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The dynamic relaxation method using new formulation 
for fictitious mass and damping 
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Abstract. This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by
minimizing displacement error between two successive iterations. In the mdDR method, new relationships
for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural
analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the
proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the
convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and
computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits
of the proposed technique.
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1. Introduction 

Final stage of any structural analysis is performed by solving a simultaneous system of equations

resulting from finite element or finite difference scheme as

(1)

where [S] is structural stiffness matrix, {D}, { f } and {P} are displacement, internal force and

external load vectors, respectively. In nonlinear behaviors, such as geometrical, material or contact

nonlinearity, internal force vector is nonlinear function of displacement. The most common methods

for solving Eq. (1) in nonlinear analysis are iterative procedures. These techniques can be classified

as implicit or explicit schemes (Felippa 1999). Explicit methods use residual force to get answer, so

that all calculations are performed by vector operations. Simplicity and high efficiency in nonlinear

analysis are the main specifications of the explicit techniques. On the other hand, implicit

procedures are formulated based on residual force derivatives (stiffness matrix). Because of using

matrix operations, calculations of implicit methods are complex and time consuming. For example,

snap through or snap back points, in which stiffness matrix is zero or undefined, cause some

difficulties. However, convergence rate of the implicit methods is greater than the explicit schemes.

Here, Dynamic Relaxation (DR) method is utilized for solving Eq. (1). This is an explicit iterative

S[ ] D{ } f{ } P{ }= =
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procedure, in which static system is transferred to an artificial dynamic space by adding artificial

inertia and damping forces

(2)

where,  and  are fictitious mass and damping matrices in the nth iteration of DR

algorithm, respectively, and assumed to be diagonal. Also, super dots denote derivatives related to

the fictitious time. In deed, Dynamic Relaxation method calculates steady state response of dynamic

system (2) as answer of Eq. (1), using numerical techniques. This method which has been

introduced by Otter (1966) or Day (1965) can be explained by either mathematical or physical

theories. Mathematically, DR formulation is based on the second order Richardson rule, developed

by Frankel (1950). Heat transfer problem in rectangular region is an example of this point of view.

Physically, DR scheme can be illustrated by steady state response of an artificial dynamic system.

Due to this theory, fictitious density was introduced by Welsh (1967) and Cassell (1968).

First DR application in nonlinear analysis was performed by Rushton (1968). Brew and Brotton

formulated Dynamic Relaxation method using first order dynamic equilibrium relationship, in which

stability conditions of frame structures were studied (Brew and Brotton 1971). Simultaneously,

Wood defined fictitious mass by using upper bound of spectral radius of the coefficients matrix

(Wood 1971). He showed that the convergence rate of DR is higher than the semi iterative

procedures in linear analysis. Also, estimation of critical damping was obtained by Bunce (1972).

Alwar and his coworkers determined steady state response from an exponential function (Alwar et

al. 1975). Furthermore, Cassell and Hobbs utilized Gerschgörin circle theory for fictitious mass

values and applied this method to nonlinear problems (Cassell and Hobbs 1976). 

Frieze and his coworkers used DR algorithm for nonlinear analysis of plates (Frieze et al. 1978).

The first related error analysis was done by Papadrakakis (1981). He suggested an automatic

procedure for selection of DR parameters. Another explicit formulation was performed by

Underwood (1983). Also, implicit DR relationships were introduced by Felippa (1982). Zienkiewicz

et al. suggested an accelerated procedure for improvement of the convergence rate (Zienkiewicz and

Lohner 1985). By using weighting factors for mass and damping, Al-Shawi and Mardirosian

utilized Dynamic Relaxation for finite element analysis of bending plates (Shawi and Mardirosion

1987). Qiang determined fictitious time and damping by Rayleigh’s principle (Qiang 1988). The

maDR algorithm was proposed by Zhang in which estimation of steady state response was modified

(Zhang and Yu 1989). 

Other researchers such as, Turvey et al. (1990) and Bardet et al. (1991) studied some applications

of DR method. The first use of DR scheme in problems with snap through or snap back points was

performed by Ramesh and Krishnamoorthy (1993, 1994) They combined DR algorithm by arc

length procedure. On the other hand, Kadkhodayan and coworkers introduced new model for

fictitious damping (Zhang et al. 1994). Also, they utilized Dynamic Relaxation method in elastic-

plastic and plate buckling problems (Kadkhodayan and Zhang 1995, Kadkhodayan et al. 1997).

Nonlinear analysis of buckling propagation in pipe lines was performed by Pasqualinoe and Estefen,

Simultaneously (Pasqualino and Estefan 2001). Wood (2002) and Han (2003) used DR method for

shape finding analysis. Recently, Dynamic Relaxation was successfully applied to linear and

nonlinear analysis of composite structures (Turvey and Salehi 2005). Moreover, Dynamic

Relaxation method has an ability to use in nonlinear dynamic analysis of structures so that the

errors are reduced (Rezaiee-Pajand and Alamatian 2008). 

In the explicit DR method, fundamental relationships are formulated by using central finite

M[ ]n D
··{ }

n
C[ ]n D

·{ }
n

S[ ]n D{ }n+ + f{ }n P{ }n= =

M[ ]n C[ ]n
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difference as below (Zhang and Yu 1989)

(3)

(4)

where, , mii and cii are fictitious time step, ith diagonal element of fictitious mass and damping

matrices in the nth iteration of DR, respectively. Also, q denotes the number of degrees of freedom

and  is the residual force of the ith degree of freedom in the nth  iteration

(5)

DR iterations are unstable because numerical time integration is used to integrate the differential

equations of motion. Hence, fictitious parameters such as time step, diagonal mass and damping

matrices are determined so that the stability conditions are satisfied and the convergence rate is

increased.

