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Abstract. Nonlinear thermoelastic static response characteristics of laminated composite conical panels
are studied employing finite element approach based on first-order shear deformation theory and field
consistency principle. The nonlinear governing equations, considering moderately large deformation, are
solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method
to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal
loading cases is carried out. The present results are found to be in good agreement with those available in
the literature. The adaptive displacement control method is found to be capable of handling problems with
multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semi-
cone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear
thremoelastic response of laminated cylindrical and conical panels.
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1. Introduction

Conical shell panels have a wide range of engineering applications, particularly in aircrafts, space

vehicles, marine and power plants. Many structures comprise at least a few components with this

geometrical profile such as turbine blades or aircraft fuselage.

The postbuckling analysis based on finite element formulation for composite laminated cylindrical

panels under different loading and boundary conditions has been performed extensively. The

postbuckling behaviour of generally layered anisotropic composite cylindrical panels under

compressive loading has been studied by Zhang and Matthews (1983). Hui (1985) has used Donell

type equilibrium and compatibility equations, and Koiter’s theory of elastic stability for studying

initial postbuckling behaviour of symmetrically laminated thin cross-ply cylindrical panels under
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axial compression with simply supported edges. Postbuckling analysis of deep curved composite

panels with different lay-ups under axial compression with mixed boundary conditions has been

carried out by Laschet and Jeusette (1990) employing three-dimensional degenerated isoparametric

multilayer finite element. It has been concluded that the presence of clustered bifurcation points is a

source of numerical problems which are difficult to treat (Laschet and Jeusette 1990). Huang and

Tauchert (1991) have investigated thermally-induced large-deflection behaviour of laminated

cylindrical and doubly-curved panels using first-order shear deformation theory and von Kármán

type kinematics. Arc length and Riks methods have been used to trace the post-critical equilibrium

paths. Tsai and Palazotto (1991) have studied nonlinear and multiple snapping responses of

cylindrical panels employing modified Riks method to trace the multiple equilibrium paths. Kweon

and Hong (1993) have investigated postbuckling behaviour of composite laminated cylindrical

panels with various stacking sequences under compression employing nonlinear finite element

method and an improved load-increment method based on arc-length scheme. The linear and

geometrically nonlinear analyses of laminated composite shells have been carried out by Yoo and

Cho (2000) using an improved degenerated shell element. The assumed transverse shear strain

method is used to eliminate the shear locking and the reduced integration method to eliminate the

membrane locking. Oh and Lee (2001) have studied the snapping response of laminated cylindrical

panels subjected to thermal and pressure loading using layerwise finite elements and von Kármán

nonlinear strain displacement relations with cylindrical arc-length method. A predictor-corrector

algorithm is presented for tracing the geometrically nonlinear path of cylindrical shells (Lopez

2001). The predictor step is carried out by an asymptotic extrapolation based on residual error

minimization and corrector step is defined imposing the minimum distance between the approximate

solution point and the solution curve. Lee et al. (2002) have studied the thermal postbuckling

behavior of patched laminated panels under uniform and non-uniform temperature distribution using

finite element based on Hellinger-Reissner principle. The postbuckling behaviour of thin, imperfect

laminated composite panels has been studied using finite element secant matrices based on

Marguerre shallow shell theory (Jayachandran et al. 2004). The results exhibiting snap-through

behaviour are obtained using the arc length and the minimum residual displacement methods. An

element based 9-node resultant shell element has been presented for isotropic and anisotropic

laminated shells based on first-order shear deformation theory (Han et al. 2004). The element is

derived using assumed natural strain method to eliminate membrane and shear locking problems.

The arc length method is used to trace complex equilibrium paths for thin shell panels. A method

based on simultaneous control of applied loads and displacements at one or more points has been

proposed by Kwon et al. (2005) to analyze postbuckling phenamena including snap-through and

snap-back. The difficulties in tracing the equilibrium paths due to numerical instabilities have been

overcome by employing relaxation factors. 

