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An exact solution for free vibrations of a non-uniform 
beam carrying multiple elastic-supported rigid bars
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Abstract. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine
the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with
each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and
supported by a translational spring and/or a rotational spring at another point. Where the fixed point of
each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting
point of the springs. The effects of the distance between the “fixed point” of each rigid bar and its center
of gravity (i.e., eccentricity), and the distance between the “fixed point” and each linear spring (i.e.,
offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each
lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free
vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of
this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the
predominant parameters.

Keywords: rigid bar; numerical assembly method; exact solution; natural frequency; mode shape;
eccentricity; offset.

1. Introduction

The free vibration characteristic of a beam carrying various concentrated elements is an important

information for the engineers, thus, a lot of reports were published in this area. Rama Bhat and

Wagner (1976) presented the natural frequencies of a uniform cantilever beam carrying a tip mass

with its center of gravity different from its attaching point. Gürgöze (1986) and Gürgöze and Batan

(1986) researched the natural frequency of a restrained cantilever beam carrying a tip heavy body

by using the Dunkerley’s and Southwell’s methods and the numerical solution of the transcendental

frequency equation, respectively. Liu and Huang (1988) studied the vibrations of a constrained beam

carrying a heavy tip body with elastic support and eccentricity. Maurizi et al. (1990) derived the

frequency equations of a uniform beam with one end carrying a tip mass and the other end

elastically restrained against rotation or translation. Farghaly (1992) presented the exact natural

frequencies and mode shapes of an axially loaded cantilever beam with an elastically mounted end

mass of finite length. Zhou (1997) studied the exact natural frequencies and mode shapes of a
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cantilever beam carrying a heavy tip mass supported by a translational spring and a rotational

spring. Naguleswaran (2002) found the natural frequencies of an Euler-Bernoulli beam on elastic

end supports and with up to three-step changes in cross-sections by equating the fourth order

determinant to zero. Wu and Chen (2007a, b) studied the free vibration problem of a non-uniform

beam with various boundary conditions and carrying multiple concentrated elements by lumped-

mass and continuous-mass transfer matrix methods, respectively, but the attaching point for each set

of concentrated elements is at the same station on the beam. Lin (2008) presented the natural

frequencies and mode shapes of a multi-span and multi-step beam carrying a number of

concentrated elements. From the foregoing literature review one finds that the literature regarding

determination of natural frequencies and mode shapes of a non-uniform beam with all concentrated

elements attached to the rigid bars is little. Therefore, the objective of this paper is to extend the

theory of numerical assembly method (NAM) to investigate the free vibration characteristics of a

multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass

and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a

rotational spring at another point. Where the fixed point of each rigid bar with the beam does not

coincide with the center of gravity of the rigid bar. For convenience, a rigid bar supported by a

translational spring and/or rotational spring is called an elastic-supported rigid bar, in this paper. 

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a multi-step pinned-pinned beam with arbitrary simple supports

carrying arbitrary elastic-supported rigid bars with each rigid bar fixed on the beam at a station u

and possessing its own mass Mu and rotary inertia Ju, and supported by a translational spring kTu and

a rotational spring kRu. The points corresponding to the locations of simple pinned supports, changes

in cross-sections and elastic-supported rigid bars are called “stations”. The numbers 1 2 … u … n, , , , ,

Fig. 1 Sketch for a pinned-pinned beam with intermediate rigid (pinned) supports, multi-step changes in
cross-sections and carrying multiple rigid bars 
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along the x-axis refer to the numberings of the stations. Each of the symbols “×” denotes the fixed

point of an elastic-supported rigid bar with the beam and each of the symbols “•” denotes the center

of gravity of the rigid bar. Besides, dmu is the distance between the fixed point of the rigid bar and

its center of gravity, and dku is the distance between the fixed point and the translational and

rotational springs supporting the rigid body at the uth station. 

The differential equation of motion for the i-th beam segment is given by

(1)

where E is Young’s modulus, Ii is moment of inertia of cross-sectional area,  is mass per unit

length, and  is the transverse displacement at position x and time t for the i-th beam segment.