In this paper, new fictitious mass and damping matrices are formulated by minimizing errors in

DR iterations. Then, the mdDR algorithm is presented based on the suggested formulation. Finally,

some linear and nonlinear problems are analyzed by either finite element or finite difference

procedures. These solutions are utilized for numerical verification of the proposed method. 

2. The error analysis of dynamic relaxation method 

To study stability of DR algorithm, error analysis between two successive iterations should be

performed. Substituting Eq. (3) into (4) and using the previous velocity  as a function of

displacement, leads to the following relationship

(6)

Displacement error in the n
th
 iteration is defined as follows (Undewood 1983) 

(7)

where,  and  are answer of Eq. (1) and displacement error in the nth iteration,

respectively. By combining Eqs. (6) and (7), fundamental relationship of DR error can be simplified

as below

(8)

Here,  and  are diagonal matrices with the following entries 

(9)

(10)
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The DR iterations are stable if errors become near zero. For simplicity, the variation of the errors

between two successive iterations is assumed to be linear (Undewood 1983)

, (11)

In which, ki,  is the error factor that controls stability and convergence rate.

Substituting Eq. (11) into (8), gives the following equation

(12)

Here,  is the ith eigenvalue of . For optimum convergence (minimum value of ki,

), discriminant of Eq. (12) should be zero

(13)

Eq. (13) is the most important condition for stability and optimum convergence rate of the explicit

DR method. This equation has real answers if expression in the right hand side is greater than or

equal to zero 

(14)

Hence, two values for each eigenvalue of  are calculated

(15)

(16)

Here,  and  are lower and upper bounds of the i
th
 eigenvalues of , respectively,

which satisfy stability condition. Because of unknown parameters (fictitious mass, damping and

time step) eigenvalues of  can not be determined analytically. Hence, Gerschgörin’s circles

theory which is an approximate method is used to estimate the ith eigenvalue of  as follows

(Undewood 1983)  

(17)

Inequality (17) displays that each eigenvalue of  can be lied in two discrete zones (I and

II) 

(18)

(19)

At this stage, it must be clear that which of these zones is more compatible with the structural

specifications. For this purpose, the error factor (ki) is calculated from Eq. (12)
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(20)

The optimum convergence rate is obtained when ki = 0, . Using this condition and

substituting aii from Eq. (9) leads to the following result

(21)

Eq. (21) must satisfy condition (14). Therefore the following condition is required

(22)

Moreover, expression in the left side of Eq. (22) should be non-negative. By sign determination of

this relationship it is concluded 

  (23)

If inequality (23) is combined with (22), the following result is obtained 

(24)

Inequality (24) determines upper and lower bounds of each eigenvalue of  in which

stability is guaranteed and convergence rate is also maximized. Applying these limits into the

Eqs. (18) and (19) leads to the following results 

, (25)

, (26)

The above relationships can be simplified as follows 

(27)

(28)

As a result, there is acceptable domain for fictitious parameters of DR if the stiffness elements of

structure satisfy the following conditions 
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(30)

Mathematically, acceptable domain of Eq. (29) is greater than Eq. (30). Therefore, probability of

the numerical instabilities decreases when Eq. (18) is used for eigenvalues of . In the other

words, boundaries of Eq. (19) may be ineffective and unsuitable. Moreover, in each row of the

linear structural stiffness matrix, the diagonal entry is greater than or equal to the absolute sum

along the rest of the row. Eq. (29) displays this specification. Therefore, Eq. (30) is not valid in

linear structural analysis. Nevertheless, similar discussion may not be possible for nonlinear analysis

because of variety of such behaviors. In this case, both Eqs. (29) and (30) have the same probability

of validity. But, wide range of numerical studies indicates that DR iterations are unstable when

eigenvalues are assumed in zone II (Eq. (19) or condition (30)). The presented discussions show

that each eigenvalue of  must be assumed in domain I, distinguished by Eq. (18). The

paper uses this domain in DR formulation. By substituting  and  from Eqs. (15) and (16)

into the inequality (18), the following results are achieved

(31)

(32)

Also, aii can be replaced by Eq. (9) which gives 

  (33)

(34)

The fictitious parameters have real values if the expressions in the right side of inequalities (33)

and (34) are greater than or equal to zero 
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Neglecting the variation of fictitious time step between two successive iterations leads to the

simple relationship as follows 
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On the other hand, by combining Eqs. (15) and (16) one can write 

(39)

By considering Eqs. (18) and (39), it can be proved that 

(40)

The above relationship, which has been proved in the appendix 1, leads to the following result

(41)

If the variation of time step between two successive iterations is neglected, simple relation is

obtained

(42)

As a result, the proposed formulation presents three inequalities for fictitious mass (Eqs. (35), (36)

and (41) or Eqs. (37), (38) and 42). It is clear that fictitious mass is lied in the closed zone so that

Eq. (36) shows the upper bound and Eqs. (35) and (41) denote the lower limits of this zone. As a

result, it is necessary to introduce a reasonable approach for selection mass elements. In DR

iterations, the residual force is one of the parameters which control the convergence. This quantity

is composed from artificial inertia and damping forces of each iteration. By decreasing fictitious

mass, which causes reduction in inertia forces, the residual force will reduce and one can expect

that DR convergence rate will increase. The above discussion shows that the best and optimum

selection for fictitious mass is the lower bound of the acceptable zone (Eqs. (35) and (41))

(43)

If fictitious time step is assumed to be constant, simple relationship is obtained for fictitious mass

entries

(44)

It should be reminded that Eq. (42) is the most common relationship for calculating the fictitious

mass in the ordinary DR algorithms. Therefore, the proposed formulation includes and embraces the

previous methods. For protecting numerical instabilities in the ordinary Dynamic Relaxation

method, the mass values from the Eq. (42) must be scaled by factor between 1.1 and 1.2. This scale

factor should be selected by the analyst. Therefore, personal judgment has an effect on the ordinary

DR algorithm. The presented formulation (Eq. (43) or (44)), solves this difficulty so that the

proposed mass is found automatically. 

