can be obtained with

(12)

Substituting λi into Eq. (9) and utilizing Eq. (7), the sensitivity of the objective function is

expressed by

(13)

In the evolutionary structural optimization method, a structure can be optimized by removing and

adding elements. That is to say that, the element itself, rather than its associated physical

parameters, is treated as the design variable. Thus, when one element is totally removed from the

system, the variation of the objective function is approximately

 (14)

From Eq. (3), the variation of internal force is

(15)

where the negative sign means removing elements, Substituting Eq. (15) into Eq. (14), the
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sensitivity number is calculated as

 (16)

where  is the final elemental elastic and plastic strain energy. The above equation indicates that

the complementary work increases with the elemental strain energy as the element is removed from

the structure. Therefore, in linear cases, the above equation can also be stated that the external work

or total strain energy increases with the elemental strain energy as the element is removed from the

structure (Chu et al. 1996).

However, the sensitivity number for adding material cannot be obtained directly from the FEA

results because the candidate elements for addition are not included in the analysis. Here, a mesh-

independent Gaussian-weighted filter (Bruns and Tortorelli 2003, Murio 1993) is used to evaluate

sensitivity numbers for candidate elements for addition, although other filters may be implemented,

e.g., linearly weighted kernel (Bendsøe and Sigmund 2003, Sigmund and Peterson 1998) and

checkerboard suppression filter (Li et al. 2001). Thus, the sensitivity number for element i is given

by

(17)

where N is the total number of elements in the mesh and  is the weight factor given as

(18)

where rij is defined as the distance between the centers of the elements i and j and r is the filter

radius specified by the user. 

To enhance the convergence of the BESO method, it is proposed to further improve the accuracy

of the current sensitivity numbers by considering the deformation history of each element. A simple

way to achieve this is to average the current sensitivity number with that of the previous iteration

(Huang and Xie 2007) as

(19)

where n is the current iteration number. Then let  which will be used for next iteration.

Thus, the updated sensitivity number includes all sensitivity information in the previous iterations.
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4. Bi-direction Evolutionary Structural Optimization (BESO) method

The detail procedure of the BESO method has been presented by Huang and Xie (2007). To

minimize the complementary work of nonlinear structures, the evolutionary process will be

conducted by removing elements with smallest sensitivity numbers and adding elements with

highest ones. The volume of the structure may gradually decrease or increase until the objective

volume is reached as

 (20)

where ER is called the evolutionary volume ratio. 

Then the elements are sorted according to their values of the sensitivity number (from the highest

to the lowest). For solid element (1), it will be removed (switched to 0) if

 (21a)

For void elements (0), it will be added (switched to 1) if 

 (21b)

where  and  are the threshold sensitivity numbers for removing and adding elements and

.  and  are determined by the following three simple steps:

1. Let , thus  can be easily determined by . For example, if there are

1000 elements in design domain and  and  corresponds to a design with

725 elements then . 

2. Calculate the admission volume ratio (AR), which is defined the number of added elements

divided by the total number of elements in the design domain. If  where ARmax is a

prescribed maximum volume addition ratio, skip step 3. Otherwise recalculate  and  as

in step 3.

3. Calculate  by first sorting the sensitivity number of void elements (0). The number of

elements to be switched from 0 to 1 will be equal to  multiplied by the total number of

elements in the design domain.  is the sensitivity number of the element ranked just below

the last added element.  is then determined so that the removed volume is equal to

( + the volume of the added elements).

It is noted that  is introduced to ensure that not too many elements are added in a single

iteration. Normally  is greater than 1% so that it does not suppress the capability and

advantages of adding elements. 

Once the objective volume is reached, the volume of the structure keeps to be constant in

thereafter iterations. Then, the following convergence criterion is applied to stop the whole

optimization process

(22)
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is a allowable convergence error normally selected from 0.1% to 0.01%. N is selected to be 5

through this paper which means the there is no signification improvement in objective function (less

than τ) over last 10 iterations.

5. Examples and discussion

5.1 Geometrically nonlinear structure

The first example considers the stiffness optimization design of a slender cantilever (Buhl et al.

2000) under a concentrated loading as shown in Fig. 2. The cantilever is fixed at one end and has

length 1m, width 0.25 m and thickness 0.1 m, the force is applied downward. It is assumed that the

available material can only cover 50% volume of the design domain, and material has Young’s

modulus 3GPa and Poisson’s ratio 0.4. BESO parameters in the following examples are ER = 1%,

ARmax = 1%, filter radius r = 0.02 m and τ = 1%.

