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thermoelastic body with variable material properties 

Rajneesh Kumar†

Department of Mathematics, Kurukshetra University, Kurukshetra-136119, India

Savita Devi‡

Department of Mathematics, D.N. College, Hisar-125001, India

(Received June 19, 2008, Accepted September 10, 2009)

Abstract. The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with
voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical
boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well
as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory
with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of
thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an
application, concentrated/uniformly distributed mechanical or thermal sources have been considered to
illustrate the utility of the approach. The integral transforms have been inverted by using a numerical
inversion technique to obtain the components of displacement, stress, changes in volume fraction field and
temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the
components of stress, changes in volume fraction field and temperature distribution are illustrated
graphically for a specific model. Different special cases are also deduced.

Keywords: thermoelasticity; generalized thermoelasticity; modulus of elasticity; thermal conductivity;
thermal relaxation parameters; concentrated/uniformly distributed source; integral transforms.

1. Introduction

The generalized theories of thermoelasticity have been developed to overcome the physically

unrealistic prediction of the coupled dynamical theory (Biot 1956) of thermoelasticity that thermal

signal propagates with infinite speed. Lord and Shulman (1967)(LS) theory and Green and Lindsay

(1972) temperature rate dependent (GL) theory of thermoelasticity are two well established theories

of thermoelasticity, which introduce the thermal relaxation parameters in the basic equations of the

coupled dynamical thermoelasticity theory and admit the finite value of heat propagation speed. The

finiteness of speed of thermal signal has been found to have experimental evidence too. The

generalized thermoelasticity theories are therefore, more realistic and have aroused much interst in
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recent research. The dual-phase-lag of thermoelasticity is proposed by Chandrasekhariah (1998),

Tzou (1995) (C-T model), in which the Fourier law is replaced by an approximation to a

modification of the Fourier law with two different translations for the heat flux and the temperature

gradient.

Each of these models has been introduced in the literature in an attempt to eliminate shortcomings

of the classical dynamical coupled thermoelasticity such as: (1) infinite velocity of thermoelastic

disturbances, (2) unsatisfactory thermoelastic response of a solid to short laser pulses, and (3) poor

description of thermoelastic behavior at low temperatures.

The theory of linear elastic materials with voids is one of the most important generalizations of

the classical theory of elasticity. This theory has practical use for investigating various types of

geological and biological materials for which elastic theory is inadequate. This theory is concerned

with elastic materials consisting of a distribution of small pores (voids), in which the voids volume

is included among the kinematics variables and in the limiting case of volume tending to zero, the

theory reduces to the classical theory of elasticity.

A non-linear theory of elastic materials with voids was developed by Nunziato and Cowin (1979).

Later, Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids for the

mathematical study of the mechanical behavior of porous solids. They considered several

applications of the linear theory by investigating the response of the materials to homogeneous

deformations, pure bending of beams and small amplitudes of acoustic waves. Considerable amount

of work has been done in the linear theory of elastic materials with voids (Rusu 1987, Saccomandi

1992, Scarpetta 1995, Marin 1997a, b, Sharma 2001).

Cowin (1985) also extended the theory to show that the linear elastic material with voids behave

like viscoelastic material.

Iesan (1986) developed the theory of the thermoelastic material with voids. Recently Kumar and

Ailawalia (2009), Kumar and Rani 2005a, b, Kumar et al. (2009) investigated various problems in

the linear theory of thermoelastic and micropolar themoelastic materials with voids and also study

the effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the

interface between an elastic and micropolar generalized thermoelastic solid. 

A comprehensive work has been done in theory of thermoelasticity with dependence of modulus

of elasticity on reference temperature (Ezzat et al. 2001, Othman 2002, Ezzat et al. 2004, Youssef

2005a, b, Othman and Song 2008).

In the present investigation the equations of thermoelasticity with void, with the dependence of

modulus of elasticity and thermal conductivity on the reference temperature are used to obtain the

components of displacement, stress, change in volume fraction field and temperature distribution

due to thermomechanical sources.