Now, fictitious damping should be determined. It is clear that [B] is a diagonal matrix. If

Gerschgörin theory is used, the ith eigenvalue of  can be assumed as follows 
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(45)

Here,  is the ith eigenvalue of the stiffness matrix. The above assumption is logical because

mass and damping are unknown parameters and they can be determined so that this assumption is

valid (as done here). Substituting Eqs. (9) and (43) into the Eq. (13) leads to the second order

equation 

(46)

In which 

(47)

(48)

(49)

Here,  is the ith natural frequency of the artificial dynamic system ( ). By assuming

constant time step between two iterations, the following relationship is valid  

(50)

Analytical solution for calculating natural frequencies is complicated and time consuming

procedure. Therefore, approximate technique can be used. In dynamic structural response, the effect

of higher frequencies is less than the lower ones. Hence, the higher frequencies can be neglected

and one can only uses the lowest fictitious frequency as 

(51)

The lowest frequency  of the structure can also be estimated from Rayleigh principle

(52)

In common DR methods, estimation of the critical damping is used for fictitious damping
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where  is calculated from Rayleigh principle (Eq. (52)). 

3. The proposed DR algorithms 

In the previous section, the error analysis was performed for DR iterations and new relationships

for fictitious mass and damping were presented. First, general DR algorithm is given: 
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1.0E − 12).

(b) Construct tangent stiffness matrix and internal force vector. 

(c) Apply boundary conditions. 

(d) Calculate out of balance (residual) force vector using Eq. (5). 

(e) If , go to (l), otherwise, continue.

(f) Construct artificial diagonal mass matrix. 

(g) Form artificial damping matrix. 

(h) Update artificial velocity vector using Eq. (3). 

(i) If , go to (l), otherwise, continue. 

(j) Update displacement vector using Eq. (4). 

(k) Set n = n + 1 and go to (b). 

(l) Print results of the current increment. 

(m) If increments are not complete, go to (a), otherwise, stop.

If increments are not complete, go to (a), otherwise, stop. If the proposed formulations are applied

to the general DR algorithm, new method will be obtained. This method is called mdDR in which

Eqs. (44) and (51) are used for fictitious mass and damping matrices, respectively. Also, fictitious

damping should satisfy condition (14). For better studying the specification of the suggested

formulation, the mDR algorithm is introduced so that fictitious mass and damping are calculated

based on Eqs. (44) and (53), respectively. In the mDR algorithm, mass matrix is calculated from the

proposed formulation but damping factor is calculated from the conventional method (Eq. (53)).

Also, the oDR is ordinary Dynamic Relaxation algorithm in which fictitious mass and damping are

calculated from Eqs. (42) and (53), respectively. 

It should be noted that fictitious time step is usually assumed to be constant and equal to one.

However, there are other approaches to calculate fictitious time step which can be used in any DR

algorithm (Kadkhodayan et al. 2008). Studying the specifications of the suggested formulations for

mass and damping is the goal of this paper. Hence, fictitious time step is kept constant in all of the

mdDR, mDR and oDR algorithms. 

4. Numerical examples and discussion 

To investigate the capability of the proposed algorithms (mDR and mdDR) compared to the

conventional scheme (oDR), some structure is analyzed from finite element and finite difference

undergoing linear and elastic geometrical nonlinear behaviors. In order to solve these problems, a

computer program has been written by the authors with fortran power station software. 

4.1 Truss spring system 

A nonlinear one degree of freedom system, which is shown in Fig. 1, will be analyzed. This

structure is formed by a spring with stiffness KS = 10.51 N/cm and a truss element with axial

ri
n( )

2

i 1=

q

∑ eR≤

D
·
i
n 1/2+

( )
i 1=

q

∑ eK≤



118 M. Rezaiee-pajand and J. Alamatian 

rigidity of AE = 44483985.77 N. The fundamental relationships for internal force ( f ) and tangent

stiffness (ST) are as follows (Undewood 1983)

(54)

(55)

Loading process will be completed after twelve increments. The load growth is 4.4484 N in each

increment. Fig. 2 displays the load-deflection curve for this system. The number of iterations for

convergence, which has been inserted in Table 1, shows that the mDR and mdDR algorithms cause

maximum reduction up to about 79% and 86% compared to the oDR, respectively. Comparing the

f D( ) 0.5AE Cos
2
ϕ( ) D

L0

-----⎝ ⎠
⎛ ⎞2 D

L0

-----Cos
2
ϕ 3Sinϕ– ksD AE

D

L0

-----⎝ ⎠
⎛ ⎞Sin

2
ϕ+ +=

ST 1.5AE Cos
2
ϕ( ) D

L0

-----Cos
2
ϕ 2Sinϕ–

D

L0

2
-----⎝ ⎠
⎛ ⎞ ks

AESin
2
ϕ

L0

---------------------+ +=

Fig. 1 Truss- spring system 

Table 1 The number of iterations for convergence in the truss- spring system

Meth. 