For free vibrations, one has 

 (2)

where  is the amplitude of , ω is the natural frequency of the beam and .

Substitution of Eq. (2) into Eq. (1) gives

(3)

where prime (' ) denotes the differentiation with respect to x and  is the frequency parameter for

the i-th beam segment corresponding to the v-th vibration mode defined by

 (4)

The general solution of Eq. (3) takes the form

(5)

which is the displacement function for the i-th beam segment located at the left side of the i-th

station. 

3. Coefficient matrices for intermediate stations and ends of the beam

In this subsection, the coefficient matrix  for the station of an intermediate elastic-supported

rigid bar (or cross-section change), the coefficient matrix  for an intermediate rigid support, and

the coefficient matrices,  and , for both ends of the entire beam are derived.

3.1 Coefficient matrix [Bu] for station of an intermediate elastic-supported rigid bar (or

cross-section change)

If the station numbering for the fixed point of an intermediate elastic-supported rigid bar is u, then

the continuity of deformations and the equilibrium of moments and forces at station u require that

(6a)

 (6b)

EIi
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yi x t,( )

∂x
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-------------------- mi
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yi x t,( )

∂t
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--------------------+ 0= i 1 2 …, ,=
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yi x t,( ) Yi x( )ejωt
=
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(6c)

(6d)

From Eqs. (5) and (6a)-(6d) one obtains 

 (7a)

(7b)

(7c)

 

(7d)

where

(8a,b,c)

     (9a,b,c,d,e,f)

For convenience, the non-dimensional parameters,  and , as shown in Eqs. (9a-d)

are introduced. In which, the mass per unit length, , and moment of inertia, I1, for the 1st beam

segment are used because the diameters of the beam segments composed of the entire beam are

different.
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Writing Eqs. (7a)-(7d) in matrix form, one has

 (10)

where 

(11)

In the above Eqs. (10) and (11), the symbols, [ ] and { }, denote the rectangular matrix and

column vector, respectively. The coefficient matrix [Bu] is placed in Eq. (A1) of Appendix A at the

end of this paper. If there exists a “cross-section change” instead of an “elastic-supported rigid bar”

at the intermediate station u, then the coefficient matrix [Bu] (associated with the cross-section

change) may be obtained from Eq. (A1) by setting all non-dimensional parameters defined by

Eq. (9) to be zero. 

3.2 Coefficient matrix [Br] for an intermediate rigid support

Similarly, if the station numbering of an intermediate rigid support is r (cf. Fig. 1), then the

continuity of deformations and the equilibrium of moments at station r require that

 (12a,b)

 (12c)

(12d)

From Eqs. (5) and (12a)-(12d) one obtains 

  (13)

where (14)

and the coefficient matrix [Br] is placed in Eq. (B1) of Appendix B at the end of this paper.

3.3 Coefficient matrix [B0] for the left end of the entire beam

If the left-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

 (15a,b)

From Eqs. (5), (15a) and (15b) one obtains

 (16)

where

 (17)

 (18)

Bu[ ] Cu{ } 0=
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Yr ξr( ) Yr 1+ ξr( ) 0= =

Yr′ ξr( ) Yr 1+′ ξr( )=

Yr″ ξr( ) εrYr 1+
″ ξr( )=
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Cr{ } Cr 1,   Cr 2,   Cr 3,   Cr 4,   Cr 1+ 1,   Cr 1+ 2,   Cr 1+ 3,   Cr 1+ 4,{ }=

Y0 0( ) Y0″ 0( ) 0= =

B0[ ] C0{ } 0=

1  2  3  4

B0[ ] 0 1 0 1

0 1–  0 1

1

2
=

C0{ } C0 1,   C0 2,   C0 3,   C0 4,{ }=
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Similarly, if the left-end support of the beam is clamped, one obtains the following boundary

coefficient matrix 

 (19)

3.4 Coefficient matrix [Bn+1] for the right end of the entire beam

If the right-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions

are

 (20a,b)

where n is the total number of intermediate stations.