2. Basic equations 

Following Cowin and Nunziato (1983) and El-Karamany (2004), the field equations and

constitutive relations in thermoelastic body with voids without body forces, heat sources and

extrinsic equilibrated body force can be written as

 (1) 
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(2)

 (3)

 (4)

where λ, µ - Lame’s constant,  - material constants due to presence of voids, T -

the temperature distribution, -displacement vector, ρ, Ce - density and specific heat respectively,

K - thermal conductivity, φ - change in volume fraction field, T0 -uniform temperature distribution,

tij - components of stress tensor, , , τ0, τ1 - the relaxation times,

δij - Kronecker delta,  - constants ,  - coefficient of linear thermal

expansion.

3. Formulation and solution of the problem

We consider a homogeneous, isotropic, generalized thermoelastic half space with voids in the

undeformed temperature T0. The rectangular cartesian co-ordinate system  having origin on

the surface  with z-axis pointing normally in to the medium is introduced.

For two dimensional problems, we assume displacement vector  as

 (5)

Our aim is to investigate the effect of temperature dependence of modulus of elasticity keeping

the other elastic and thermal parameters as constant. Therefore we may assume

(6)

where  are considered constants, α* is called empirical material

constant, incase of the reference temperature independent of modulus of elasticity, then α* = 0.

To facilitate the solution, following dimensionless quantities are introduced 
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∂
∂x
----- ĵ
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where 

 

 and 

Using the expression relating displacement components  and  to the scalar

potential functions  and  in dimensionless form 

, (8)

Applying the Laplace and Fourier transforms defined by

 (9)

on Eqs. (1)-(4) and with the help of Eqs. (5)-(9), eliminating  and  and after some

simplification (dimensionless form after avoiding the use of symbol primes) we obtain
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 and κ is the diffusivity. 

The roots of the Eqs. (10) and (11) are .

Assuming the regularity conditions, the solutions of Eqs. (10) and (11) may be written as 

 (12)

(13)

where

, ; with

 

4. Boundary conditions

4.1 Mechanical sources on the surface of half-space 

The boundary conditions in this case are

 

, , , , at (14) 

where  are the magnitude of the forces,  is the constant temperature applied on the

boundary,  is the known function. Making use of Eqs. (4)-(8) and applying the Laplace and

Fourier transforms defined by (9) and substituting the value of  and  from Eqs. (12) and

(13) in the boundary condition (14), we obtain the components of displacement, stress, change in

volume fraction field and temperature distribution as 

(15)
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where

and  are obtained by replacing first, second third and forth column of  by

, ,

, , ,

Case I Mechanical force The corresponding expressions are obtained for mechanical force in

normal and tangential direction by taking  and  in Eq. (15), respectively.

Case II Thermal source The corresponding expressions are obtained for thermal source by

taking  in Eq. (15).

5. Applications

Case 5.1 Concentrated source

In this case  as

(16)

where  is the Dirac delta function. Applying the Laplace and Fourier transforms defined by

Eq. (9) on Eq. (16) we obtain

 (17)

Case 5.2 Uniformly distributed source

A special surface source distribution is considered: uniform distribution over the width 2a. We

take  as

(18)

The Laplace and Fourier transforms of Eq. (18) yield

(19)
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(20)

∆

R1 R2 R3 R4

q1 q2 q3 q4

s1 s2 s3 0

e1 e2 e3 0

=

∆1 ∆2 ∆3 ∆4, , , ∆

P1F̃ ξ s,( )–   P2F̃ ξ s,( )–   0  0[ ]T R� a11 2+( )λ�

2
ξ
2

– a2d� a3f3e�–+( )/a*
= a11

λ0

µ0

-----=

q� 2 iξ( )λ�/a
*
� 1 2 3, ,=( )= E� e

λ
�
x–

; � 1 2 3 4, , ,=( )= R4 2iξλ4/a
*

= q4 ξ
2

λ4

2
+( )/a*

–=

P2 P3 0= = P1 P3 0= =

P1 0 P2, 0= =

F x t,( )

F x t,( ) δ x( )δ t( )=

δ( )

F̃ ξ s,( ) 1=

F x t,( )

F x t,( ) G{ 1 x( )δ t( )=

F̃ ξ s,( ) G̃1 ξ( )=

G1 x( )
1 if x a≤

0 if x a>⎩
⎨
⎧

=



Thermomechanical deformation in porous generalized thermoelastic body 291

in Eq. (18). Applying the Fourier transforms defined by Eq. (9) on Eq. (20) and put the resulting

equation in (19), we obtain

 (21)

The expressions for components of displacement, stress, and temperature distribution can be

obtained for concentrated or uniformly distributed source by replacing  from Eqs. (17) and

(21), respectively in Eq. (15). 

