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Abstract. The behaviour of a reinforced concrete tension member is governed by the contribution of
concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is
progressively reduced and the member response approximates that given by the fully cracked member.
When focusing on the unloaded state, experiments show deformations larger than those of the naked
reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete
carries compressive stresses along the crack spacing, even thought the tie is subjected to an external
tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the
axially loaded tension member, paying attention to the negative tension stiffening contribution. The
interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some
practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete
elements.
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1. Introduction

Cracking is the main characteristic of concrete structures and is due to the small tensile strength

of concrete with respect to the compressive one. Cracking affects the design of reinforced concrete

since it determines the quantity of reinforcement required to carry the applied loads in ultimate limit

state and to control crack widths and deflections in serviceability limit state. Concrete still carries

tensile stresses between cracks in service conditions, the tension stiffening effect. Such a

contribution plays a significant role, especially in lightly reinforced concrete members, as recently

confirmed by (Gilbert 2007).

The behaviour of a tension member is actually governed by the bond-slip mechanism at the steel-

concrete interface. As the relative slip between both materials increases, bond stresses develop and

longitudinal stresses are transferred from the reinforcement to the effective concrete area. Such

transferred stresses are the tension stiffening contribution.

Under monotonic loads, it is well known that a reinforced concrete tie subjected to pure tension

behaves somewhere between the load-deformation curves that correspond to the uncracked and fully
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cracked states (so-called states I and II, respectively). The codes of practice (CEB - FIP 1991, CEN

2004) are usually based on empirical interpolations between both states without an explicit

consideration of the bond mechanism. As well, advanced theoretical approaches to model concrete

structures often include tension stiffening in an indirect way. Such models fall into two main

categories: on the one hand, approaches within the European tradition (Ghali and Favre 1994, König

and Fehling 1988) use a stress-strain curve for the reinforcement stiffer than the bare steel; on the

other hand, smeared models within the American tradition (Vecchio 2000, Vecchio and Collins

1986) assign a larger softening capacity to the average concrete response in tension. Only a few

researchers (Kaklauskas and Ghaboussi 2001) have included the influence of further parameters in

the formulation of the average concrete stress-strain law, like the amount of reinforcement.

Other detailed models to study the tension stiffening effect do consider the bond-slip behaviour,

including general bond models (Balazs 1993) or simplified approaches as the rigid-plastic bond-slip

behaviour (Marti P. 1998).

Although the aforementioned models are focused on different details, they all describe well

accepted conclusions on the static behaviour. Much smaller has been the research on the response of

the reinforced concrete tie under repeated and sustained loads. Besides the long term behaviour of

concrete itself, the experimental evidence (Rehm and Eligehausen 1979) shows that bond between

concrete and steel deteriorates under repeated loads, leading to increasing crack widths and

deformations. Moreover, it has been reported that values under minimum load may become larger

than those that correspond to the state II (bare steel) (Günther and Mehlhorn 1990). This result has

been called the negative tension stiffening effect and only a few authors have dealt with it (Gómez

Navarro and Lebet 2001, Muttoni and Fernández Ruiz 2007). A deeper understanding is required to

account for the realistic cyclic bond-slip behaviour and overcome the difficulties presented by the

employ of monotonic-based approaches.

Many reinforced concrete elements are subjected to repetitive loading (due to traffic, waves or

wind) and their permanent state is represented by the minimum load. The serviceability verification

according to current codes of practice may underestimate crack widths and deformations.

In this paper a new cycle-dependent model is presented to solve the reinforced concrete tie under

repeated tensile stresses, including the interaction with time-dependent shrinkage. Simplified

expressions are also derived to include the negative tension stiffening contribution for practical

purposes.

2. Bond mechanics and the reinforced concrete tie

2.1 Monotonic behaviour

In this clause the influence of the bond-slip mechanism on the response of the reinforced concrete

tie is analysed. Only a single cycle will be now considered. Fig. 1 shows the behaviour of the tie in

terms of the F-εsm and F-w diagrams. The monotonic behaviour may be subdivided into the next

well known stages: uncracked state until fct is reached at one section; crack formation stage, where

the crack pattern develops until the cracks locate at a roughly constant distance sr to each other;

stabilised cracking, where cracks increase their width and the average response approximates the

state II as tension stiffening decreases; and plastic stage since the reinforcement yields. The

attention will be paid to the stabilised cracking stage due to the fact that this stage is dominant in



Investigating the negative tension stiffening effect of reinforced concrete 191

members under service loads.