From Eqs. (5), (20a) and (20b) one obtains

(21)

where

(22)

(23)

In Eq. (22), q denotes the total number of equations for the compatibility of deformations and

equilibrium of forces and moments given by

 (24)

Similarly, if the right-end support of the beam is free, one obtains the following boundary

coefficient matrix

(25)

4. Determination of natural frequencies and mode shapes of the beam

The integration constants relating to the left-end and right-end supports of the beam are defined

by Eqs. (18) and (23), respectively, while those relating to the intermediate stations are defined by

Eqs. (11) and/or (14) depending upon an elastic-support rigid bar (or a cross-section change) or a

pinned support being located there. The associated coefficient matrices are given by  (cf.

Eqs. (17) or (19)), [Bu] (cf. Eq. (A1) of Appendix A), [Br] (cf. Eq. (B1) of Appendix B) and 

1  2  3  4

B0[ ] 0 1 0 1

1 0 1 0

1

2
=
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(cf. Eq. (22) or (25)). From the last equations concerned one may see that the identification number

for each element of the last coefficient matrices is shown on the top side and right side of each

matrix. Therefore, using the numerical assembly technique as done by the conventional finite

element method (FEM) one may obtain a matrix equation for all the integration constants of the

entire beam

 (26)

Non-trivial solution of Eq. (26) requires that its coefficient determinant is equal to zero, i.e.

 (27)

which is the frequency equation for the present problem.

In this paper, the incremental search method is used to find the natural frequencies of the

vibrating system, ωv ( ). For each natural frequency ωv, one may obtain the

corresponding integration constants from Eq. (26). The substitution of the last integration constants

into the displacement functions of the associated beam segments will determine the corresponding

mode shape of the entire beam, . 

5. Numerical results 

In this section, the free vibration analysis of a two-span uniform or multi-step beam carrying

multiple elastic-supported rigid bars is performed, the reliability of the theory and the computer

program developed for this paper are confirmed by comparing the present results with those

obtained from the conventional finite element method (FEM). In FEM, the two-node beam elements

are used and the entire beam is subdivided into 40 beam elements. Since each node has two degrees

of freedom (DOF’s), the total DOF for the entire unconstrained beam is . Unless

otherwise mentioned, the dimensions of the uniform Euler-Bernoulli beam studied in this paper are

as follows: Young’s modulus E = 2.068 × 1011 N/m2, diameter d1 = 0.03 m, mass density ρ = 7850

kg/m3 and total length L = 2 m. The reference mass is  kg, the reference

rotary inertia is  kg m2, the reference stiffness for translational spring is 

 N/m and the reference stiffness for rotational spring is  Nm/rad. For

convenience, four non-dimensional parameters,  and , are introduced, they are defined

by: , ,  and .

5.1 Influence of eccentricity dmu of rigid bar and offset dku of the supporting spring

The first example is a two-span uniform beam with an intermediate rigid pinned support at ξ1 =

0.4 and carrying an elastic-supported rigid bar fixed on the beam at ξ2 = 0.6 with  = 50, =

0.8 and  = 0.04 as shown in Fig. 2. Where the beam shown in Fig. 2(a) is pinned-pinned (P-P)

and that shown in Fig. 2(b) is clamped-free (C-F). The lowest four natural frequencies of the beam

for eight cases are shown in Table 1. Since the symbol dm2 denotes the distance between the “fixed

point” of the rigid bar and its center of gravity (or the “eccentricity” of the rigid bar) and dk2

denotes the distance between the “fixed point” of the rigid bar and its supporting spring (or “offset”

of the supporting spring) at station 2, the cases in Table 1 with non-dimensional parameters

 and  indicate that, in those cases, the concentrate mass M2 (with

B[ ] C{ } 0=

B 0=

v 1 2 …, ,=

Y
v( )
ξ( )

2 40 1+( ) 82=

m̂ m
1
L ρ π/4( )d1

2
L= =

Ĵ m
1
L
3

= k̂T EI1/L
3

= =

E π/64( )d1

4
/L

3
k̂R EI1/L=

M
*

J
*

kR
*, , kT

*

M
*

M/m̂= J
*

J/Ĵ= kR
* kR/k̂R= kT

* kT/k̂T=

kT2
* M2

*

J2

*

dm2

* dm2/L 0= = dk2
* dk2/L 0= =
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Fig. 2 Sketch for a two-span uniform beam carrying an elastic-supported rigid bar (a) pinned-pinned (P-P),
(b) clamped-free (C-F) 