6. Particular cases

6.1. In case of independence of modulus of elasticity we obtain the corresponding expressions in

Eq. (15) with . 

6.2. If we neglect the voids effect  in our fundamental system of

Eqs. (1)-(4), we obtained the corresponding expressions for thermoelastic half-space due to

concentrated or distributed source with the help of Eqs. (17) and (21) with dependence of modulus

of elasticity as 

(22)
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7. Special cases

We obtain the corresponding expressions for components of displacement, stress, change in

volume fraction field and temperature distribution as given in Eqs. (15) and (22) in all the theories

of thermoelasticity with changed values of  by considering the following: 

Sub-Cases:

I-Coupled theory (CT-Theory)

, ,

with

II-Lord and Shulman theory (LS Theory) 

, ,

III-Green and Lindsay theory (GL Theory)

, ,

with

VI-Chandrasekhariah and Tzou theory (C-T model)

, , , , ,

 
with 

8. Numerical inversion

The transformed expressions given by (15) and (22) are inverted by using the numerical inversion

technique given by Kumar and Ailawalia (2003). 

9. Numerical results and discussion

The numerical- discussion for both the cases (with and without dependence of modulus of

elasticity) is reported. Following Dhaliwal and Singh (1980), we take the following values of

relevant parameters for the magnesium crystal-like material as 
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and the void parameters are 

, ,

, ,

The comparison were carried out for

, , , , , 

Fig. 1-24 shows the variations of normal stress t33, tangential stress t31, change in volume fraction

field φ and temperature distribution T with distance x for LS with dependence of modulus of

elasticity(LS-D), GL with dependence of modulus of elasticity(GL-D), C-T with dependence of

modulus of elasticity(C-T-D) and LS with independence of modulus of elasticity(LS-I), GL with

independence of modulus of elasticity(GL-I), C-T with independence of modulus of elasticity(C-T-I)

due to concentrated or uniformly distributed thermomechanical sources, respectively. The solid line,

small dashed lines, long dashed lines without center symbols denote for LS-D, GL-D, C-T-D and

with center symbols denote for LS-I, GL-I, C-T-I respectively. The computations are carried in the

range  with non-dimensional time  and width .

10. Discussion for various cases

10.1 Concentrated force (normal direction)

Fig. 1-4 show the variations of t33, t31, φ and T with distance x. The trend of variations of t33, t31

and T for dependence(LS-D, GL-D, C-T-D) and independence(LS-I, GL-I, C-T-I) of modulus of

elasticity is similar whereas the corresponding values are different in magnitude, respectively. But it

is noticed that, in the range , the trend of variations of φ is opposite to t33, t31, T and far
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Fig. 1 Variations of normal stress t33 with distance x Fig. 2 Variations of tangential stress t31 with distance
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from the source is similar for the same. Also the t33, t31, φ and T follow oscillatory pattern in the

whole range of x. But the magnitude of oscillation is different. To compare the variations the values

of t31 for (C-T-D) are multiplied by 102 times to its original values.

10.2 Uniformly distributed force (normal direction)

The variations of all the quantities t33, t31, φ and T are similar in nature to the variations obtained

in case of concentrated normal force with difference in their magnitude. These variations are shown

in Figs. 5-8. Also to compare the variations the values of t31 for (C-T-D) are multiplied by 10 times

to its original values.