Under monotonic loading, the tension stiffening contribution reduces the average strain and the

crack width with respect to that given by the state II (Fig. 1). This is due to the stresses transferred

from the reinforcement to the concrete by bond stresses between two adjacent cracks. The

longitudinal distribution of the variables involved in the problem is typically represented in Fig. 2.

Due to symmetry, only one half of the crack spacing is represented (note that εs ≠ εc along sr/2 and

relative slip exists everywhere at this stabilised cracking stage).

The equations governing the response may be written by considering the equilibrium of an

arbitrarily chosen differential portion (Balazs 1993, Chan et al. 1992, FIB 2000) (Fig. 3(a))

Fig. 1 Behaviour of a reinforced concrete tie. (a) Force-average steel strain, (b) Force-crack width

Fig. 2 Distribution of stresses, strains and slips between two adjacent cracks at the stabilised cracking stage
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(1)

If linear elastic behaviour of materials between cracks and that concrete cannot carry tensile

stresses at the crack (which is realistic under repeated loading owing to the rather fast lost of the

softening capacity (Cornelissen and Reinhardt 1984) is assumed, the differential equation and the

boundary conditions of the problem may be derived from the strain compatibility equation (ds/dx =

εs − εc → d2s/dx2 = dεs /dx − dεc /dx)

(2)

(3)

where n = Es /Ec and ρ = As /Ac. The crack width is twice the slip at the crack. The bond-slip

behaviour follows the law plotted in Fig. 3(b) (CEB - FIP 1991), where the first branch is given by

(4)

where τu is the bond strength, s1 is the relative slip at the peak bond stress and α = 0.4. Particular

values for these parameters may be found in the technical literature (CEB - FIP 1991, Kreller

1990). Introducing Eq. (4)  into Eq. (2)  yields to the following differential equation

(5)

Unfortunately an explicit solution of Eq. (5) cannot be derived (refer to Appendix I). Some

authors have obtained analytical expressions by introducing some simplifications, such as the

tension chord model (Marti et al. 1998b) based on a rigid-plastic bond-slip law, or the employ of a

piecewise linear approximation of the bond-slip law (Yankelevsky et al. 2008). 

In this paper a numerical solution of the general problem is used, as schematised in Fig. 4. The

algorithm is based on that suggested by (Tassios and Yannopoulos 1981). The half of the crack

σsd

xd
-------- τ

Us

As

-----;
σcd

xd
-------- τ–

Us

Ac

-----==

d
2
s

dx
2

-------
4 1 nρ+( )

EsΦ
----------------------τ– 0=

s x 0=( ) 0; σs x sr/2=( ) σsmax; σc x sr/2=( ) 0= = =

τ τu
s

s1

----⎝ ⎠
⎛ ⎞α

=

d
2
s

dx
2

-------
4 1 nρ+( )τu

EsΦs1

α

---------------------------s
α

– 0=

Fig. 3 (a) Stresses at a differential portion of the tie, (b) Bond-slip law according to MC90 (CEB - FIP 1991)
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spacing is divided into n nodes and n − 1 parts of constant length ∆x. A trial value of the slip at the

crack (i.e., of the crack width, since w = 2sn) is introduced, and the values of stresses, strains and

slip are computed following the flow chart of Fig. 4 until the slip at the section halfway between

cracks is estimated (i = 1). If such a value is zero (or less than an accepted tolerance) the solution

has been found. Otherwise a new trial value for sn is introduced. The iterations can be done

employing the regula-falsi algorithm, which is easily programmed and provides excellent robustness

and very small consuming times.

2.2 Negative tension stiffening

The unloading stage of Fig. 1 is now considered. It is observed that the average strain and the

crack width become larger than those obtained in an unbonded tie (state II, bare steel), which has

been referred to as the negative tension stiffening effect. The distribution of stresses under minimum

load is represented in Fig. 5(a) (values under maximum load are also plotted by discontinuous

lines). Two situations may be obtained, depending whether the minimum force is larger or smaller

than the so-called limit minimum stress, σmin,lim.

Fig. 4 Flow chart of the numerical algorithm to solve the reinforced concrete tie
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The behaviour is governed by the unloading branch of the bond-slip law, which may be

considered linear down to the negative frictional strength (τf = 0.15-0.25τu, according to (Morita and

Kaku 1973, Plaines et al. 1982)). In this paper a vertical unloading line is considered (Fig. 5b), as

suggested by (Pochanart and Harmon 1989). The numerical solution of the problem in the

unloading stage may be found by the employ of the algorithm of Fig. 4 just by introducing the

unloading bond-slip behaviour.