Table 1The lowest four natural frequencies of the two-span uniform P-P and C-F beams (cf. Fig. 2), each
with an intermediate rigid pinned support at ξ1 = 0.4 and carrying an elastic-supported rigid bar fixed
on the beam at ξ2 = 0.6 with  = 50,  = 0.8 and  = 0.04

Boundary
conditions

Cases

Non-dimensional 
parameters Methods

Natural frequencies (rad/sec)

 or ω1  or ω2  or ω3  or ω4

P-P

1 0 0
Present 156.1807 308.2504 804.4766 992.0400

FEM 156.1808 308.2504 804.4782 992.0426

2 0.1 0

Present
a(%)

129.3294
(-17.19)

365.7199
(18.64)

811.9697
(0.93)

983.2036
(-0.89)

FEM 129.3295 365.7200 811.9713 983.2062

3 0 0.15

Present
a(%)

169.7595
(8.69)

304.7648
(-1.13)

804.4166
(-0.01)

983.1870 
(0.02)

FEM 169.7596 304.7648 804.4183 992.2359

4 0.1 0.15

Present
a(%)

140.6333 
(-9.95)

361.5423 
(17.29)

811.8406
(0.92)

992.2333
(-0.89)

FEM 140.6334 361.5425 811.8422 983.1896

C-F

5 0 0
Present 59.8369 282.2685 321.4191 1162.5393

FEM 59.8369 282.2686 321.4192 1162.5441

6 0.1 0

Present
a(%)

53.2545
(-11.00)

260.5013
(-7.71)

385.0600
(19.80)

1166.9559
(0.38)

FEM 53.2546 260.5015 385.0601 1166.9607

7 0 0.15

Present
a(%)

77.8948
(30.18)

286.1619
(1.38)

317.8231
(-1.12)

1162.5222
(0.00)

FEM 77.8948 286.1620 317.8232 1162.5268

8 0.1 0.15

Present
a(%)

69.6976 
(16.48)

262.7179
(-6.93)

380.7430 
(18.46)

1166.9188 
(0.38)

FEM 69.6976 262.7180 380.7431 1166.9235

a(%)=

kT2

*

M2

*

J2

*

dm2

*

dk2

*

ω1 ω2 ω 3 ω4

ω v ω v–( )/ω v[ ] 100%×
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rotary inertia J2) and the linear spring with stiffness kT2 are attached to the beam at the same station

2. In other words, the cases in Table 1 with  and  are the same as

a uniform beam carrying arbitrary sets of point mass and linear spring in the exacting literature Lin

(2008). For convenience, the v-th natural frequency of such a “loaded” beam is represented by 

in this paper. On the contrary, the v-th natural frequency of the “loaded” beam with 

and/or  (as shown in Fig. 2) is represented by ωv. In Table 1, case 1 shows the

lowest four natural frequencies (ωv, v = 1 to 4) of the P-P beam with = 0 and = 0 and, for

highlight, they are represented by the bold-faced digits. However, case 2 shows the lowest four

natural frequencies (ωv, v = 1 to 4) of the same P-P beam carrying an “elastic-supported rigid bar”

with = 0.1 and = 0, and the percentage differences (%) of the lowest four natural

frequencies (ωv, v = 1 to 4) shown in the parentheses are determined by the formula: a(%) =

. From the percentage differences one sees that, for the case of = 0, the

dm2

* dm2/L 0= = dk2
* dk2/L 0= =

ωv

dm2

* dm2/L 0≠=

dk2
* dk2/L 0≠=

dm2

* dk2
*

dm2

* dk2
*

ωv ωv–( )/ωv[ ] 100%× dk2
*

Fig. 3 The lowest four mode shapes of the two-span uniform P-P beam with an intermediate rigid pinned
support at ξ1 = 0.4 and carrying an elastic-supported rigid bar fixed on the beam at ξ2 = 0.6 with =
0.8, = 0.04 and = 50 (cf. Fig. 2): (a), (b), (c) and (d) being the 1st, 2nd, 3rd and 4th mode shapes,
respectively  

