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Abstract. An analytical method is proposed for the evaluation of the static response of a prestressed-
ribbon concrete pedestrian bridge, which may also be applied for the roofing of large areas. On the basis
of an established analogy with a suspension bridge system, a procedure is presented for the prestressed-
ribbon direct analysis, leading to the introduction of two dimensionless parameters as governing factors of
the design, namely the thinness and the prestressing steel ratio. The exposed procedure, applied by a
simple computer program, allows a quick evaluation of the response and permits the investigation of the
influence of the aforementioned parameters on it, by means of comprehensive diagrams. The presented
diagrams may be directly used for the preliminary design of a pedestrian bridge of this type, for the
whole practical range of span lengths. A design example is also included, showing the applicability of the
proposed procedure. 
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1. Introduction

The cable has always been recognized as the most efficient load-bearing element from a point of

view of strength exploitation, because of the automatic adoption of the funicular form for any

loading pattern, however with two serious drawbacks, namely the need to anchor the high cable

forces on one hand and the need to restrict the excessive deformability due to additional load on the

other. The first problem is usually tackled with means that practically do not interact directly with

the load-bearing action of the cable itself, while the second one has been surpassed by

implementing a horizontal girder which, for any additional (live) loading, restricts the cable

deformability decisively, by its appropriately chosen bending stiffness. 

This same problem has been addressed the last twenty years regarding mainly pedestrian bridges,

in a constructionally different and aesthetically very satisfactory way, through the so called stress

ribbon construction. 

The stress-ribbon concept consists in embedding a hanging cable in a relatively thin band of

concrete and then, through additional (pre)stressing of the cable, setting the so created inverted

concrete arch under uplift pressures, which cause a compressive state of stress in the arch. In this
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way, additional live loads applied later can be taken up without excessive deformation of the cable,

thanks to the effective bending rigidity of the arch acquired through its compressive state of stress.

Although such a structural system can also be applied for the covering of large areas, it has been

established rather in its use for pedestrian bridge projects. 

A drawback of this structural system is surely the high cable forces, due to the low sag-to-span

ratio, which need to be anchored, but on the other side, the resulting exceptional slenderness of

these structures, allows them to adjust in the environment in a very satisfactory way.

Concerning the structural analysis, the governing factor which has to be appropriately taken into

account is the geometric non-linearity of the behavior, arising from the interaction of the concrete

ribbon with the cable itself. Moreover, creep effects due to the higher concrete compression stresses,

and possible vibrations that may be induced by the pedestrians, have also to be taken into account

in the design of stress-ribbon concrete bridges. 

The publications that have appeared on this subject refer not only to its theoretical aspects but

also to the special characteristics and problems encountered in the realization of such bridge

projects. 

In (Redfield and Strasky 1991), on the occasion of the first use of this type of structure for a

footbridge in the United States, the basic structural principles and their consequencies for the

construction method used are shown, together with the exposition of the main issues of the static

and dynamic analysis involved. An interesting and comprehensive review of all the relevant design

and analytical aspects involved in stress-ribbon pedestrian bridges, is given in (Schlaich and

Engelsmann 1996). Furthermore, a systematic analytic examination of the most important behavioral

aspects of the structural problem is given more recently in (Arco et al. 2001), where the time-

dependent effects and the vertical vibration characteristics are also included. 

In the present paper, an original analytical method is presented for the direct evaluation of the

overall static response of a stress-ribbon structure - used mainly as pedestrian bridge – under the

action of live loads, based on an established analogy with the suspension bridge behavior, as it has

been exposed by the author in (Stavridis 2008). Following this analogy, the analysis of the stress-

ribbon system is carried out by the use of three dimensionless parameters which, for a given span

length, are appropriately expressed on the basis of two selected design parameters, namely the ratio

of the ribbon thickness over the span length and the ratio of the section area of the prestressing

cables over the concrete section. The analysis is performed through an efficient numerical procedure

which, by means of a simple computer program, allows the immediate evaluation of the response of

the system due to the imposed live load. Moreover the procedure enables a parametric study

resulting in comprehensive diagrams which show the influence of the above design parameters on

the overall static response, so that they may be used directly for preliminary design purposes.