If the minimum load is larger than the limit minimum stress (case 1 of Fig. 5(a)), the unloaded

transfer length is smaller than half of the crack spacing (lb,unl < sr/2). When the minimum load is

smaller than the limit minimum stress (case 2 of Fig. 5(b)), the unloaded transfer length is equal to

the half of the crack spacing (lb,unl = sr/2) and the bond stress is constant along sr/2 (τ = −τf). It must

be noted that in this situation concrete carries compressive stresses, even though the tie is subjected

to a tensile axial force Fmin.

Since the bond stress is constant in the second case, the distribution of concrete and steel stresses

follows straight lines (Fig. 6). An explicit solution of this second case may be therefore derived. Let

∆Fb be the axial force transferred from the steel to the concrete by the negative bond stress along

sr /2

(6)

At the section halfway between cracks, the steel and concrete stress increments with respect to the

cracked section are, respectively (Fig. 6)
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Fig.  5 (a) Distribution of stresses under minimum load, (b) Unloading bond-slip law 
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(9)

And the average strains of the steel and the concrete become

(10)

(11)

The second term of Eq. (10) provides the strain increase with respect to the strain of the naked

reinforcement, i.e. the negative tension stiffening contribution. Besides, the smallest steel stress

along the tie locates at the crack. The shape of Eq. (10) shows that, when the minimum load is

smaller than the limit minimum force, the F-εsm diagram is a straight line parallel to that

corresponding to the state II (Fig. 1(a)). Moreover, the residual average strain is

 (12)

From Fig. 6 and Eqs. (10)-(11), the minimum crack width may be also estimated

 (13)

Hence,

(14)

The increase of the crack width due to the negative tension stiffening is given by the second term

of Eq. (14). It is again obtained that the F-w curve follows a straight line parallel to that represented

by the bare steel if Fmin < Fmin,lim (Fig. 1(b)). The residual crack width yield

(15)

The practical implications of these equations are studied in section 5.

The limit minimum stress may be defined as

(16)

where ∆σ1 is the maximum stress transferred from the reinforcement to the concrete under

maximum load (refer to Fig. 2 or Fig. 5(a)) and ∆σ2 is given by Eq. (7) (see Fig. 5(a) or Fig. 6).

The value of ∆σ 1 cannot be obtained by a closed expression and is here estimated by using the

numerical algorithm referred to in section 2.1. The influence of some parameters on σmin,lim is

investigated in Fig. 7. Good bond properties are assumed in this example. The crack spacing is

introduced as dependent on the geometry (sr = Φ/(3.6ρ) according to Model Code (CEB - FIP

1991). The smaller the steel reinforcement ratio, the lower the minimum limit stress; and the

smaller the diameter, the higher the minimum limit stress.

εs∆
2srτf

EsΦ
-----------; εc∆

2srτfρ

EcΦ
--------------==

εsm

σsmin

Es

-----------
1

2
--- εs∆+

σsmin

Es

-----------
srτf

EsΦ
----------+= =

εcm
1

2
--- εc∆

srτfρ

EcΦ
-----------= =

εres

srτf

EsΦ
----------=

wmin 2 εs εc–( ) xd
0

sr/2

∫ 2 εsm εcm–( )
sr

2
---

σsmin

Es

-----------
srτf

EsΦ
----------

srτfρ

EsΦ
-----------+ +⎝ ⎠

⎛ ⎞sr= ==

wmin

σsminsr

Es

----------------
τf sr

2

EsΦ
---------- 1 nρ+( )+=

wres

τf sr
2

EsΦ
---------- 1 nρ+( )=

σmin,lim σsmin σ1∆ σ2∆+( )–=



196 Carlos Zanuy

3. Tie model under highly repeated loading

The increase of crack widths and deformations of a reinforced concrete tie under repeated loading

is due to the progressive deterioration of the bond properties, which reduces the stress transfer from

the steel to the concrete. The typical result of a cyclic pull-out test where the bond stress oscillates

between constant limits is plotted in Fig. 8(a), according to (Balazs 1991). The slip grows as the

number of cycles increases, with negligible stiffness degradation. Oh and Kim (2007) tested up to

pull-out failure specimens that had been previously subjected to constant amplitude cycles. The

resulting behaviour is schematised in Fig. 8(b). It can be considered that the response is composed