Number of iterations for each load increment 

Total

Improvement (%) 

1 2 3 4 5 6 7 8 9 10 11 12

oDR 76 73 77 83 95 134 75 57 49 45 42 40 846

79.3  86.1mDR 17 17 19 21 26 45 17 11 6 8 9 11 207

mdDR 5 6 8 11 19 4 7 9 11 12 13 13 118

oDR mDR–

oDR
------------------------------

oDR mdDR–

oDR
---------------------------------

Fig. 2 Load-deflection curve for truss-spring system 
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results of the mDR and mdDR displays that the effect of the proposed mass on improving DR

convergence rate is more than the effect of the suggested damping (Eq. (51)). For instance, the

proposed mass and damping factors cause a reduction about 79% and 7% in DR iterations,

respectively. On the other hand, Figs. 3 and 4 show variations of the out of balance force and

kinetic energy for the 7th increment, which has intense nonlinear behavior, respectively. From these

figures, one can clearly see that the mDR and mdDR reduce the out-of-balance forces and the

kinetic energy quicker than the oDR method. 

4.2 Toggle truss 

This single degree of freedom problem, shown in Fig. 5, is analyzed before its elastic buckling

point (Ramesh and Krishnamoorthy 1994). The modulus of elasticity is 7.03E5 kg/cm2 and the

section area of each element is 96.77 cm2. The ultimate value of external load is 3.2E6 kg. Linear

and elastic geometrical nonlinear analyses are performed for ten loading increments. Total

Lagrangian finite element approach is also utilized for elastic-large deformation formulation

(Felippa 1999). Fig. 6 displays the load deflection curves of the vertical displacement of truss for

both linear and nonlinear analyses. The number of iterations for convergence has also been inserted

in Table 2. In linear analysis, the mDR and mdDR algorithms are converged to the solution only

after one iteration. This means that the convergence rate of the suggested technique is infinite in

linear behavior as it is proved mathematically in the appendix 2. This property may also be

Fig. 3 Variation of out-of-balance force for the 7th

load increment of the truss-spring system
Fig. 4 Variation of kinetic energy for the 7th load

increment of the truss-spring system 

Fig. 5 The toggle truss 
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observed easily in other linear systems with single degree of freedom. By applying the mDR

method, which uses only the proposed fictitious mass, maximum reduction up to 88% is achieved

compared to the oDR. This improvement is up to about 94% if the mdDR algorithm is utilized.

Comparing the results of the mDR and mdDR shows that the effect of the modified damping factor

(Eq. (51)) which is about 6% is less than the effect of the proposed mass. Finally, the variations of

un-balance force and kinetic energy have been plotted in Figs. 7 and 8 for the 9
th 

increment of

Fig. 6 Load-deflection curves for the toggle truss 

Table 2 The number of iterations for convergence in the toggle truss 

Analysis Meth. 

Number of iterations for each load increment 

Total 

Improvement (%) 

1 2 3 4 5 6 7 8 9 10

Linear 

oDR 144  132  132  132 132 132 132 132 132 132 1332 

96.7 98.4 mDR 17 3  3 3 3 3 3 3 3 3 44 

mdDR 3  2  2 2 2 2 2 2 2 2 21 

Non-
linear 

oDR 146  137  140  144 149 155 163 176 198 279 1687 

88.0 93.4 mDR 18 15 15 17  17 17  19 21 25  39 203 

mdDR 6 6 7 7  9 9 11 15 37 5 112 

oDR mDR–

oDR
------------------------------

oDR mdDR–

oDR
---------------------------------

Fig. 7 Variation of out-of-balance force for the 9th

load increment of the toggle truss 
Fig. 8 Variation of kinetic energy for the 9th load

increment of the toggle truss 
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nonlinear analyses, respectively. It is clear that the mDR and mdDR algorithms reduce the out-of-

balance forces along with the kinetic energy quicker than the oDR scheme. 

4.3 Space truss 

Fig. 9 shows a space truss with axial rigidity of AE = 2.1E6 KN. This structure has 21 nodes, 52

elements and 39 degrees of freedom (Ramesh and Krishnamoorthy 1994). The ultimate value of

Fig. 9 The space truss (dimensions in meters and are the same for the X and Y axes) 

Fig. 10 Load-deflection curves for the space truss

Table 3 The number of iterations for convergence in the space truss 

Analysis  Meth. 

Number of iterations for each load increment 

Total 

Improvement (%) 

1 2 3 4 5 6 7 8 9 10

Linear 

oDR 41 40 40 40 40 40  40 40 40  40 401 

4.7  7.7mDR 39 39 38 38 38 38  38 38 38  38 382 

mdDR 37 37 37 37 37 37  37 37 37  37 370 

Non-
linear 

oDR 40 39 39 38 38 39  43 51 67 209 603 

3.8  7.8mDR 39 38 37 37 36 38  42 49 64 200 580 

mdDR 37 36 36 35 35 36  40 47 61 193 556 

oDR mDR–

oDR
------------------------------ oDR mdDR–

oDR
---------------------------------
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external load is 8500 KN and the nodes in elevation Z = 0 are restrained in all directions. Linear

and elastic geometrical nonlinear analyses are performed for ten loading increments. Total

Lagrangian finite element approach is utilized for elastic-large deformation formulation (Felippa

1999). Fig. 10 shows the load deflection curves for Z direction displacement of the tip node in both

linear and nonlinear analyses. The number of iterations for convergence has been inserted in Table 3.

When the mDR and mdDR are used, maximum reduction of iterations is up to about 4% and 7%

compared to the oDR, respectively. Therefore, the proposed formulation for fictitious mass and

damping factors has suitable effect on increasing the convergence rate of DR. For instance, the

variations of un-balance force and kinetic energy have been plotted in Figs. 11 and 12 for the 10th

increment of nonlinear analysis, respectively. Because of the scale of values here that one may not

be able to observe the differences between three algorithms clearly, when the total iterations are

considered as a whole. Hence, the variations of un-balance force and kinetic energy have been

plotted for a sample of iterations, i.e., iterations between 150 and 180; where the amounts of

numerical values are closer to each other. These Figures display that the mDR and mdDR reduce

the out-of-balance force and the kinetic energy quicker than when the ordinary dynamic relaxation

algorithm is used. 