2. Conceptional analogy and analysis

Whereas for roofing large areas the shallowness ratio of the cable i.e., sag-to-span ratio may lie in

the range of 1/10, the use of such a ribbon as a pedestrian bridge poses automatically the restriction

of maximum slope to 8%, which shows a shallowness ratio equal to 1/50.

In order to estimate the response of the arch, as well as that of the cable, due to an imposed

additional live load, the combined action of the cable and the arch has to be taken into account. The

fact that the common deflection of the cable and of the arch is determined both from the axial



Evaluation of static response in stress-ribbon concrete pedestrian bridges 215

rigidity of the cable and the bending rigidity of the arch itself, leads to the conclusion that this

system behaves like a fictitious suspension system with separate cable and stiffening girder. Indeed,

in such a system, after an initial geometry for the cable sag under permanent loads has been

established through an appropriate cable force introduced, a later applied live load to the stiffening

beam produces identical deflections to the cable and the girder at each point, thanks to the vertical

hangers. It can be concluded that the stress-ribbon system exhibits the same characteristics as the

suspension bridge and consequently, this model may be used as a fictitious model for the analysis of

the system examined, assuming no bond between the cable and the surrounding concrete. 

The cable profile is characterized by its prescribed sag f which, referring to span length L,

determines the shallowness ratio λ

 (1)

as well as the curvature of the cable from the expression

 (2)

This sag is maintained not only through the self weight g of the concrete ribbon causing the initial

cable force Hg, but also through an additional uniform downward load uv acting on the cable, as

caused by the additional prestressing force Hv (Fig. 1(a)). It is

 (3)

This means that the fictitious suspension system may be considered as having an initial permanent

load w applied to the stiffening beam (Fig. 2), equal to

w = g + uv (4)

λ
f

L
---=

1

R
---

8 λ⋅
L

---------=

uv

Hv

R
------=

Fig. 1 System layout and prestressing (a) Initial actions on the cable (b) Initial actions on the inverted arch
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The stiffening role of the arch, ensured by the state of compression imparted to it by the upwards

directed load uv (Fig. 1(b)), corresponds to the analogous bending rigidity of the stiffening beam of

the fictitious suspension system with the same cross section, expressed through the quantity (EI),

which refers to the orthogonal section (b × t) of the inverted arch, where b and t represent its unit

width and thickness respectively. 

After a live load p is applied on the fictitious girder over a specified length, the cable, having an

initial profile y(x), deflects – together with the girder - by η(x), increasing its axial force by Hp

(Fig. 3). The following expression describes the new geometry z(x) of the cable

z(x) = y(x) + η(x) (5)

and its vertical equilibrium requires a distributed force qc acting on it downwardly and equal to 

(6)

where Hw represents the total initial cable force due to the permanent load w. It can be written

qc x( ) d
2
z

x
2

d
------- Hw Hp+( )–=

Fig. 2 Simulative suspension model under initial actions of permanent load and prestressing

Fig. 3 Cable deformation in simulation model under direct action of live load



Evaluation of static response in stress-ribbon concrete pedestrian bridges 217

Hw = Hg + Hv =  (7)

The total load acting on the girder is (Fig. 4(a))

q(x) = −qc(x) + w + p  (8)

The girder deflection η(x) has to obey the classical beam equation

 (9)

that, on the basis of Eqs. (4), (5), (6) and by considering (d2y/dx2) as the negative cable curvature

under the load w, it can be written 

(10)

This equation, representing the classical differential equation of the “deflection theory” of

suspension bridges under a permanent load w, may be recognised (Stavridis 2008) as the equation of

a simple beam having a transverse load equal to (p – Hp/R) and subjected to an axial load equal to

(Hw + Hp), according to the second order theory of beams (Fig. 4(b)).