If the optimization problems are solved using linear finite element analysis, the optimal topology

would not depend on the magnitude of the load. The topology optimization using linear finite

element analysis was first carried to find the linear design and the topology is symmetric as shown

in Fig. 3(a). The nonlinear designs obtained from the proposed method using the geometrically

nonlinear finite element analysis are shown in Figs. 3(b)-(c) for F = 60 kN and 144 kN respectively.

It shows that the topologies using linear and nonlinear finite element analysis are different. Also, the

topologies using nonlinear finite element analysis depends on the magnitude of the maximum

design load.

In order to sort out which design is better, the complementary works are calculated using the

nonlinear finite element analysis and compared in Table 1. It can be seen that designs using

geometrically nonlinear finite element analysis are always stiffer than that using linear finite element

analysis. However, these improvements without involving snap-through effects are marginal as

discussed by Buhl et al. (2000). It is shown in Table 1 that compared with nonlinear designs using

SIMP method (Buhl et al. 2000), the present designs have similar but lower complementary works,

WC. The topologies from BESO and SIMP methods are very similar too. The difference in the

values of the complementary works can be attributed to the effect of grey areas (intermediate

density elements) in the SIMP topologies where the strain energy of intermediate density elements

depends on the assumed power-law relationship.

The numerical experiment revealed that the current BESO method could not find an optimal

solution for the above nonlinear structure with a large applied force, such as 240kN. This was

because the design process was interrupted by a convergence problem of nonlinear finite element

Fig. 2 Design domain and support conditions for a cantilever
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analysis because the applied force was beyond the load-carrying capability of an intermediate

design. 

5.2 Materially nonlinear structure

Consider the above cantilever under an applied load F = 144 kN. The material is assumed as an

elastic, linear hardening plastic model with Young’s modulus E = 3 GPa, Poisson’s ratio v = 0.4,

yield stress σy = 100 MPa, hardening modulus Ep = 0.1E. The nonlinear design obtained from the

proposed method using the materially nonlinear finite element analysis is shown in Fig. 3(d) which

is similar to the linear design. It indicates that the material nonlinearity has insignificant effect on

the optimal topology in this case. 

To show the effect of the material nonlinearity, we consider the design problem as sketched in

Fig. 4. The dimension of the plate is defined as 2 m×2 m×0.01 m. The maximum design load is

20 kN. The structure is made with a frictional material such as soils or rock which exhibits

pressure-dependent yield (the material becomes stronger as the pressure increases). Thus a linear

Drucker-Prager elastic-perfectly-plastic model with friction angle  and dilation angle

 was employed. The material has yield stress in uniaxial compression MPa,

Young’s modulus GPa and Poisson’s ratio . Suppose only 20% of design domain

volume material is available for constructing the final structure. The used BESO parameters are

β 40
o

=

ψ 40
o

= σy 40=

E 20= ν 0.3=

Fig. 3 Optimized topologies for the optimization problem sketched in Fig. 2 (a) linear optimal design, (b)
Geometrically nonlinear design with F = 60 kN, (c) Geometrically nonlinear design with F = 144 kN.
(d) Materially nonlinear design with F = 144 kN

Table 1 Comparison of complimentary work, WC, between linear and various nonlinear designs

Maximum design load
WC (kJ)

 60kN  144kN

Linear design 2.183 12.53

Nonlinear designs 2.171 12.38

Nonlinear designs in (Buhl et al. 2000) 2.331 13.29
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, , filter radius m and .

To show difference between the linear design and elastoplastic design, the problem is solved first

using linear finite element analysis and the resulted optimal design is shown in Fig. 5(a). Since the

material features symmetrical tension and compression behaviours, the linear design shows

symmetric tension and compression supports. If the problem is solved using nonlinear finite element

analysis, the optimal design has different topology shown in Fig. 5(b). Comparing with the linear

design, the nonlinear design has taken detailed account of material constitutive behaviour, and

presents with compression-dominated structure. 

When the nonlinear finite element analysis is applied to both designs, the results shows the

complementary work and final deflection are 11.38J and 0.94 mm for the linear design and 6.93J

and 0.78 mm for the nonlinear design. It can be concluded that the nonlinear design is much stiffer

than the linear design. 

ER 2%= ARmax 2%= r 0.1= τ 0.1%=

Fig. 4 Design domain and support conditions for a materially nonlinear structure

Fig. 5 Optimized topologies for the optimization problem sketched in Fig. 4 (a) linear optimal design, (b)
materially nonlinear optimal design
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5.3 Geometrically and materially nonlinear structure

The proposed BESO method starts from the full design can apply directly to both geometrically

and materially nonlinear structures and somewhat save the computation time. To further improve the

computational efficiency, BESO may start from an initial guess design which is only with objective

material volume. The optimal design is achieved by shifting the position of elements. Because only

small portion of elements in the design domain is calculated in nonlinear finite element analyses,

the computation time would be saved significantly.