4.4 Building frame 

A building frame with five bays and six stories is shown in Fig. 13. A uniform load of q = 50 kg/

cm is applied on each floor and the horizontal forces are calculated by distribution of the base shear

resulting from earthquake loading. The columns of three downer and upper stories are constructed

by W18×40 and W18×35, respectively. Also, all beams are W16×31. Small and elastic-large

deformation analyses will be performed for this structure. The co-rotational finite element

formulation is also utilized for large-deformation analysis (Saka 1990). Fig. 14 shows the load-

deflection curves of the horizontal displacement of the top of fame for both linear and nonlinear

analyses. The number of iterations for convergence has also been inserted in Table 4. Here, both the

mDR and mdDR procedures cause average reduction about 4% in required iterations compared to

the oDR method. In other words, the results of the mDR and mdDR are the same. Therefore, the

proposed damping factor (Eq. (51)) does not improve the convergence rate of DR and does not have

any suitable effect. The reason for this property can be illustrated as follows. In such great structure,

Fig. 11 Variation of out-of-balance force for the 10th

load increment of the space truss
Fig. 12 Variation of kinetic energy for the 10th load

increment of the space truss
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Fig. 13 The building frame

Fig. 14 Load-deflection curves for the building frame 

Table 4 The number of iterations for convergence in the building frame 

Analysis  Meth. 

Number of iterations for each load increment 

Total 

Improvement (%) 

1 2 3 4 5 6 7 8 9 10

Linear 

oDR 2090 1626 1585 1568  1559 1554 1550 1547 1545  1543 16167 

4.1 4.1 mDR 2002 1560 1521 1505  1496 1491 1487 1485 1483  1481 15511 

mdDR 2001 1560 1520 1505  1496 1491 1487 1485 1483  1481 15509 

Non-
linear 

oDR 2102 1651 1623 1621  1627 1637 1650 1664 1679  1696 16950 

4.1 4.1 mDR 2013 1584 1558 1556  1562 1571 1583 1597 1612  1628 16264 

mdDR 2012 1583 1558 1556  1562 1571 1583 1597 1612  1628 16262 

oDR mDR–

oDR
------------------------------

oDR mdDR–

oDR
---------------------------------
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with 114 degrees of freedom, the lowest fictitious natural frequency (ωmin) is near zero. Therefore,

the effect of  compared to ωmin can be neglected. As a result, Eq. (51) is transformed to

Eq. (53). Similar behavior can be expected in other multi degrees of freedom systems. However, the

proposed mass formulation still has a considerable effect on improving DR convergence rate. 

It should be noted that calculating of the internal force vector and stiffness matrix are very

expensive in nonlinear analyses. Hence, reduction of number of iterations decreases the cost and the

computational time considerably. As a result, using the suggested formulation for fictitious mass is

strongly advised for nonlinear multi degrees of freedom structures, such as frames. Although, in

nonlinear problems, mathematical convergence rank of the oDR and mdDR are the same and equal

to one but, the numerical results show that the proposed method requires less iterations than the

ordinary dynamic relaxation technique. Therefore, the convergence rate of the mdDR is higher than

the conventional DR algorithm. For instance, the variations of un-balance force and kinetic energy

have been illustrated by Figs. 15 and 16 for the 10
th increment of nonlinear analyses, respectively.

Because of the scale of values, one may not be able to observe the differences between the mDR,

mdDR and oDR clearly, when the total iterations are considered as a whole. Hence, the variations

of un-balance force and kinetic energy have been plotted for iterations between 900 and 950 of

nonlinear analysis. In this range, the amounts of numerical values are closer to each other. These

Figures display that the proposed algorithms (mDR and mdDR) reduces the out-of-balance force

and the kinetic energy quicker than the oDR algorithm. 

4.5 Plate structure 

The incremental form of the plate equilibrium equations may be written in the following form

(Kadkhodayan et al. 1997) 

(56)

(57)

ωmin

2

∂δNx

∂x
------------

∂δNxy

∂y
--------------+ 0=

∂δNy

∂y
------------

∂δNxy

∂x
--------------+ 0=

Fig. 15 Variation of out-of-balance force for the 10th

load increment of the building frame 
Fig. 16 Variation of kinetic energy for the 10th load

increment of the building frame 
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(58)

In Eqs. (56)-(58) the symbol δ denotes the incremental change in quantities compared to their

converged magnitude at the end of the previous load step. The incremental membrane forces and

bending moments may be expressed as

(59)

where the incremental stresses are as below (Ugural 1987)

(60)

(61)

where E, G, υ, λ and e are the Young’s modulus, shear modulus, Poisson’s ratio, Lame’ coefficient

and volumetric strain of the material, respectively. The incremental strains of points at a distance z

from the middle plane of the plate are given by 

(62)

The incremental mid-plane normal and shear strains and curvatures of plate are given below

(Ugural 1987)
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where  and  ware the incremental displacement components in the x, y and z directions,

respectively. 

In order to compute the numerical derivatives of the incremental bending and twisting moments

( ), lateral displacement ( ), membrane forces ( ) and in-plane

displacements ( ) central, forward and backward finite difference (FD) schemes are used, as

appropriate. After applying the boundary conditions, all quantities are updated by substituting the

increments into the FD forms of the differential equation for each node.

In the case of small deflection bending theory, the effects of membrane forces and in-plane

displacements are negligible. Hence, the strains in the mid-plane of the plate are ignored (

= ). Therefore, there is only one plate equilibrium equation

(64)

The other equations can be re-arranged accordingly.

The plate deformation is analyzed using both small and large deflection plate equations. The

Young’s modulus (E) and Poisson’s ratio (υ) of the plate material are taken as 210 KN/mm2 and 0.3,

respectively. The plate has an aspect ratio (a/b) of 1 and a width to thickness ratio (a/h) of 100 and

it is subjected to a uniform transverse pressure.