Fig. 6 Distribution of stresses and strains under minimum load when lb,unl = sr /2

Fig. 7 Analysis of σmin,lim (fc = 35 MPa, τu = 2fc
0.5, τf = 0.15τu, s1 = 0.6 mm): (a) Influence of ρ, (b) Influence

of Φ
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by a straight line with the undamaged stiffness followed by a softened bond-slip law (dashed line in

Fig. 8(b)). In addition, the static curve was shown to work as the failure envelope of the cyclic

process. If the specimen is unloaded (Fig. 8(c)), the straight line is traced down to the negative

frictional strength, following thereafter a horizontal line (Morita and Kaku 1973).

According to the experimental behaviour depicted in Fig. 8, a cyclic bond model is here proposed.

The model is composed by a slip evolution law, coupled with softened bond-slip curve and

unloading-reloading rule. The slip evolution law provides the slip increase as a function of the

number of cycles. The linear trend in double logarithmic scale proposed by (Sippel 1996) is

considered

(17)

(18)

where s0 is the static slip estimated with Eq. (4), sN is the total slip after N cycles and b defines the

cyclic rate as a function of the maximum bond stress. A similar rule is chosen to define the

softened bond-slip law after N cycles. Such a law is defined by updating the characteristic slip s1

(refer to Fig. 3(b)) as follows

(19)

Since the static bond-slip law is the failure envelope of the cyclic process, the bond strength

reduces when s1N > s2 (Fig. 9).

For the unloading and reloading branches, vertical lines are assumed without cyclic reduction of

the stiffness. These branches are limited by the negative frictional strength and the softened bond-

slip law, respectively.

A three step numerical procedure is introduced to solve the cyclic problem. The total number of

cycles is subdivided into sets of cycles (say ∆Nj each set j). The discretization of the tie given in

Fig. 4 is taken into account. The three steps to obtain the influence of one set of cycles j are

explained with the help of Fig. 10. For a better understanding, concrete and steel have been drawn

separately. To clarify the bond mechanism, a fictitious spring represents the connection at node i.

In the first step the free slip increase of the bond element is allowed as if the concrete and the
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Fig. 8 (a) Bond behaviour under repeated loading, (b) Subsequent reloading, (c) Subsequent unloading
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steel were not connected, i.e., a free elongation of the fictitious spring takes place and no bond

stresses develop. Therefore, concrete and steel do not experiment changes. Of course strain

compatibility (ds/dx = εs − εc) is not verified in this step. The free slip increase is estimated from

Eq. (17)

(20)si
1∆ sNj Nj∆+ sNj

–=

Fig. 9 Cyclic degradation of the bond-slip law

Fig. 10 Three step procedure to solve the tie under repeated loading. (a) Scheme of the concrete-steel-
connection, (b) Effect on a single section i, (c) Description of the three steps 
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The free slip increase of the step 1 is fully restrained in the step 2. To do this, restraining bond

forces are applied to the fictitious spring elements. Such bond stresses are estimated by employing

the assumed unloading behaviour (Fig. 10(b))

(21)

(22)

The result of steps 1 and 2 is no slip increase (the strain compatibility is recovered), but

equilibrium is not verified due to the presence of bond stresses ∆τi
2. Such stresses are applied in

reversed directions to the re-connected steel-concrete tie in the third step to restore equilibrium. The

third step represents a reinforced concrete tie subjected to imposed bond stress at the level of the

steel-concrete interface. The equations that govern such a problem are obtained from equilibrium of

a differential portion of the tie (Fig. 11)

 (23)

(24)

where q = −∆τi
2 and the reloading bond-slip law is considered as assumed. The algorithm of Fig. 4

solves the problem of the third step just by introducing such particularities.

The addition of the three steps of Fig. 10(c) is the effect of the ∆Nj cycles. As it can be noted

(Fig. 10(b)), bond stresses reduce as the relative slip increases. This increase is lower than the free

slip of the first step owing to the restriction of the bond mechanism. The result is that lower stresses

are transferred from the reinforcement to the concrete and the tension stiffening contribution

decreases. The numerical model leads to very fast results when the sets of cycles are chosen such as

Nj = 10j. To estimate the values under minimum load, the unloading stage is solved as previously

explained, assuming a vertical unloading line followed by a horizontal branch at τ = −τf (refer to

Fig. 5(b)).
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The overall behaviour will be explained with the analysis of existing experimental results. The

specimen tested by (Blaschke and Mehlhorn 1995) is considered in Fig. 12. It consists of a 20 mm

diameter bar embedded into a 1.0 m length prismatic concrete tie (cross section = 0.14 × 0.14 m). It

was subjected to 104 load cycles and the oscillation was such as the steel stresses at the crack were

σsmax = 285.71 MPa and σsmin = 57.14 MPa. The post-treatment of the specimen ensured negligible

shrinkage strain during the test.