Fig. 3 Variations of change in volume fraction field
φ with distance x 

Fig. 4 Variations of temperature distribution T with
distance x

Fig. 5 Variations of normal stress t33 with distance x Fig. 6 Variations of tangential stress t31 with distance
x
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10.3 Concentrated force (tangential direction)

The behavior of variations of t33, t31, φ and T for (LS-D, GL-D, C-T-D) oscillatory in the whole

range of x, but the corresponding values are different in magnitude, respectively, as shown in

Figs. 9-12, respectively. Also the trend of variations of t31, φ is opposite to t33, T for (LS-I, GL-I, C-

T-I). The magnitude of oscillation for (LS-D, GL-D, C-T-D) is large in comparison to (LS-I, GL-I,

C-T-I). To compare the variations the values of φ for (LS-I, GL-I, C-T-I) is multiplied by 102 times

to its original values.

Fig. 7 Variations of change in volume fraction field
φ with distance x

Fig. 8 Variations of temperature distribution T with
distance x

Fig. 9 Variations of normal stress t33 with distance x Fig. 10 Variations of tangential stress t31 with
distance x
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10.4 Uniformly distributed Force (tangential direction)

The variations of all the quantities t33, t31, φ and T are similar in nature to the variations

obtained in Figs. 9-12 with difference in their magnitude. These variations are shown in Figs. 13-

16. Also the variations of φ obtained for (LS-I, GL-I, C-T-I) is multiplied by 102 times to their

original values.

Fig. 11 Variations of change in volume fraction field
φ with distance x 

Fig. 12 Variations of temperature distribution T with
distance x

Fig. 13 Variations of normal stress t33 with distance
x

Fig. 14 Variations of tangential stress t31 with
distance x
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10.5 Concentrated thermal source

Fig. 17 shows the variation of t33 with distance x. The trend of variations of t33 for (LS-D and LS-

I, GL-D and (GL-I, C-T-D and C-T-I) is similar i.e., follow oscillatory pattern whereas the

corresponding values are different in their magnitude.

Fig. 18 shows the variations of t31 with distance x. The behavior of variations of t31 for (GL-D,

GL-I) is opposite oscillatory in the whole range of x. The trend of variations of t31 for (LS-D and

LS-I, C-T-D and C-T-I) is similar whereas the corresponding values are different in magnitude. To

compare the variations of t31 for (GL-I) is demagnified by 102. Fig. 19 shows the variations of φ

with distance x. Near the point of application of source the values of φ for (LS-D, GL-D) are more

in comparison to (LS-I, GL-I), respectively. The values of φ for (C-T-D, C-T-I) are similar in the

Fig. 15 Variations of change in volume fraction field
φ with distance x

Fig. 16 Variations of temperature distribution T with
distance x

Fig. 17 Variations of normal stress t31 with distance
x 

Fig. 18 Variations of tangential stress t31 with distance
x
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range  and contrary in the remaining range of x. As away from the source the

distributions curves are all approaching toward zero except for (C-T-D). Fig. 20 shows the

variations of T with distance x. The values of T for (LS-D, GL-D, C-T-D, LS-I, GL-I, C-T-I)

decrease in the range  and its behavior is oscillatory in the remaining range of x. But the

magnitude of oscillation is very small except (LS-D, GL-D, C-T-D).

10.6 Uniformly distributed source

The variations of all the quantities t33, t31, φ and T are similar in nature to the variations obtained

in case of concentrated thermal source with difference in their magnitude. These variations are

shown in Figs. 21-24. Also the variations of t31 obtained for (GL-I) is demagnified by 102.

0 x 1.8≤ ≤

0 x 2.5≤ ≤

Fig. 19 Variations of change in volume fraction field
φ with distance x

Fig. 20 Variations of temperature distribution T with
distance x

Fig. 21 Variations of normal stress t31 with distance
x

Fig. 22 Variations of tangential stress t31 with distance
x
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11. Conclusions 

Two dimensional deformation problem of a thermoelastic material with voids under the

dependence of modulus of elasticity and thermal conductivity on reference temperature due to

concentrated or uniformly distributed source is analyzed. It is observed that in each case, the impact

(absolute) of t33, t31, φ and T is maximum near the point of application of source. As x diverges

from the point of application of source these quantities are observed to follow oscillatory pattern.

Also it is noticed that, near the point of application of source the values of t33, t31 and T for (LS-D,

GL-D, C-T-D) are more in comparison to (LS-I, GL-I, C-T-I) whereas when we observe in the same

case the values of φ are quite less as compared to t33, t31 and T.
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