A beam shown in Fig. 6(a) is clamped on both sides and a concentrated force, 10 kN, is acted

downward at the top edge. It is 4 m long, 1m wide, and 0.01 m thick. The nonlinear material is

approximated with the well-known Ramberg-Osgood plasticity model with Young’s modulus

MPa, Poisson’s ratio , the yield stress MPa, the yield offset  and

the hardening exponent . The objective volume is only 20% of design domain. The initial

guess design is shown in Fig. 6(b) and BESO parameters are , , m

and . The convergence criterion used here is very strict, ensuring that the BESO

algorithm really has converged to an (at least) local optimum.

The optimal design using the linear finite element analysis is shown in Fig. 7(a) and design using

the nonlinear finite element analysis is given in Fig. 7(b). Once again, these two designs exhibit

disparities to a great extent. Using nonlinear finite element analysis, the corresponding

complementary work and deflection are 633.6J, 0.11m for the linear design and 456.9J, 0.09m for

the nonlinear design respectively. It also shows that the nonlinear design is much stiffer than the

linear design. Fig. 8 shows the evolutionary histories of the complementary work and structural

topology while the material volume keeps constant. After 230 iterations, the solution is stably

E 500= v 0.3= σy 1= α 0.002=

n 3=

ER 0= ARmax 2%= r 0.05=

τ 0.01%=

Fig. 6 Design domain and initial guess design (a) design domain, (b) initial guess design



Evolutionary topology optimization of geometrically and materially nonlinear structures 591

convergent to an optimal solution. However, designs with the complementary work just a few

percent above the “optimal” one may be obtained using a large τ such as 1% in approximately 130

iterations. It should be noted that the material nonlinearity has less effect on the final design in this

case. In other words, the difference between the linear design and the nonlinear design mainly

comes from the geometrical nonlinearity. 

5.4 Three-dimensional structure

The above BESO method is easily extended to the topology optimization problem for a 3D

structure. As an example, Fig. 9(a) shows the maximum design domain, load and supports

Fig. 7 Optimized topologies for the optimization problem sketched in Fig. 6 (a) linear optimal design, (b)
geometrically and materially nonlinear optimal design

Fig. 8 Evolutionary histories of complementary work and topology for the optimization problem using
nonlinear finite element analysis
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conditions. The material is assumed as a elastic, linear hardening plastic model with Young’s

modulus GPa, Poisson’s ratio , yield stress MPa, hardening modulus

. The design domain is meshed with 100,000 hexahedral elements. However, the

objective volume is only 5% of design domain. The initial guess design is shown in Fig. 9(b) with

only 5,000 hexahedral elements. BESO parameters are , , mm and

. 

Fig. 10(a) shows the optimal design using linear finite element analysis and Fig. 10(b) is the

optimal design using geometrically and materially nonlinear finite element analysis. There is a

significant difference between two topologies. Using geometrically and materially nonlinear finite

element analysis, a force-displacement diagram for linear and nonlinear designs is compared in

E 1= v 0.3= σy 10=

Ep 0.3E=

ER 0= ARmax 2%= r 4=

τ 0.01%=

Fig. 9 Design domain and initial guess design for a 3D structure (a) design domain, (b) initial guess design
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Fig. 11. Notice that the topology optimized using nonlinear finite element analysis is stiffer than that

using linear finite element analysis at the maximum design load. However, it has larger deflection

for smaller loads. It attributes to the fact that the present optimization procedure considers the

overall performance of the design at loads up to the maximum design load. The complementary

works at the maximum design load are 6.7J and 5.1J for linear and nonlinear designs respectively.

So we also conclude that the nonlinear design is stiffer than the linear design.

Fig. 10 Optimized topologies for the optimization problem sketched in Fig. 9 (a) optimal design using linear
finite element analysis, (b) optimal design using geometrically and materially nonlinear finite element
analysis
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6. Conclusions 

Topology optimization of nonlinear structures under prescribed loading conditions using the

BESO method has been proposed. To minimize the complementary work of nonlinear structure,

sensitivity numbers are determined by elemental strain energies at the final equilibrium. The optimal

design is obtained by gradually removing elements with the lowest sensitivity numbers and adding

elements with highest sensitivity numbers. This procedure has been applied to a number of design

problems involving geometrical and/or material nonlinearities. According to comparison, it is found

that the optimal designs for nonlinear structures are stiffer than those for linear structures, especially

when large design loads are applied.
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