Three cracks formed (see the first branch of the σs – εsm diagram in Fig. 12(a)), being sr = 0.23 m.

Fig. 12 Interpretation of test results from (Blaschke and Mehlhorn 1995): (a) Cyclic σs-εsm diagrams
considering τf = 3.0 and 1.0 MPa, (b) Model results considering τf = 3.0 MPa, (c) Model results
considering τf = 1.0 MPa 
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The bond properties were not reported, but good bond behaviour has been adopted to model the test

(τu = 2.5fc
0.5, s1 = 0.25 mm, fc = 35 MPa). Two values of the negative frictional strength have been

considered in order to study its influence (τf = 3.0 and 1.0 MPa).

Fig. 12(a) compares the experimental σs – εsm curves with the model results at N = 1, 10, 100,

1000 and 10000. It can be observed that the model does not reproduce the crack formation stage in

the first cycle due to the assumption of stabilised cracking since the beginning. The influence of this

fact is not relevant under repeated loading. Fig. 12(b) and c represent the evolution of σs, σc and τ

along sr/2 under maximum and minimum load considering τf = 3.0 and 1.0 MPa, respectively.

The experimental results show the progressive degradation of tension stiffening under maximum

load, leading to larger values of the average strain. This result is correctly reproduced by the

numerical model, and is due to the cyclic reduction of bond stresses and the subsequent increase of

steel stresses between cracks.

Under minimum load, the experimental average strain does not experiment an appreciable growth.

This indicates that σsmin is very closed to σmin,lim. When τf = 1.0 MPa is adopted in the model, the

limit minimum stress is σmin,lim = 97.59 MPa. Since σsmin < σmin,lim the full negative tension stiffening

capacity is reached in the unloading stage of the first cycle. Due to the fact that no cyclic

degradation of τf is considered, the model leads to constant values under minimum load during the

test (refer to Fig. 12(c)) and the results correspond to those given by Eqs. (10) and (14). Such

values agree well with the measured minimum strain.

Interesting findings are obtained when τf = 3.0 MPa is considered (Fig. 12(b)). In this case the

limit minimum stress is σmin,lim = 51.59 (σsmin > σmin,lim) and the unloaded transfer length is smaller

than sr/2 at the first cycle. The cyclic process decreases the stress transfer, which was called ∆σ1 in

Eq. (16). Due to this reduction, the unloaded transfer length increases with number of cycles, which

can be also understood as the cyclic growth of σmin,lim. The situation of lb,unl = sr/2 is reached before

N = 100 load cycles and the full negative tension stiffening is thereafter developed.

The analysis shows that the progressive bond degradation leads to the situation of lb,unl = sr/2

under cyclic loading, even when σsmin > σmin,lim. Therefore, Eqs. (10) and (14) may be used to

represent the long term state of the tension member under minimum load regardless of the stress

level. It is worth noting that the employ of a cycle dependent reduction of τf would lead to

decreasing crack widths and deformations. Further comments on the sensitivity of these formulae

are given in section 5.

4. Influence of shrinkage

4.1 Isolated effect of shrinkage

The long term effect of concrete is considered as governed by shrinkage; creep deformations are

not accounted for since they have shown to very small owing to the low tensile stresses of concrete

between cracks (Beeby and Scott 2006, Fernández Ruiz 2003).

When dealing with the shrinkage influence on a reinforced concrete tie, two situations must be

taken into account: before cracking and after cracking. Before cracking the bond-slip mechanism is

not involved and perfect bond between concrete and steel may be assumed. In this case the effect of

shrinkage is well known and published elsewhere (Ghali and Favre 1994), resulting in additional

compressive stresses at the steel, tensile stresses at the concrete (which may cause cracking) and
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overall compressive strains.

The effect of shrinkage after cracking is influenced by the bond-slip mechanism. To study it, it

will be assumed that a load is immediately applied to the tie after casting. Shrinkage develops

thereafter. It is supposed that stabilised cracking is reached with the first load. A three step model

similar to that presented in section 3 is employed. Now the life is subdivided into time intervals ∆tj.