Limited attention is paid to the study of nonlinear response of conical shells/panels under different

loading conditions. A theoretical analysis based on Donnell-type shell equations with the effect of

nonlinear prebuckling deformations taken into consideration is performed by Tani (1985) on the

buckling of clamped truncated isotropic conical shells under combined uniform pressure, axial load

and uniform heating. A theory for nonlinear bending of symmetrically laminated, cylindrically

orthotropic, shallow conical shells subjected to an axisymmetrically distributed load including

transverse shear effects is presented by Ren-Huai (1996). Elastic buckling and postbuckling

behaviour of widely-stiffened conical shells under axial compression is studied by Spagnoli and

Chryssanthopoulos (1999) using ABAQUS finite element package. Different buckling modes in
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axially stiffened conical shells are studied through a linear eigenvalue finite element analysis

approach by Spagnoli (2001). Patel et al. (2005) have studied the nonlinear thermoelastic buckling/

postbuckling characteristics of laminated circular conical/cylindrical shells subjected to uniform

temperature rise employing semi-analytical finite element approach and adaptive displacement

control method. However, the application of the adaptive displacement control method for problems

involving multiple snapping responses is unexplored.

To optimally exploit the strength and load-carrying capacity of laminated composite conical shell

panels at elevated temperature, accurate prediction and understanding of their nonlinear

thermoelastic response characteristics are very important. Neglecting the possible postbuckling

strength of these composite panels constitutes a severe design limitation when weight saving is of

prime importance. To the best of the authors’ knowledge, there are no studies available on the

nonlinear thermoelastic response characteristics of laminated conical panels. In the present work,

nonlinear thermoelastic static response characteristics of laminated composite conical panels are

studied employing field consistent finite element based on first-order shear deformation theory. The

nonlinear governing equations are solved using Newton-Raphson iteration technique coupled with

the adaptive displacement control method. The present results for mechanical and thermal loading

cases of cylindrical panels are found to be in good agreement with those available in the literature.

Detailed parametric study is carried out to highlight the influence of semi-cone angle, boundary

conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response

of the laminated conical panels.

2. Formulation

A laminated composite circular conical panel is considered with the co-ordinates x along the

meridional direction, y along the circumferential direction and z along the thickness direction normal

to panel wall having origin at the middle-surface of the panel as shown in Fig. 1. The displacements

u, v, w at a point (x, y, z) are expressed as functions of the middle-surface displacements u0, v0, w0

and the independent rotations θx and θy of the normal in the xz and yz planes, respectively, as

 (1)

u x y z, ,( ) u0 x y,( ) zθx x y,( )+=

v x y z, ,( ) v0 x y,( ) zθy x y,( )+=

w x y z, ,( ) w0 x y,( )=

Fig. 1 Coordinate system and geometry of conical shell panel
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The strain-displacement relations are based on kinematic approximations: (i) small strains, (ii)

moderately large deformation; and (iii) thin shell (z/r << 1) such that 1+z/r ≈ 1, however, transverse

shear deformation is important due to larger E/G ratio for composites. Green’s strains can be written

in terms of middle-surface deformations as

(2)

where membrane , bending , transverse shear  and nonlinear  strain vectors in

Eq. (2) are written as (Kraus 1976)

  (3a)

 (3b)

where r, the radius of parallel circle, is a function of x coordinate; and α is semi-cone angle.

The stress resultant vector {N} = {Nxx Nyy Nxy}
T and the moment resultant vector {M} = {Mxx Myy

Mxy}
T can be expressed in terms of the membrane strains  and the bending

strains  through the constitutive relation

  (4)

where [A], [D] and [B] are the matrices of extensional, bending and bending-extensional coupling

stiffness coefficients.  and  are the thermal stress and moment resultants, respectively. 

The transverse shear stress resultant vector, {Q} = {Qxz Qyz}
T, is related to the transverse shear

strain  as

 (5)

where  is the matrix of transverse shear stiffness coefficients. 

For a laminated shell of thickness h, consisting of N layers with stacking angles θi (i = 1, …, N)

and layer thicknesses hi (i = 1, …, N), the expressions to compute the stiffness coefficients and

thermal stress/moment resultants available in the literature (Jones 1975) are used.

The potential energy , consisting of strain energy and potential energy of transverse load, is
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(6)

where δ is the vector of degrees of freedom associated to the displacement field in a finite element

discretisation and q is the distributed load. 