In order to verify the accuracy of the method, the plate is assumed to be rectangular, so that

c1 = c2 = d1 = d2 = 0 in Fig. 17. Table 5 shows a comparison between the numerical and analytical

results (Timoshenko and Woinowsky-Krieger 1959) for plates with different boundary conditions.

The symbols S, C and F in the table refer to simply supported, clamped and free edges and S.D.

and L.D. refer to the small and large deflection plate theories, respectively (Timoshenko and

Woinowsky-Krieger 1959). It is clear that there is a good agreement between the numerical and

analytical results. 

The consequences of applying the proposed algorithms will now be addressed using a specific

δu δv, δw

δMx δMy δMxy, , δw δNx δNy δNxy, ,
δu δv,

δεx
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δεy
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δγxy
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∂2
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∂y
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δMxy
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-----------------– δq+ + 0=

Fig. 17 Plan view of a punched plate with edges labelled 1-8 [Note: The plate reduces to a rectangular plate
when c1 = c2 = d1 = d2 = 0] 
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example. A punched plate with following geometry: a/b = 1, c1/a = 0.4, c2/a = 0.3, d1/b = 0.25, d2/

b = 0.35 and a/h = 100 is selected for this purpose. In this example, different plate theories and

boundary conditions are also applied. The number of mesh intervals used in the analyses was 20, 20

and 9 for the length, width and thickness directions, respectively. The results obtained are shown in

Tables 6 and 7 for small and large deflection, respectively. They indicate that when the mDR and

mdDR algorithms are used, the average reduction in iterations for small and large deflection theory

Table 5 Comparison between numerical and analytical results for a uniformly loaded square plate (c1 = c2 =
d1 = d2 = 0)[a/b = 1.0] 

Case 

Boundary conditions 
along edges  Deformation 

type 

error %

 1 2 3 4 Analytical Numerical

S1 C C C C L.D.* 1000 0.88 0.8971 +1.9 

S2 C C C C S.D.** 1000 1.25 1.2632 +1.1 

S3 S S C C L.D. 500 0.68 0.7005 +3.1 

S4 S S C F S.D. 100 0.83 0.8064 −2.8 

S5 S S S F S.D. 100 0.89 0.9123 2.5 

*Large Deformation
**Small Deformation 

12qb
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1 ν
2

–( )

Eh
4

----------------------------------

wmax

h
----------

wmax( )N wmax( )A–

wmax( )A
------------------------------------------ 100×

Table 6 The numbers of iterations for convergence in the DR finite difference analysis of punched plates for
small deflection

Case 

Boundary conditions along edges Number of iterations Improvement (%) 

1 2 3 4 5 6 7 8 Odr  mDR mdDR 

P1 S S C C S S S S 2000 0.4749 424 405 405 4.5 4.5 

P2 S S S S S S S S 2000 0.5132 441 421 421 4.5 4.5 

P3 F C S S C C S S 500 0.7217 731 697 697 4.7 4.7 

P4 F C C C S S S  F 500 0.8731 774 737 737 4.8 4.8 

P5 F C S C C F S S 500 0.6316 732 698 698 4.6 4.6 

Table 7 The numbers of iterations for convergence in the DR finite difference analysis of punched plates for
large deflection 

Case 

Boundary conditions along edges Number of iterations Improvement (%) 

1 2 3 4 5 6 7 8 oDR mDR mdDR 

P1 S S C C S S  S S 2000 0.3832 243 233 233 4.1 4.1 

P2 S S S S S S S S 2000 0.3950 253 242 242 4.3 4.3 

P3 F C S S C C S S 500 0.7553 1129 1071 1072 5.1 5.0 

P4 F C C C S S S F 500 0.8785 1075 1019 1020 5.2 5.1 

P5 F C S C C F S S 500 0.6608 1122 1063 1064 5.3 5.2 
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is about 5% compared to the ordinary DR method. It is clear that the number of iterations for

convergence in the mDR and mdDR schemes is the same because, there is up to 300 degrees of

freedom in the punched plate and its lowest fictitious natural frequency is near zero. Hence, the

effect of the proposed damping factor is not considerable (as seen in Tables 6 and 7). On the other

hand, the proposed fictitious mass still increases the convergence rate of DR method in finite

difference analysis, in which numerical techniques are utilized. Additional quantitative evidence of

the beneficial effect of the proposed formulation on the convergence rate of DR method may be

seen by monitoring changes in the out-of-balance forces and the kinetic energy as the iterations

progress. Plots of these quantities show the rate at which the dynamic response diminishes as the

static solution is approached. As illustrative examples, plots the out-of-balance forces and kinetic

energy have been created for plates with different types of boundary conditions, i.e., case P5. They

are shown in Figs. 18-21 for both small and large deflection. Because of the scale of values, the

differences between the out-of balance forces and kinetic energy are shown only for the iterations

between 500 and 550. From these figures, it is evident that the mDR and mdDR procedures reduce

the out-of-balance forces and the kinetic energy quicker than when the ordinary dynamic relaxation

algorithm is used. 