Fig. 13(a) plots the scheme of the reinforced concrete tie with the external load F. The steel stress

at the crack remains constant (F/As). As previously depicted in Fig. 10(a), the constituents of the tie

are represented in Fig. 13(b). 

The three steps of the model are drawn in Fig. 13(c). The first step is a free compressive strain

increment of the concrete due to the time-dependent shrinkage. This free strain is fully restraint in

the second step by applying a restraining force to the concrete (∆F = −Ec Ac ∆εcs). Finally this force

is applied in reversed direction to the re-connected steel-concrete tie. In this third step bond stresses

develop as the relative slip increases. The slip increase is due to the fact that the compressive steel

strain increment is higher than that experimented by the concrete, and therefore ∆εs − ∆εc > 0. The

result is the progressive increase of the crack width and the formation of self equilibrating stresses:

compression at the steel and tension at the concrete. However, it should be noted that the overall

result is a shortening of the tie in terms of the average steel strain εsm.

The model results are illustrated by means of a numerical example (Fig. 14). The formulae of the

Eurocode EC-2 (CEN 2004) for the shrinkage strain have been taken into account, giving εcs (∞) =

−653 × 10−6. The evolution of the average strain and the crack width with time is represented in

Fig. 14(a) and Fig. 14(b). The distribution of stresses and strains along the half of the crack spacing

is plotted in Figs. 14(c)-(f). One aspect that should be kept in mind is the time-dependent

development of concrete compressive strains and tensile stresses. The latter could result in the

formation of new cracks if fct were reached. The increase of concrete stresses is due to larger bond

stresses, which are companied by higher relative slip between concrete and steel: although εc(t) <

εc(t0), εs(t) − εc(t) > εs(t0) − εc(t0), which leads to increasing slips (refer to Fig. 14(f)).

Fig. 13 (a) Cracked reinforced concrete tie, (b) Parts of the tie, (c) Three step procedure to solve the tie under
time-dependent shrinkage 
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From Fig. 14(a) it can be concluded that the time-dependent crack width may be estimated by

means of the following simplified expression:

(25)

A result that requires further investigation is the encountered reduction of the average strain

(Fig. 14(b)). To explain this apparently surprising result, the experiments of a comprehensive study

w t( ) w0 εcs t( )
sr

1 nρ+

---------------–=

Fig. 14 Effect of shrinkage on a reinforced tie (Φ = 20 mm, l = 0.12 m, sr = 0.15 m, εcs (∞) = −636 × 10−6,
F = 72 kN, fc = 120 MPa, τu = 2fc

0.5, s1 = 1.0 mm). (a) Time-dependent crack width, (b) Time-
dependent average strain, (c) Distribution of steel stresses, (d) Distribution of concrete stresses, (e)
Distribution of bond stresses, (f) Distribution of steel and concrete strains
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on long term effects are taken into account (Beeby and Scott 2006). They tested axially reinforced

concrete members subjected to pure tension, focusing on the time-dependent response. The

specimens were made in pairs: from each pair one specimen was loaded in three stages and the

other in a single step. Every loading stage was followed by a period of time in which the load

remained constant. The specimens tested in three stages experimented long term strain increase, as

generally accepted. The analysis showed that this increase was due to either the formation of new

cracks or so-called sudden events. Only a negligible part was due to progressive increase attributed

to creep. Sudden events were identified as internal damage leading to abrupt localised strain

increases and they could be due to the presence of weak internal zones characterised by small τu or

fct. Moreover, the instantaneous strain of the specimens tested in a single step was observed equal to

the strain reached in the third step of the three-time loaded specimens. This means that time-

dependent strains measured in the periods of smaller load are not expected to occur at the stabilised

cracking stage. So the final deformations for the two loading histories were almost the same and the

long term fraction was very small and attributed to internal cumulative damage (Beeby and Scott

suggested the reduction in tensile strength with time and negligible creep deformation).

Specimens T20R3 (with three loading steps) and T20B3 (with a single step) of (Beeby and Scott

2006) are now considered. Their geometry and maximum load level are those employed in the

example of Fig. 14. The experimental long term strain increments were 47 × 10−6 and 75 × 10−6,

respectively. Such values are very small and were assigned to internal damage since new cracks did

not appear. The hypothesis of stabilised cracking is assumed in the model of the present paper and

the computed effect of shrinkage was evaluated as −54 × 10−6 in Fig. 14(b). This reduction is also

very small and can be assumed that the addition of the internal cumulative damage reported by

Beeby and Scott would lead to the final strain experimentally measured.

