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1. Introduction

Buckling of plates resting on an elastic foundation is important in numerous practical applications

such as concrete pavements and foundations on soil. The buckling of circular plates has been

reported by several authors (Yu 1957, Galletly 1959, Kline and Hancock 1965, Wolkowisky 1969,

Gupta et al. 1991, Gupta and Ansari 1998, Wang 2005, Gupta et al. 2006). All of the above sources

considered a circular plate resting on a full elastic foundation. The present Note studies the buckling

of a circular plate on a partial concentric elastic foundation which is important for centrally

supported or stiffened plates. We shall investigate whether there are any other asymmetric buckling

modes aside from those reported by Wang (2005). 

Our solutions will also be exact, such that no numerical errors are incurred. Exact buckling

criteria also serve as standards for checking results from approximate or numerical methods (Wang

et al. 2005). 

2. Formulation

Consider a thin (Kirchkoff) elastic plate of radius R centrally supported on a partial linear

(Winkler) foundation of radius cR. The outer edge of the plate is compressed by a uniform load N,

and may be clamped, simply-supported, or free. Let w1 be the lateral deflection of the plate in the

region not supported by the foundation and w2 be that supported by the foundation. The governing
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equations are

(1)

(2)

Here , , D being the flexural rigidity of the plate, k the spring constant of

the foundation, and lengths are normalized with R. Let  where n is the number of

nodal diameters. The general solution to Eq. (1) is

(3)

except for n = 0, the last term is replaced by . For the supported region, the general solution

depends on the foundation stiffness. If 

(4)

where , . 

If 

(5)

If 

(6)

where  and . At r = c, continuity in displacement, slope, moment

and shear are equivalent to

, (7,8)

, (9,10)

where the prime represents a derivative with respect to r. There are two more standard conditions at

the outer edge depending on whether it is clamped, simply supported or free. For non-trivial

solutions, the six conditions yield a characteristic equation. The lowest λ gives the buckling force N.

A routine root finder can generate the eigenvalues to any accuracy. 

3. Results

For the clamped case (Fig. 1) the buckling load rises monotonically with both λ and c. When the

foundation is absent, or c = 0, the buckling load is the first root of  or λ = 3.8317. For

full foundation, or c = 1, our solution agrees with those of Wang (2005). However, there is a mosaic

of mode switches for partial foundations. We see that there are regions of higher modes, from n = 0

to n = 4 nodal diameters in the range studied. In general, for fixed partial foundations the buckling

starts with an axisymmetric mode (n = 0) for small foundation stiffness, then the number of nodal

diameters increases as γ is increased. The phenomenon is also present for beams on elastic

foundation (Hetenyi 1948). 
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Fig. 2 shows the simply supported case. When the foundation is absent, the buckling load is

2.0489, or the first root of , where ν is taken as 0.3. We see there are

large pockets of higher modes (n = 2, 3) for larger c. For fixed moderate c, the buckling modes tend

to switch between zero and one nodal diameters in the range studied. This does not preclude the

appearance of higher modes when the stiffness becomes much larger. 

Fig. 3 shows the free edge case. All curves now start with zero buckling load, representing a rigid

λJ0 λ( ) 1 ν–( )J1 λ( )– 0=

Fig. 1 The clamped case. The buckling load λ
versus foundation stiffness γ. Dashed lines
denote mode changes. Numerals denote the
foundation size c. Typical modes are depicted

Fig. 2 The simply supported case. Legend same as
Fig. 1

Fig. 3 The free edge case. Legend same as Fig. 1
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body tilt when there is no constraint. In general for fixed c the buckling modes switches from n = 1

to n = 2 to n = 0 as stiffness is increased. However, there is a sandwiched pocket of n = 1 when

. 

Table 1 gives some numerical values form our exact solutions, and therefore serve as a check for

approximate numerical methods. Note that a table would not reflect the complex mosaic of mode

changes depicted in Figs. 1-3. 
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Table 1 The buckling load for various foundation size and edge conditions.
Number in parenthesis denote the number of nodal diameters.

Edge γ = 2 γ = 4 γ = 6 γ = 8

Clamped
Sim-Supp
Free

3.832 (0)
2.049 (0)

0 (1)

3.832 (0)
2.049 (0)

0 (1)

3.832 (0)
2.049 (0)

0 (1)

3.832 (0)
2.049 (0)

0 (1)

c = 0.2
Clamped
Sim-Supp
Free

3.993 (0)
2.135 (0)
0.080 (1)

4.697 (0)
3.049 (0)
0.315 (1)

5.355 (1)
3.789 (1)
0.662 (1)

5.714 (1)
4.039 (1)
1.013 (1)

c = 0.5
Clamped
Sim-Supp
Free

4.058 (0)
2.431 (0)
0.492 (1)

5.894 (1)
4.351 (1)
1.569 (1)

7.423 (2)
5.621 (0)
1.990 (2)

8.556 (3)
6.221 (0)
2.239 (2)

c = 0.8
Clamped
Sim-Supp
Free

4.104 (0)
2.619 (0)
1.235 (1)

6.365 (1)
5.390 (1)
2.718 (0)

8.941 (0)
7.967 (0)
3.542 (0)

11.653 (1)
10.126 (1)
4.104 (0)

c = 1
Clamped
Sim-Supp
Free

4.015 (0)
2.637 (0)
1.940 (1)

6.373 (1)
5.526 (1)
3.879 (0)

8.968 (0)
8.449 (0)
5.937 (0)

11.768 (1)
11.313 (0)
7.921 (0)

c 0≈