Fig. 18 Variation of out-of-balance force for small
deflection of the case P5

Fig. 19 Variation of kinetic energy for small
deflection of the case P5

Fig. 20 Variation of out-of-balance force for large
deflection of the case P5

Fig. 21 Variation of kinetic energy for large deflection
of the case P5
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5. Conclusions

In this paper, new formulation for fictitious mass and damping of Dynamic Relaxation method

was introduced by minimizing error between two successive iterations. In the ordinary method

personal judgment has an important effect on the selection of fictitious mass (scale factor of

Eq. (42)) which affect the stability and efficiency of DR iterations. But, the suggested technique

calculates fictitious mass automatically without any additional calculations. Moreover and for linear

systems with one degree of freedom, using the proposed algorithm (mdDR) improves the

convergence rank from one to infinity. The effects of proposed method were investigated for both

finite difference (small and large deflection of plate bending problems with different boundary

conditions) and finite element (linear and non-linear truss and frame structures with few and many

degrees of freedom) problems. It is concluded that the number of iterations for convergence may be

reduced by up to about 80% and 5% for systems with few and many degrees of freedom,

respectively. Moreover, in great structures in which the lowest fictitious natural frequency is near

zero, the proposed damping factor is transformed to the conventional damping. It should be

mentioned that the suggested formulation does not impose any additional calculations. 

References 

Alwar, R.S., Rao, N.R. and Rao, M.S. (1975), “Altenative procedure in dynamic relaxation”, Comput. Struct., 5,
271-274. 

Bardet, J.P. and Proubet, J. (1991), “Adaptive dynamic relaxation for statics of granular materials”, Comput.
Struct., 39, 221-229. 

Brew, J.S. and Brotton, M. (1971), “Non-linear structural analysis by dynamic relaxation method”, Int. J. Numer.
Meth. Eng., 3, 463-483. 

Bunce, J.W. (1972), “A note on estimation of critical damping in dynamic relaxation”, Int. J. Numer. Meth. Eng.,
4, 301-304. 

Cassell, A.C. and Hobbs, R.E. (1976), “Numerical stability of dynamic relaxation analysis of non-linear
structures”, Int. J. Numer. Meth. Eng., 10, 1407-1410. 

Cassell, A.C., Kinsey, P.J. and Sefton, D.J. (1968), “Cylindrical shell analysis by dynamic relaxation”, Proc. ICE,
39, 75-84.

Day, A.S. (1965), “An introduction to dynamic relaxation”, The Engineer, 219, 218-221. 
Felippa, C.A. (1982), “Dynamic relaxation under general increment control”, Math. Prog., 24, 103-133. 
Felippa, C.A. (1999), Nonlinear Finite Element Methods, ASEN 5017, Course Material, http://kaswww.colorado.

edu/courses.d /NFEMD/; Spring. 
Frankel, S.P. (1950), “Convergence rates of iterative treatments of partial differential equations”, Math. Tables

Other Aids Comput., 4(30), 65-75. 
Frieze, P.A., Hobbs, R.E. and Dowling, P.J. (1978), “Application of dynamic relaxation to the large deflection

elasto-plastic analysis of plates”, Comput. Struct., 8, 301-310. 
Han, S.E. and Lee, K.S. (2003), “A study on stabilizing process of unstable structures by dynamic relaxation

method”, Comput. Struct., 80, 1677-1688. 
Kadkhodayan, M. and Zhang, L.C. (1995), “A consistent DXDR method for elastic-plastic problems”, Int. J.

Numer. Meth. Eng., 38, 2413-2431. 
Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), “A new fictitious time for the dynamic relaxation

(DXDR) method”, Int. J. Numer. Meth. Eng., 74, 996-1018. 
Kadkhodayan, M., Zhang, L.C. and Swerby, R. (1997), “Analysis of wrinkling and buckling of elastic plates by

DXDR method”, Comput. Struct., 65, 561-574. 
Murphy, J., Ridout, D. and McShane, B. (1988), Numerical Analysis Algorithms and Computation, Ellis



130 M. Rezaiee-pajand and J. Alamatian 

Horwood Limited, New York. 
Otter, J.R.H. (1966), “Dynamic relaxation”, Proc. ICE, 35, 633-656.
Papadrakakis, M. (1981), “A method for automatic evaluation of the dynamic relaxation parameters”, Comput.

Meth. Appl. Mech. Eng., 25, 35-48. 
Pasqualino, I.P. and Estefan, S.F. (2001), “A nonlinear analysis of the buckle propagation problem in deepwater

piplines”, Int. J. Solids Struct., 38, 8481-8502. 
Qiang, S. (1988), “An adaptive dynamic relaxation method for non-linear problems”, Comput. Struct., 30, 855-

859. 
Ramesh, G. and Krishnamoorthy, C.S. (1993), “Post-buckling analysis of structures by dynamic relaxation”, Int.

J. Numer. Meth. Eng., 36, 1339-1364. 
Ramesh, G. and Krishnamoorthy, C.S. (1994), “Inelastic post-buckling analysis of truss structures by dynamic

relaxation method”, Int. J. Numer. Meth. Eng., 37, 3633-3657. 
Rezaiee-Pajand, M. and Alamatian, J. (2008), “Nonlinear dynamic analysis by dynamic relaxation method”,

Struct. Eng. Mech., 28(5), 549-570. 
Rushton, K.R. (1968), “Large deflection of variable-tickness plates”, Int. J. Mech. Sci., 10, 723-735. 
Saka, M.P. (1990), “Optimum design of pin-jointed steel structures with practical applications”, J. Struct. Eng.,

ASCE, 116, 2599-2619. 
Shawi, F.A.N. and Mardirosion, A.H. (1987), “An improved dynamic relaxation method for the analysis of plate

bending problems”, Comput. Struct., 27, 237-240. 
Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Mc-Graw-Hill Book Company. 
Turvey, G.J. and Salehi, R.E. (2005), “Annular sector plates : Comparison of full-section and layer yield

prediction”, Comput. Struct., 83, 2431-2441. 
Turvey, G.J. and Salehi, R.E. (1990), “DR large deflection analysis of sector plates”, Comput. Struct., 34, 101-