M2

*

J2

*
kT2

*
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eccentricity ( = 0.1) of the “elastic-supported rigid bar” reduces the first natural frequency of the

“loaded” beam 17.19% and raises the second one 18.64%. In case 3, the eccentricity of the rigid

bar is zero (i.e., = 0) and the offset of linear spring is = 0.15, and the associated percentage

differences shown in the parentheses of Table 1 reveal that the effect for the offset of the linear

spring ( = 0.15) raises the first natural frequency of the “loaded beam” 8.69% and reduces the

second one 1.13%. Front the foregoing discussions one sees that the effect of eccentricity ( ) of

rigid bar is opposite to that of the offset of the linear spring ( ) for the lowest two natural

frequencies and the effect of  is much greater than that of . Furthermore, from Table 1 one

may see that the effect of either  or  on the third and fourth natural frequencies is small.

Case 4 is a combination of case 2 and case 3, i.e., = 0.1 and = 0.15, and from the

associated percentage differences shown in the parentheses of Table 1 one sees that the effects of

both  and  near the combined effects of case 2 (with effect of  only) and case 3 (with

effect of  only). For example, −17.19%+8.69% = −8.5% is close to −9.95% for the first natural

frequency (in case 4); 18.64%-1.13% = 17.51% is very close to 17.29% for the second natural

frequency; 0.93%-0.01% = 0.92% is equal to 0.92% for the third natural frequency; and

−0.89%+0.02% = −0.87% is very close to −0.89% for the fourth natural frequency. 

In Table 1, the loading conditions of the “elastic-supported rigid bar” on the loaded beam for

cases 5, 6, 7 and 8 are exactly the same as those for cases 1, 2, 3 and 4, respectively, the only

difference is that the former loaded beam is clamped-free (C-F) and the latter one is pinned-pinned
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*
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*
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* dk2
*

dm2

* dk2
*
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* dk2
*
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* dk2
* dm2

*

dk2
*

Fig. 4 The legends are the same as Fig. 3 except that the boundary conditions are clamped-free (C-F)
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(P-P). From the percentage differences for cases 6 and 7 one sees that, for the C-F beam, the

eccentricity ( = 0.1 in case 6) of the rigid bar has the effect of reducing the lowest two natural

frequencies of the loaded beam, but this effect is reverse for the offset ( = 0.15 in case 7) of the

linear spring. Although the effect of  (or ) on the C-F beam in case 6 (or 7) is different from

that on the P-P beam in case 2 (or 3), the combined effects of both  and  on the C-F beam

in case 8 are similar to those on the P-P beam in case 4, as one may see from the percentage

differences shown in the parentheses of Table 1 for cases 4 and 8. It is noted that the FEM results

listed in Table 1 are in good agreement with the corresponding ones obtained from the presented

method of this paper.

Based on the non-dimensional parameters for the P-P beam (cases 1, 2 and 3) and C-F beam

(cases 5, 6 and 7) shown in Table 1, the lowest four mode shapes are shown in Figs. 3(a)-(d) and

Figs. 4(a)-(d), respectively. Where (a), (b), (c) and (d) refer to the 1st, 2nd, 3rd and 4th mode shapes,

respectively. Besides, the curves ————, ·················· and — — — denote the mode shapes with

= = 0, = 0.1 and = 0, and  = 0 and = 0.15, respectively. 