As a conclusion, the time-dependent effect will be considered as the time-dependent crack width

of Eq. (25) and negligible change of the average strain. In agreement with (Beeby and Scott 2006),

the consideration of long term effects in axially loaded members by factoring the short term strain

may be a somewhat questionable procedure (obviously, this conclusion is not valid for members

subjected to flexural load). 

4.2 Coupled effect of shrinkage and repeated loads

The interaction of time-dependent concrete shrinkage and cycle-dependent degradation of the

bond-slip mechanism is accounted for in this clause. For the prediction of the results the

simultaneous development of both effects is considered. Each set of cycles ∆Nj is also considered as

a time increment ∆tj = ∆Nj /f, f being the load frequency. The solution of the problem is quite

straightforward just by introducing the shrinkage strain increment of concrete and its corresponding

effects (Fig. 13) in the three step model of Fig. 10.

The model capabilities are explored with a numerical example (Fig. 15). The lack of experimental

results dealing with the studied subject avoids the comparative verification. The example has been

chosen such as the unloaded state verifies lb,unl = sr/2 since the first cycle. Owing to this fact, the

stresses remain constant under minimum load during the cyclic process (Fig. 15(c)). However,

concrete shrinkage causes the progressive increase of the minimum crack width. The result under

maximum load is very similar to that explained in section 3, showing the progressive reduction of

tension stiffening (Fig. 15(b)), with an additional crack width growth due to the shrinkage.

The comparison of the model results with simplified expressions (Fig. 15(a)) allows for the
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estimation of the minimum crack width from the next simple formulation

(26)

where w0 is the minimum crack width estimated assuming that lb,unl = sr/2. This result agrees with

w t( ) w0 εcs t( )sr–=

Fig. 15 Interaction of shrinkage and cyclic bond degradation (Φ = 20 mm, l = 0.12 m, sr = 0.20 m, εcs (∞) =
−456 × 10−6, Fmax = 60 kN, Fmin = 12 kN, fc = 35 MPa, τu = 2fc

0.5, s1 = 1.0 mm, τf = 0.15τu, N = 106

cycles, f = 0.01 Hz). (a) Time-dependent crack width, (b) Distribution of stresses under maximum
load, (c) Distribution of stresses under minimum load
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the proposal of other authors (Bischoff 2001, Fields and Bischoff 2004) and the formulation of

some codes of practice (Model Code).

5. Simplified equations and practical recommendations

The model of section 3 has shown that the cyclic bond deterioration leads to a situation of the

reinforced concrete tie where the bond stress is constant (−τf) between two adjacent cracks under

minimum load. Eqs. (10) and (14) are therefore assumed to define the state of the tie under the

permanent load, even though σsmin > σmin,lim at the first cycle. If Eq. (14) provides the permanent

crack width, the allowable permanent steel stress (σper) can be derived as a function of the required

crack width (wper) 

(27)

Furthermore, the crack width increase due to shrinkage may be introduced from Eq. (26). Hence

σper wper

τf sr
2

EsΦ
---------- 1 ρn+( )–

Es

sr
-----=

Fig. 16 Permanent stress as a function of ρ and Φ, with and without shrinkage (fc = 35 MPa, τf = 0.15τu, τu =
2fc

0.5).
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(28)

The limiting value of the crack width is specified by the codes of practice. It is however noted

that some codes (Model Code) consider shrinkage strains in the crack width estimation and others

do not (Eurocode). A consistent value of wper should be therefore chosen. In the author’s opinion,

the limiting value of wper should be fixed from environmental and aesthetic requirements regardless

of the loads causing the cracks. All the cracking sources (mechanical, thermal, etc.) should be in

turn included in the crack width estimation.

Eq. (28) can be used to obtain practical diagrams of the allowable permanent stress as a function

of several parameters. Fig. 16 shows the role played by the steel reinforcement ratio and the bar

diameter. The crack spacing is estimated according to the Model Code (sr = Φ/(3.6ρ)). The

diagrams show that the allowable stress increases as the steel reinforcement ratio increases under a

given value of the diameter. It is also observed that the allowable stress can be increased if a

smaller diameter is used. The employ of closer, smaller bars is a generally accepted well-practice

rule. Fig. 16 also indicates that the allowable stress decreases when the shrinkage is included.