The increase Hp of the cable force, given the low shallowness ratio λ = 0.02, is related to its

additional deflection η with good accuracy, through the relation

 (11)

It is understood that the unknown magnitude Hp can be determined from the condition that the

deflection η(x) of the tensioned beam according to Eq. (9), must also satisfy the “cable equation”

(11). 

The deflection η(x) of a simple beam due to a transverse load q and subjected to a tensile force H

(Fig. 5(a)), is obtained from the following expression (Timoshenko 1956) 

(12)
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----------
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Fig. 4 Acting forces on the stiffening (a) and the fictitious, (b) beam of the simulative model
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whereas due to a concentrated moment M at the left or at the right support (Fig. 5(b, c)), it is

respectively 

or  (13)

with 

(14)

The system of Eqs. (10) and (11) may be applied either for a two-hinged stiffening girder, or for a

girder with fixed ends, corresponding to the actual boundary conditions of the stress-ribbon arch. It

has to be noted that as a rule, the stress ribbon bridges are constructed with an established fixity at

both ends, although the two-hinged arch leads to much more moderate bending response. The

reason is that the cable over the hinges may be more prone to fatigue overstressing on one hand

and, as it will be shown later, the deflections for the applied shallowness ratio (1/50), can be

definitely greater. However, in the suspended beam model followed, the “hinged” case will be

treated first, as it forms the basis for the numerical solution for the fixed stiffening girder. 

According to (Stavridis 2008), the response of the suspension system is governed by three

dimensionless parameters which are expressed as follows

, , (15)

whereas the unknown parameter Z of the problem is 

η x( ) M

H
-----
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-----------
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--------------------------------------–= η x( ) M
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----= ε
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Fig. 5 Tensioned beam under transverse and end-moment loading
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(16)

In the above expressions Hw corresponds to the cable force under permanent loading w.

2.1 Hinged stiffening girder

In the case of hinged stiffening girder , the system of Eqs. (10) and (11) leads through Eq. (12) to

the transcendental equation 

(17)

with 

(18)

The above equation is not directly solvable. However, by working out an approximate solution of

the tensioned beam as mentioned above, it is found (Stavridis 2009) that the unknown parameter Z,

in the case where the live load p extends over the whole span, can be determined with very

satisfactory accuracy through the following quadratic equation 

(19)

where

Z
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-------=

Z ε 1 8+ λ
2⋅( )⋅ ⋅ 64 λ
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Z 1+
-----------
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⎛ ⎞
+ Z× γ– ω× 0=

Fig. 6 Live load layout and respective bending response in simulation model for the hinged (1) and the fixed
(2) case 
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(20)

In order now to obtain the maximum bending response of the stiffening girder, the live load p

must be placed over the half span length (Fig. 6(a)) and then, at the quarter of the span, the

following expression is obtained

(21)

where 

 (22)

whereas for the corresponding maximum deflection it is obtained 

(23)

It has to be noted that the value of Z in the last expression corresponds to the one determined

according to Eq. (19), by taking into account the half value of γ.

2.2 Stiffening girder with fixed ends

According to Eqs. (12), (13), the deflection of a simple beam subjected to an axial and a

transverse load equal to H and q respectively, as well as to two equal end moments Ms (Fig. 5(d)),

may be expressed as

(24)

Determining the bending moments Ms from the condition of fixity (dη/dx) = 0, under

consideration of an axial and transverse load equal to (Hw + Hp) and (p – Hp/R) respectively, as well

as of the Eqs. (15), (16), the following expressions are obtained 

(25)

and

(26)

By substituting now the above expression of η(x) into the cable Eq. (11), the following equation

for the determination of the unknown parameter Z is obtained

(27)
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This transcendental equation is not directly solvable. Nevertheless it is possible to obtain quickly

an accurate solution by the method of successive approximations, if, as starting value Z0, is taken

that one developed in the previously examined model of the hinged girder, according to Eq. (19). 

It is important to note that the value of the solution Z of Eq. (26) is always less than Z0 by no

more than 8% and this fact makes the procedure of its accurate determination by the method of

successive approximations, a very fast one.