The potential energy  of initial state of in-plane stress resultants  is

written as

 (7)

Following the procedure of Rajasekaran and Murray (1973), the total potential energy

 can be expressed as

(8)

where [K] is the linear stiffness matrix, [N1] and [N2] are nonlinear stiffness matrices linearly and

quadratically dependent on the field variables, respectively. [KT] and [KG] are geometric stiffness

matrices due to thermal and initial stress resultants.  and  are mechanical and thermal

load vectors. 

The minimization of total potential energy  given in Eq. (8) with respect to vector of

degrees of freedom δ leads to the governing equation of shell

 (9)

Eq. (9) can be employed to carry out linear/nonlinear static and eigenvalue buckling analyses by

neglecting the appropriate terms as

Linear Static Analysis:

  (10)

Nonlinear Static Analysis:

  (11)

Eigenvalue Buckling Analysis:

   (12)

where,  is the geometric stiffness due initial state of stress developed because of unit loading,

λ is load multiplication factor.

It may be noted that for evaluating , firstly the static analysis of the shell using Eq. (10) for

unit loading is carried out. The resulting deformation field is used to calculate the initial state of

stress resultants using Eq. (4) and in turn, for evaluating the  matrix.

Equilibrium path is traced by solving Eq. (11) using Newton-Raphson iteration procedure coupled
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with the adaptive displacement control method (Patel et al. 2005) to efficiently trace the equilibrium

path. The nonlinear solution before critical points is obtained using load increments; and when the

tangent stiffness matrix becomes semi-positive or negative definite, the subsequent solution is

obtained by the adaptive displacement control. The degree of freedom having the highest rate of

change in the previous step is selected as a control parameter and is updated in each step. The current

step size is based on the step size and the number of equilibrium iterations in the previous step. The

equilibrium iterations are continued for each load/displacement step until the convergence criteria

suggested by Bergan and Clough (1972) are satisfied within the specific tolerance limit of 0.001%.

3. Element description

A C0 continuous, eight-noded serendipity quadrilateral shear flexible shell element with five nodal

degrees of freedom (u0, v0, w0, θx, θy) developed based on field consistency approach is employed.

The field variables are expressed in terms of their nodal values using shape functions as

(u0, v0, w0, θx, θy) =  (13)

where,  are the original shape functions for the eight-noded quadratic serendipity element. It can

be noted that the derivatives of shape functions  and  required for defining the various

strain components within the element are linear in x and quadratic in y; and quadratic in x and

linear in y, respectively, as the original interpolation functions are of quadratic type (in x and y) for

the eight-noded element. 

If the interpolation functions for an eight-noded element are used directly to interpolate the five

field variables u0, v0, w0, θx, θy in deriving the membrane and transverse shear strains, the element

will lock and show oscillations in the membrane and transverse shear stresses. Field consistency

requires that the membrane and transverse shear strains must be interpolated in a consistent manner

(Prathap et al. 1988). This is achieved by smoothening the original interpolation functions using

least-square method to the desired form i.e., the functions that are consistent with the derivative

functions (  or ). 

Using the smoothed interpolation functions, the constrained membrane and shear strain

components are expressed as
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4. Results and discussion

The nonlinear thermoelastic static response characteristics of laminated composite conical panels

subjected to uniform temperature rise are analyzed. The finite element formulation is verified with

the results available in the literature before proceeding for the detailed parametric studies. 

The material properties considered, unless otherwise specified, are

E1 = 138 GPa, E2 = E3 = 8.28 GPa, G12 = G23 = G13 = 6.9 GPa, ν12 = ν13 = 0.33, ν23 = 0.373, 

α1= 0.18 × 10−6 /oC, α2 = α3 = 27 × 10−6 /oC

where E, G, ν and α are Young’s modulus, shear modulus, Poisson’s ratio and coefficient of thermal

expansion, respectively. The subscripts 1, 2 and 3 are the principal material directions. All the layers

are of equal thickness and the ply-angle is measured with respect to the meridional axis (x-axis).

The first layer is the innermost layer of the panel. 