5.2 Free vibration analysis of a three-step beam carrying three elastic-supported rigid

bars

The purpose of this subsection is to show the availability of the presented theory and the

developed computer program for determining the lowest several natural frequencies and the

associated mode shapes of a multi-step beam carrying multiple elastic-supported rigid bars. The

example studied is a three-step pinned-pinned (P-P) (cf. Fig. 5) and clamped-free (C-F) beam, each

with an intermediate rigid pinned support at ξ3 = x3/L = 0.4 and carrying three elastic-supported rigid

dm2

*

dk2
*

dm2

* dk2
*

dm2

* dk2
*

dm2

* dk2
* dm2

* dk2
* dm2

* dk2
*

Fig. 5 Sketch for a three-step pinned-pinned (P-P) beam with an intermediate rigid pinned support at ξ3 = 0.4
and carrying three elastic-supported rigid bars at ξ1 = 0.15, ξ4 = 0.5 and ξ6 = 0.8, respectively 
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bars at ξ1 = 0.15, ξ4 = 0.5 and ξ6 = 0.8, respectively. The dimensions of the three-step beam are as

follows: diameters d1 = d2 = 0.03 m, d3 = d4 = 0.04 m, d5 = 0.05 m and d6 = d7 = 0.04 m; total length

L = 2.0 m. The locations for the step changes in cross-sections are ξ2 = 0.3, ξ4 = 0.5 and ξ5 = 0.7.

The lowest four natural frequencies and non-dimensional parameters for the beam are shown in

Table 2. From the table one sees that the results of the present paper are in excellent agreement with

those of FEM. Based on the values of the non-dimensional parameters,  and  (for u =

1, 4, 6), as shown in Table 2, the lowest four mode shapes of the P-P beam and C-F beam are

shown in Figs. 5(a)-(d) and Figs. 6(a)-(d), respectively, with legends the same as that of Fig. 3. In

which, the curve ———— denotes the mode shapes with  = 0 and = 0 (for u = 1, 4, 6), the

Mu

*
Ju

*
kTu

*, , kRu

*

dmu
* dku

*

Table 2 The lowest four natural frequencies of the three-step (a) P-P beam and (b) C-F beam with an
intermediate rigid pinned support and carrying three elastic-supported rigid bars (cf. Fig. 5)

(a) for P-P beam 

Locations of 
rigid bars 

Non-dimensional parameters
Methods

Natural frequencies, ωv (rad/sec)

 or ω1  or ω2  or ω3  or ω4

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0
0
0

0
0
0

Present 270.6295 522.1405 552.8593 661.0960

FEM 270.6296 522.1408 552.8595 661.0963

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0.08
0.10
0.08

0
0
0

Present 267.7969 488.6296 549.7853 618.3787

FEM 267.7970 488.6298 549.7855 618.3790

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0
0
0

0.10
0.15
0.10

Present 271.6456 521.3903 553.8057 662.2269

FEM 271.6456 521.3905 553.8057 662.2272

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0.08
0.10
0.08

0.10
0.15
0.10

Present 268.9676 489.4594 550.5421 617.6240

FEM 268.9678 489.4596 550.5422 617.6243

(b) for C-F beam

Locations of 
rigid bars 

Non-dimensional parameters
Methods

Natural frequencies, ωv (rad/sec)

 or ω1  or ω2  or ω3  or ω4

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0
0
0

0
0
0

Present 99.1628 325.9989 633.7047 759.2218

FEM 99.1628 325.9990 633.7048 759.2224

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0.08
0.10
0.08

0
0
0

Present 91.1194 318.9297 554.3213 861.8099

FEM 91.1195 318.9299 554.3215 861.8106

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0
0
0

0.10
0.15
0.10

Present 103.1221 326.8376 634.5717 758.9101

FEM 103.1221 326.8377 634.5718 758.9106

0.15
0.50
0.80

0.3
0.4
0.5

0.01
0.02
0.03

10
20
15

5
10
5

0.08
0.10
0.08

0.10
0.15
0.10

Present 94.7732 319.8867 555.2973 861.0975

FEM 94.7732 319.8868 555.2973 861.0983

ξ x/L=
M

*
J
*

kT

*
kR

*
dm

*
dk

*
ω1 ω2 ω3 ω4

ξ x/L=
M

*
J
*

kT

*
kR

*
dm

*
dk

*
ω1 ω2 ω3 ω4
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curve ·················· denotes the mode shapes with = 0.08, = 0.1, = 0.08 and = 0 (for u

= 1, 4, 6), and the curve — — — denotes the mode shapes with  = 0 (for u = 1, 4, 6),  =

0.1, = 0.15 and = 0.1. 