On the basis of this value Z, the bending moment Ms at the fixed end of the girder is determined

through Eq. (25), causing tension on its upper fibres (Fig. 6(b)). 

The resulting bending moment Mspan at the middle of the span can be readily obtained through the

classical relation 

(28)

It is found 

 (29)

Regarding the corresponding deflection at the middle of the span according to Eq. (26), it is 

(30)

However it has to be noted here that the upward pressure uv on the arch from the cable following

its prestressing (Fig. 1(b)), produces additionally a fixed-end bending moment Mfix, which causes

tension to the bottom fibres of the arch (Fig. 7(a)) and depends practically only on its shallowness

ratio λ and its thickness. (Schlaich et al. 1996). This bending moment. for the value λ = 0.02 in

use, can be practically obtained from the following expression, with a satisfactory accuracy for
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Fig. 7 Evaluation of compressive axial forces in inverted arch under live and prestressing loading
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design purposes 

(31)

whereas the corresponding bending moment Mspan-fix at the center of the span, causing tension to the

upper fibres can be practically obtained from the expression 

(32)

i.e., the half of the fixed-end moment Mfix.

The value Mfix must be superposed with Ms, resulting that way in a reduced bending response Ms-fix

for the fixed end of the inverted arch. It is  

Ms-fix = Ms + Mfix (33)

The maximum positive bending response Mmax-span due to a live load p, can be obtained from the

following relation 

Mmax-span = Mspan - Mspan-fix (34)

However, for design purposes, the greater value Mmax for a hinged girder may be used instead. 

It has to be noted here that the occuring high compression forces do not imply a danger of snap-

through buckling of the inverted arch, since the presence of the embedded high stressed cable,

prevents this situation. 

3. Design parameters and evaluation of response

At first it has to be noted that the live load p for a footbridge (in kN/m2), may be determined as a

function of the span L (in m), according to the expression (Mehlhorn 2007) 

(35)

Introducing now the thinness ratio α and the prestressing reinforcement ratio ρ, according to the

expressions 

(36)

as basic design parameters, the fictitious permanent load w and the uplift deviation load uv due to

prestressing, may then be expressed as follows  

(37)

(38)

where γc = 25 kN/m3 represents the unit weight of concrete and  is the applied cable stress.

Moreover it is obtained  

(39)
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(40)

The three basic dimensionless parameters (15) can now be expressed as follows  

, , (41)

As already mentioned, the bending moments Mmax and Ms can be deduced on the basis of the

above three dimensionless parameters.

Regarding the compressive forces, in the case of a hinged inverted arch, the effective axial

compresssive force per unit width Nc-hing, may be obtained from the uplift pressure uv and the live

load p  

(42)

For the fixed inverted arch, the compressive force Nd-fix may be expressed as follows 

Nc-fix = Narch − Nz (43)

In the above equation, Narch represents the compressive force due to the uplift pressure uv on the

fixed arch (Fig. 7(a)). It may be written

(44)

Besides in Eq. (43), Nz represents the tensile thrust due to the live load acting on the inverted

arch, taking also into account the acting of bending moments Ms and Mspan (Fig. 7(b)). It is obtained

(45)

(In Fig. 7 the bending and axial forces are shown in their physical sense)

It is now clear that in order to carry out the design of the orthogonal unit width section of the

inverted arch in case of hinged supports, the pair of values (Mmax and Nd-hing) referring to the middle

of span must be used, whereas for the support section of the fixed arch the pair of values (Ms and

Nd-fix) must be taken into account. For the middle of span the pair of values (Mmax and Nd-fix) may be

used according to what has been stated previously. 

The total cable force Hhing or Hfix for the hinged or fixed arch case also has to be determined. It

can be written respectively 

(46)

and 

(47)

where Zhing and Zfix correspond to the parameter Z determined in the case of hinged or fixed arch

respectively, with the live load p extending over the whole span.

The above design magnitudes are based, as previously mentioned, on the assumption that no bond

exists between the cable and the surrounding concrete ribbon. Consequently, they may be used
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directly for preliminary design purposes, as they are lying on the safe side. Actually, the bond is

established, if at all, after the cable prestressing has been performed. 

