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1. Introduction

Nowadays with the development of computer technology, suspension bridges are designed by

making extensive use of the nonlinear finite element method. Based on the finite displacement

theory and advanced computation technique, it is so far the most accurate and mature computational

method for suspension bridge. However, this method normally leads to analysis with a large number

of variables involved, difficult to verify and tend to obscure the influence of key parameters on the

overall behavior of the bridge. Any parametric variance will cause readjustment of the computation

model, and the status that any model describes usually needs experienced designers to repeat the

process of try for many times.

In this paper the dimensionless form of the deflection theory of self-anchored suspension bridges

was derived, and a concept of composite axial stiffness coefficient of stiffening girders was

introduced. This paper also studied the relationship between the mechanical properties of self-

anchored suspension bridges and Irvine’s parameter, Steinman’s stiffness coefficient and so on.

2. Dimensionless equations of the deflection theory of self-anchored suspension

bridges

According to Ochsendorf’s theory(1999), the deflection equation of self-anchored suspension

bridges can be expressed as

(1)

Mechanical behavior of self-anchored suspension bridges is not only related to spans, but also

stiffness of the main cables, stiffness of the stiffening girder, the amount of dead load and so on.

Therefore a comprehensive consideration of the influence of the above factors is necessary in the

analysis process of bridge mechanical properties. Assume that the cable slides at the top of the
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pylon so that the horizontal force in the cable can be assumed constant. Perform the transformations

(2)

the deflection theory of self-anchored suspension bridges can be written in dimensionless form as 

(3)

(4)

(5)

The mechanical behavior of a self-anchored suspension bridge is thus described by parameters λ2,

α2, γ given as 

, , (6)

Parameter λ2 has been first interpreted by Irvine in the study of conventional suspension bridges.

It accounts for the relation between geometric and elastic stiffness. It is small for taut flexible cables

and it approaches infinity for an inextensible suspended cable.

Parameter α2 is Steinman’s stiffness factor. It measures the ratio between the elastic stiffness of

the beam and the gravity stiffness of the cable. In long span self-anchored suspension bridges

α2 << 1, and it’s the same for earth anchored suspension bridges. 

This paper derived dimensionless equations of the deflection theory of self-anchored suspension

bridges and redefined λ2 so that it can include the effect caused by the axial compression of the

stiffening girder. And γ indicating the composite axial deformation stiffness was introduced into the

dimensionless parameters of self-anchored suspension bridges. The dimensionless parameters of

several typical self-anchored suspension bridges are given in Table 1. 

It can be seen in Table 1 that α2 is larger than that of earth anchored suspension bridges and λ2

smaller. According to D. Cobo del Arco’s theory (2001), α2 ranges from 10-5 to 0.01 and λ2 from

90 to 230 for earth anchored suspension bridges. The main cause for this difference lies on that the

span usually exceeds 1000 m for most earth anchored suspension bridges, but is usually under

400 m for self-anchored suspension bridges. The dimensionless parameter is not a simple function

of any single structural factors such as spans, stiffness of the main cables, stiffness of the stiffening
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Table 1 Dimensionless parameters of self-anchored suspension bridges

Golden Bay 
Bridge

Kangji 
Bridge

Beiguan 
Bridge

Jinghang Canal 
Bridge

Wanxin 
Bridge

Lanqi Bridge 
scheme

Main span (m) 60 100 118 132.5 160 240

α2 0.531 0.769 0.191 0.743 0.218 0.084 

λ2 421 616 203 381 189 223 

γ 18933 4253 6818 12372 6118 4429 
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girder, the amount of dead load and so on, but a composite function of all of these parameters.

Therefore studies on these dimensionless parameters can reflect the essential characteristics of self-

anchored suspension bridges with higher accuracy.

3. Mechanical properties of self-anchored suspension bridges

Structural parameters of self-anchored suspension bridges include shape parameters like spans, sag

to span ratio of the main cables, and mechanical parameters like stiffness of the main cables,

stiffness of the stiffening girder, the amount of dead load and so on. For self-anchored suspension

bridges, there exist three dimensionless parameters λ2, α2, γ, and the selection of which will affect

the displacement and bending moment under live loads. Studies on this influence can help us select

appropriate structural parameters during the design process, and therefore optimize the design.

Results for the displacement and bending moment in the middle of the span under the action of a

concentrated load (F = 0.025q0l) are shown in Figs. 1-6. The analyses have been performed for a

given α2 = 0.769 as a function of λ2 (see Fig. 1 for displacement and Fig. 2 for bending moment),

for a given λ2 = 400 as a function of α2 (see Fig. 3 for displacement and Fig. 4 for bending

moment), and for a given λ2 = 770, α2 = 0.77 as a function of γ (see Fig. 5 for displacement and

Fig. 6 for bending moment).

Fig. 1 Displacement under the position of a
concentrated load (α2 = 0.769)

Fig. 2 Bending moment under the position of a
concentrated load (α2 = 0.769)

Fig. 3 Displacement under the position of a
concentrated load (λ2 = 400)

Fig. 4 Bending moment under the position of a
concentrated load (λ2 = 400)
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Finally, the maximum displacement and the maximum bending moment in the middle of the span

obtained for a distributed load (q = 0.1q0) are shown in Figs. 7 and 8. The analyses have been

performed for a given λ2 ranged from 150 to 1200 as a function of α2.

The study shows that larger composite axial stiffness coefficient of the stiffening girder γ can

decrease the dimensionless displacement and bending moment, but the influence is not remarkable.

α2 and λ2 decrease while the span increases. Moreover α2 ranges from 0.06 to 0.80 and λ2 from 180

to 800 for self-anchored suspension bridges with a small span, when the vertical stiffness of the

deck has a great influence on the displacement and bending moment. For a given α2 < 0.06, a great

decrease of the vertical stiffness of the deck will not cause a substantial increase in the displacement

and almost superposition appears in both the displacement and bending moment curve. This

indicates that there is not necessity to increase the girder height, but the cross-sectional area of the

stiffening girder should be enlarged to resist the huge axial compressive force.
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Fig. 5 Displacement under the position of a
concentrated load (λ2 = 770, α 2 = 0.77)

Fig. 6 Bending moment under the position of a
concentrated load (λ2 = 770, α2 = 0.77)

Fig. 7 Maximum displacement under distributed
load (q = 0.1q0)

Fig. 8 Maximum bending moment under distributed
load (q = 0.1q0)