6. Conclusions

From this study the following concluding remarks can be made:

1. For a multi-step beam with an intermediate pinned support and carrying multiple rigid bars with

each of the rigid bars possessing its own mass and rotary inertia and fixed to the beam at one

point, and supported by a (linear) translational spring and a rotational spring at another point, it

dm1

* dm4

* dm6

* dku
*

dmu
* dk1

*

dk4
* dk6

*

Fig. 6 The lowest four mode shapes of the three-step P-P beam with an intermediate rigid pinned support and
carrying three elastic-supported rigid bars (cf. Fig. 5): (a), (b), (c) and (d) being the 1st, 2nd, 3rd and 4th

mode shapes, respectively 
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has been found that one can easily obtained its lowest several “exact” natural frequencies and

corresponding mode shapes by using the numerical assembly method. The presented method

can easily be extended to determine the exact natural frequencies and mode shapes of a multi-

step beam carrying multiple elastic-supported rigid bars with each rigid bar carrying multiple

translational and rotational springs at another point.

2. If a beam carrying any number of concentrated masses and linear springs is called the “loaded

beam”, then it is well-known that one may change the natural frequencies and mode shapes of

the loaded beam by changing the magnitude of the concentrated masses and the stiffness of the

linear springs as one may see from the exiting literature. However, from the numerical

examples presented in this paper, one finds that adjusting the eccentricity (dmu) of each rigid bar

and the offset (dku) of each linear spring supporting the rigid bar is also a very simple and very

effective technique for change the natural frequencies and mode shapes of a loaded beam.
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Notations

di : diameter of the i-th beam segment
dmu : distance between the fixed point and the center of gravity of the rigid bar (or “eccentricity” for the

center of gravity of the rigid bar) at the uth station
dku : distance between the fixed point and the springs supporting the rigid bar (or “offset” for the springs

supporting the rigid bar) at the uth station
E : Young’s modulus 
i : numbering for the i-th beam segment
Ii : moment of inertia of cross-sectional area of the i-th beam segment
j :
Ju : rotary inertia of the rigid bar itself at the uth station
kRu : spring constant of rotational spring supporting the rigid bar at the uth station
kTu : spring constant of translational spring supporting the rigid bar at the uth station
L : total length of the entire beam
Li : length of the i-th beam segment

: mass per unit length of the i-th beam segment
Mu : mass of the rigid bar itself at the uth station 
n : total number of intermediate stations
q : total number of equations for compatibility of deformations and equilibrium of forces and moments
v : the v-th vibration mode
xu : coordinate of station u
yi(x, t): transverse displacement at position x and time t for the i-th beam segment
Yi(x) : amplitude function of yi(x, t)
βv, i : frequency parameter for the i-th beam segment corresponding to the v-th vibration mode
εu : ratio of moment of inertia of cross-sectional area at right side to that at left side of the uth station

(=Iu+1/Iu)
Ωv, i : non-dimensional frequency parameter for the i-th beam segment corresponding to the v-th vibration

mode
ωv : the v-th natural frequencies of the beam carrying an elastic-supported rigid bar with fixed point of

rigid bar to be different from the center of gravity of the rigid bar and/or the supporting point of the
springs 

: the v-th natural frequencies of the beam carrying an elastic-supported rigid bar with fixed point of
rigid bar to be coincident with center of gravity of the rigid bar and/or the supporting point of the
springs

ξi : non-dimensional coordinate of i-th station (=xi/L) 

1–

mi

ω v



A
n
 exa
ct so
lu
tion
 fo
r free vib
ra
tio
ns o
f a
 n
o
n-un
iform
 b
eam
 ca
rryin
g m
u
ltip
le...

4
1
5

Appendix A

The coefficient matrix [Bu] for Eq. (14) is given by

(A1)

(A2a,b,c,d,e,f)

(A3a,b,c,d)

(A4a,b,c,d)
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Appendix B

The coefficient matrix [Br] for Eq. (18) is given by

(B1)

where

(B2a,b,c,d)

(B3a,b,c,d)

 

 

 