4. Numerical procedure 

For a stress-ribbon pedestrian bridge of span length L, with the selected design parameters α, ρ

and for an assumed live load p according to Eq. (35), the analysis goes through the following steps,

which can be directly performed by a computer program:

- Determination of w and uv from Eqs. (37) and (38) respectively

- Determination of the dimensionless parameters from Eq. (41)

Hinged arch

1. Determination of the unknown parameter Zhing according to Eq. (19).

2. Determination of Mmax on the basis of Zhing according to Eq. (21).

3. Determination of Nc-hing according to Eq. (42)

4. Determination of Hhing according to Eq. (46)

Fixed arch

1. Determination of the unknown parameter Zfix, according to Eq. (27).

2. Determination of Ms and Mspan on the basis of Zfix, according to Eqs. (25) and (29).

3. Determination of Mfix and Mspan-fix, from Eqs. (31) and (32).

4. Determination of Ms-fix and Mmax-span from Eqs. (33) and (34)

5. Determination of Nc-fix according to Eqs. (43), (44) and (45)

6. Determination of Hfix according to Eq. (47)

5. Design diagrams

The computer program written on the basis of the foregoing numerical procedure, not only allows

a quick assessment of the response of a given prestressed ribbon pedestrian bridge, but also enables

a parametric study of the problem in general.

As previously explained, the design is based on the following parameters :

Span length L, Shallowness ratio λ = 0.02, Thinness ratio α, Prestressing steel ratio ρ, Applied

cable stress σP0, Concrete modulus of elasticity Ec, Modulus of elasticity E0 of prestressing cable. 

The diagrams of Figs. 8-23 show the influence of the span length L and the thinness ratio α, on

the additional cable force, on the maximum bending response and on the effective corresponding

normal force being caused by the live load of the pedestrian bridge. Both cases of fixed and hinged

arch are examined and three values of the parameter ρ are considered, namely 0.015, 0.020 and

0.025. A pavement load equal to 1.0 kN/m2 is taken also into account, being applied to the bridge

after the prestressing is performed. In this investigation, the value σP0 = 960 MPa is used,

representing about 60% of the yield stress of the prestressing steel, whereas the values of Ec and E0

are taken equal to 30000 MPa and 200000 Mpa, respectively.

 From Figs. 8, 9 it can be seen that while in general the additional cable force increases linearly

with the span length, in the hinged case it is completely independent from the thinness ratio,

whereas in the fixed case it decreases slightly as this ratio increases. From this investigation it also

comes out that the prestressing steel ratio does not practically influence the additional cable force. 
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The variation of the axial compressive force is depicted in Figs. 10-13. It can be concluded that

the values for both the fixed and the hinged case are practically the same. 

As it may be seen, an increase of thinness ratio or of prestressing steel ratio, leads to a respective

Fig. 8 Hinged arch. Additional cable force (ρ =
0.025)

Fig. 9 Fixed arch. Additional cable force (ρ = 0.025)

Fig. 10 Hinged arch. Axial compressive force (ρ =
0.020)

Fig. 11 Fixed arch. Axial compressive force (ρ =
0.015)

Fig. 12 Fixed arch. Axial compressive force (ρ =
0.020)

Fig. 13 Fixed arch. Axial compressive force (ρ =
0.025)
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increase of compressive force. 

Regarding the maximum bending moment in the case of hinged arch, it is seen from Figs. 14-16,

its value increases with the thinness ratio α, while it decreases with the prestressing steel ratio ρ.

The bending moment values are very moderate and combined with the values of the corresponding

high axial compression forces, lead to the conclusion that no tensile forces are developed in the

Fig. 14 Maximum span bending moment (ρ = 0.015) Fig. 15 Maximum span bending moment (ρ = 0.020)

Fig. 16 Maximum span bending moment (ρ = 0.025) Fig. 17 Fixed-end bending moment (ρ = 0.015)

Fig. 18 Fixed-end bending moment (ρ = 0.020) Fig. 19 Fixed-end bending moment (ρ = 0.025)
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orthogonal section of the inverted arch, as the resultant equivalent force acts always inside the core

of that section. As previously stated, this bending moment may also be used as the design span

moment for the fixed case. 