Eq. (28) shows that the negative tension stiffening term is highly dependent on τf, which is a

poorly investigated parameter. Values of 0.15-0.25τu have been considered in the literature. τu is in

turn dependent on fc with a considerable scatter. A simplified value for τf as a function of fc would

be required for practical applications.

6. Conclusions

The paper has presented a model to study the effect of repeated loads on the reinforced concrete

tie, focusing on the behaviour under minimum load and the explanation of the negative tension

stiffening effect. From the present approach the following conclusions may be drawn:

1. Repeated loads reduce the contribution of concrete in tension between cracks under maximum

load and lead to negative tension stiffening effect under minimum load. The crack width and the

average strain are therefore larger than those given by the fully cracked member (bare steel).

2. Neglecting the tension stiffening effect under minimum load leads to unsafe design results since it

has a negative contribution. The formulations of the codes of practice should be revised to

properly include the negative tension stiffening influence for elements under repeated load. Many

reinforced concrete members are actually subjected to this loading type, due to traffic, waves or

wind.

3. Further research is needed in order to define the negative frictional strength (τf), provided this

parameter has a considerable influence on the negative tension stiffening effect.

4. Simplified diagrams have been given in the paper in order to provide practical recommendations

to estimate the permanent crack width and the allowable permanent stress in members subjected

to repeated loading. The development of such diagrams is useful in the predimensioning stage to

understand the reduction of the allowable permanent stress due to negative tension stiffening.
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Notations

Ac : effective concrete area
As : bar area
b : parameter to define the cyclic rate of the relative slip increase
Ec : modulus of elasticity of concrete
Es : modulus of elasticity of steel
F : axial force
Fcr : cracking load
Fmax, Fmin : maximum and minimum force, respectively
Fmin,lim : limit minimum force
f : load frequency
fc : concrete compressive strength
fct : concrete tensile strength
lb,unl : unloaded transfer length
N : number of cycles
n : ratio between modulus of elasticity of steel and concrete
s : relative slip
s0 : static relative slip
sNj : relative slip after Nj load cycles
sr : crack spacing
s1 : relative slip that corresponds to the bond strength
s2, s3 : relative slips that correspond to changes in the form of the bond-slip law
t : time
Us : bar perimeter
w : crack width
w0 : static crack width
wmax, wmin : maximum and minimum crack width
wper : permanent crack width
wres : residual crack width
x : abscissa
α : shape factor of the bond-slip law
∆F : restraining force
∆Fb : fraction of the load transferred by bond stresses
∆Nj : number of cycles of step j
∆si

j : slip increase of step j at node i
∆tj : time interval of step j
∆σ1 : steel stresses transferred from the steel to the concrete under maximum load
∆σ2 : steel stresses transferred from the steel to the concrete under minimum load
∆σc : compressive stresses transferred from the steel to the concrete
∆τij : bond stress of step j at node i
∆σc : maximum difference of concrete strain along the crack spacing
∆εcs : increment of shrinkage strain
∆εs : maximum difference of steel strain along the crack spacing
εc : concrete strain
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εcm : average concrete strain
εcs : shrinkage strain
εres : residual average steel strain
εs : steel strain
εsm : average steel strain
εsmax, εsmin : maximum and minimum steel strain at the crack, respectively
Φ : bar diameter
ρ : steel reinforcement ratio
σc : concrete stress
σmin,lim : limit minimum stress
σs : steel stress
σsmax, σsmin : maximum and minimum steel stress at the crack, respectively
σper : permanent steel stress at the crack
τ : bond stress
τf : negative frictional bond strength
τmax, τmin : maximum and minimum bond stress, respectively
τNj : bond stress after Nj load cycles
τu : ultimate bond strength
τres : residual bond strength
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Appendix 

Eq. (5) can be rewritten in the form 

(A.1)

A new variable z can be introduced, such as z = ds/dx. Hence

 (A.2)

This equation can be easily integrated due to the fact that variables are separated

 (A.3)

where A is a constant to be determined later. Variable z is now removed

 (A.4)

The integration of this equation is of the type

 (A.5)

This binary equation has an explicit solution only when (1/k−1) or (−1/2 + 1/k−1) are integer numbers. A
closed solution is possible when A = 0. To do it, the next boundary condition is required

(A.6)

which means σs = σc in the section halfway between cracks. This condition is only valid in the crack forma-
tion stage. In this case, the relative slip can be obtained as follows

 (A.7)
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