112. 
Ugural, A.C. and Fenster, S.K. (1987), Advanced Strength and Applied Elasticity. Elsevier, New York. 
Undewood, P. (1983), “Dynamic relaxation. computational method for transient analysis”, Chapter 5, 245-256. 
Welsh, A.K. (1967), “Discussion on dynamic relaxation”, Proc. ICE, 37, 723-750. 
Wood, R.D. (2002), “A simple technique for controlling element distortion in dynamic relaxation form-finding of

tension membranes”, Comput. Struct., 80, 2115-2120. 
Wood, W.L. (1971), “Note on dynamic relaxation”, Int. J. Numer. Meth. Eng., 3, 145-147.
Zhang, L.C. and Yu, T.X. (1989), “Modified adaptive dynamic relaxation method and its application to elastic-

plastic bending and wrinkling of circular plates”, Comput. Struct., 34, 609-614. 
Zhang, L.C., Kadkhodayan, M. and Mai, Y.W. (1994), “Development of the maDR method”, Comput. Struct.,

52, 1-8. 
Zienkiewicz, O.C. and Lohner R. (1985), “Accelerated relaxation or direct solution future prospects for FEM”,

Int. J. Numer. Meth. Eng., 21, 1-11. 



The dynamic relaxation method using new formulation for fictitious mass and damping 131

Appendix 1 

The inverse prove is used for showing the validity of Eq. (40). Assume that

(A1-1)

Substituting Eq. (39) into (A1-1) leads to 

(A1-2)

The Gerschgörin theory presents the lower bound of each eigenvalue as follows 

(A1-3)

If both sides of Eq. (A1-2) are multiplied by -1 and result is added to the Eq. (A1-3), the following result is
achieved

(A1-4)

On the other hand, Eq. (18) presents the following relationship for 

(A1-5)

Comparing Eq. (A1-4) with (A1-5) shows that Eq. (A1-4) limits the acceptable domain for . Therefore,
assumption of Eq. (A1-1) is not suitable. This property can also be discussed from structural analysis point of
view. In linear problem, the diagonal stiffness entry is greater than or equal to the absolute sum of the rest
row (Eq. (29)). Combining Eq. (29) and (A1-4) leads to

(A1-6)

Eq. (A1-6) is not valid because each eigenvalue of  must be lied in domain I, distinguished by
Eq. (18) (as proved in this paper, Eqs. (20)-(30)). Therefore, assumption of Eq. (A1-1) is not valid. As a
result, Eq. (40) is correct. 

Appendix 2

Mathematically, it is known that the capability of an iterative method to yield converged results depends on
the magnitude of its convergence rank. One of the conventional methods for determining the convergence
rank uses Taylor series. In this method, the degree of the first non-zero derivative in the iterative relationship
is usually identified as the convergence rank (Murphy et al. 1988), as shown in the following relationship 

(A2-1)

Where, the quantities α and  are the real solution and the error in the nth iteration, respectively
. The function g is determined from the characteristics of the solution process (Ugural and

Fenster 1987). The following equation is held

(A2-2)

Now, the convergence ranks of the mdDR method are determined. First, the iterative function (g) is

2 1 aii+( ) 2τ
n 1+

τ
n

2mii τ
n
cii+

--------------------------- Sij

j 1=

q

∑< i 1 2 … q, , ,=

λiU

BS
λiL

BS
+

2τ
n 1+

τ
n

2mii τ
n
cii+

--------------------------- Sij

j 1=

q

∑< i 1 2 … q, , ,=

λiL

BS 2τ
n 1+

τ
n

2mii τ
n
cii+

---------------------------Sii 1≥≥ i 1 2 … q, , ,=

λiU

BS 2τ
n 1+

τ
n

2mii τ
n
cii+

--------------------------- Sij

j = 1

j i≠

q

∑< i 1 2 … q, , ,=

λiU

BS

λiU

BS 2τ
n 1+

τ
n

2mii τ
n
cii+

--------------------------- Sij

j 1=

q

∑≤ i 1 2 … q, , ,=

λiU

BS

λiU

BS 2τ
n 1+

τ
n

2mii τ
n
cii+

---------------------------Sii< i 1 2 … q, , ,=

B[ ] 1–
S[ ]

ε
n 1+

ε
n
g′ α( ) ε

n( )
2

2!
-----------g″ α( ) … ε

n( )
m

m!
------------g

m( )
α( ) …+ + + +=

ε
n

D
n

α ε
n

+=

D
n 1+

g D
n( )=



132 M. Rezaiee-pajand and J. Alamatian 

formulated from Eqs. (3) and (4) in the following form
 

(A2-3)

where the fictitious mass and damping quantities may be substituted from Eqs. (44) and (50), respectively. For
a one degree of freedom system, these quantities can be simplified as follows

(A2-4)

where ST and SG are the tangent and secant stiffness, respectively. Substituting (A2-4) in to the (A2-3), the
function g becomes

(A2-5)

where  denotes the nodal velocity during the last iteration and has a constant value. In linear behavior
( ), the function g can be simplified as follows

 
(A2-6)

On the other hand, the first derivatives of functions gL and gN with respect to displacement (D), can be
found as follows

  (A2-7)

(A2-8) 

Here, the primes denote derivatives with respect to the displacement. Because of the non-zero first
derivative for the function gN, the convergence rank of the mdDR method in nonlinear analysis will be equal
to unity. Also, the second derivative of gL is 

(A2-9)

The tangent stiffness remains constant during the analysis for linear problems. Hence 

(A2-10)
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Therefore, from Eqs. (A2-9) and (A2-10), the second derivative of gL is zero. It is easy to show that all of
the subsequent derivatives for gL will be equal to zero. Thus, it can be concluded that the convergence rank of
the mdDR method is infinite for linear problems. It should be reminded that the convergence ranks of the DR
method for both linear and nonlinear problems are equal to unity (Kadkhodayan et al. 2008). 