The fixed-end bending moment as seen from Figs. 17-19, is more than six times greater than the

span maximum moment and for that reason it represents the governing factor of the bending

response in the design. It generally decreases with the increase of the prestressing steel ratio,

whereas the thinness ratio does not particularly affect its value. 

Taking into account the prevailing compressive forces from the above Figs. 13-15, it can be

directly concluded that the bending response in the supports requires a respective reinforcement in

the section. 

Finally, as it can be seen from Figs. 20-23, the maximum deflection ratio (η/L) decreases with an

increase of both the thinness and the prestressing steel ratio,. However, the high values of deflection

ratio of hinged arches in comparison to those of the fixed arches, make their use as pedestrian

bridges problematic, as this has been previously pointed out. 

From all the above diagrams it can be generally concluded that, increase of span length leads to a

selection of a higher thinness ratio and a prestressing steel ratio too. 

Fig. 20 Hinged arch. Maximum deflection ratio (ρ =
0.020)

Fig. 21 Fixed arch. Maximum deflection ratio (ρ =
0.015)

Fig. 22 Fixed arch. Maximum deflection ratio (ρ =
0.020)

Fig. 23 Fixed arch. Maximum deflection ratio (ρ =
0.025)
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6. Numerical example

A ribbon bridge with a span of 60 m and a thickness of 22 cm, fixed at its both ends, is

considered. For a prestressing arrangement corresponding to the selected thickness according to the

prestressing system BBRV, the area of 4235 mm2 of prestressing steel is selected. From the above

data, the thinness ratio and the prestressing steel ratio are obtained, as α = 0.00367 and ρ = 0.01925

respectively. The live load according to Eq. (35), is equal to p = 3.33 kN/m2. Moreover, a pavement

load equal to 1.0 kN/m2 is considered, which may be added to the live load, as this is brought on

the bridge after the prestressing of the ribbon is performed. 

The numerical procedure described above leads to the following results, all referring to a unit

width (1 m) of the bridge:

Fictitious load w = 10.84 kN/m 

Uplift prestressing pressure uv = 5.34 kN/m

Initial cable force due to concrete weight and prestressing : Hw = 4065.60 kN 

The unknown parameter Z of the problem results equal to 0.0954 and the additional cable force

Hp due to live load is obtained as Hp = 0.0954 × 4065.60 = 387.85 kN, leading to a total cable force

Hfix = 4453.50 kN and a total cable stress equal to 1051594 kN/m2.

The resulting bending moment and corresponding compressive force at the end sections of the

inverted arch are : Ms-fix = 170.53 kNm (tension of upper fibers) and 

Nc-fix = 515.09 kN (compression) respectively. This response requires an additional reinforcement

of Φ25 / 15 and Φ18 / 15 , on the top and bottom side respectively.

For the maximum bending moment in the span, the resulting maximum bending response Mmax of

the hinged arch may be used, as previously mentioned. It is obtained : 

Mmax = 22.86 kNm, whereas the acting compressive normal force is : Nd-hing = 378.10 kN

Although the last pair of values excludes the development of tensile stresses in the section, a

minimum reinforcement of Φ10/15 has to be placed both at the top and bottom side.

7. Conclusions

The static response of a prestressed-ribbon concrete pedestrian bridge under live load, can be

obtained directly through a corresponding suspended beam model, using only two dimensionless

design parameters, namely the ratio of the thickness over the span length and the ratio of the

prestressing steel area over the concrete section area. The preliminary design can be performed

directly, using comprehensive parametric diagrams, which allow the determination of all the relevant

magnitudes. The design is governed by the bending response at the fixed end of the bridge, where

additional reinforcement is needed. The unusually restricted concrete thickness, although

environmentally and aesthetically satisfying, requires a relatively high percentage of prestressing

steel, particularly as the span length of the bridge increases. 
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