The boundary conditions considered, unless otherwise specified, are: 

Immovable simply supported (SSSS):

u0 = v0 = w0 = θy = 0 along curved edges 

u0 = v0 = w0 = θx = 0 along straight edges. 

Clamped (CCCC): u0 = v0 = w0 = θx = θy = 0 along all edges.

The nonlinear response of isotropic (E = 3.1 × 103 MPa and ν = 0.3) cylindrical panel, hinged

(u0 = v0= w0 = θx = 0) along straight edges and free along curved edges, is analyzed for central point

loading. The geometrical parameters of the panel are: a = 504 mm, r1 = 2540 mm, h = 6.35 mm

and 3.175 mm, β1 = 0.2 rad, α = 0. Based on convergence study, 5 × 5 grid mesh (meridional and

circumferential directions) for h = 6.35 mm and 4 × 12 for h = 3.175 mm are found to be adequate

to model one quarter of the panel. The results are shown in Figs. 2 and 3. It can be observed from

these figures that the present results are in good agreement with those available in the literature.

Further, the present adaptive displacement control method correctly captures the multiple snapping

responses. 

For validation of present approach for thermal loading case, immovable simply supported

laminated cylindrical panel with the following geometrical parameters is considered: 

r1/a = 5; a/h = 200, 400, 800; a = 0.1 m; β1 = 0.2 rad; α = 0. 

Fig. 2 Nonlinear response of isotropic cylindrical panel under central point load (r1/a = 5, β1 = 0.2 rad., a/h = 80)
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The results, using 5 × 5 converged mesh for quarter model, shown in Fig. 4 are in fairly good

agreement with those of Lee et al. (2002).

The effect of semi-cone angle (α) and the boundary conditions on the response of four-layered

cross-ply laminated (0o/90o)S conical panel (r1/h = 400; L/r1 = 0.5; α = 0o, 30o, 60o; h = 8 mm, β1 =

0.6 rad) is studied. The results, obtained using 12 × 12 converged mesh, are shown in Fig. 5 as

Fig. 3 Nonlinear response of isotropic shallow cylindrical panel under central point load (r1/a = 5, β1= 0.2
rad., a/h = 40)

Fig. 4 Nonlinear response of laminated (0o/90o)S cylindrical panel subjected to uniform temperature rise (r1/
a = 5, β1= 0.2 rad.)

Fig. 5 Effect of boundary conditions on the nonlinear response of laminated (0o/90o)S conical panel (a/r1=0.5,
r1/h = 400, β1 = 0.6 rad.)
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uniform temperature rise (∆T) versus central transverse displacement parameter (w0centre/h) curves. It

can be inferred from this figure that with the increase in semi-cone angle (α), w0center /h increases for

a particular value of temperature rise (∆T). The panels with all edges simply supported (SSSS)

exhibit significant snap-through type of response especially for α = 0o and 30o whereas panels with

all edges clamped (CCCC) show mostly stable response. It can also be viewed from this figure that

the initial equilibrium paths for both the boundary conditions are qualitatively identical whereas the

response at greater displacement levels reveals significant sensitivity to boundary conditions and

semi-cone angle (α). 

The effect of radius-to-thickness ratio (r1/h) on nonlinear response is studied considering

immovable simply-supported four-layered cross-ply (0o/90o)S laminated panels (L/r1 = 0.5; α = 0o,

30o, 60o; h = 8 mm, β1 = 0.5 rad) and the results are shown in Fig. 6. It can be observed from this

Fig. 6 Effect of radius-to-thickness ratio (r1/h) on the nonlinear response of laminated (0o/90o)S conical panel
(a/r1 

= 0.5, β1 = 0.5 rad.)

Fig. 7 Effect of lamination scheme on the nonlinear response of laminated conical panel (a/r1 = 0.5, r1/h =
500, β1 = 0.4 rad.)
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figure that even conical panels with α = 60o reveal snap-through type of response at larger r1/h

ratio. 

The effect of lamination scheme is studied for immovable simply-supported panels (r1/h = 500; L/

r1 = 0.5; α = 0o, 30o, 60o; h = 8 mm, β1 = 0.4 rad). The results are shown in Fig. 7. Panels with (0o/

90o)S lamination scheme show greater degree of snap-through behaviour whereas those with

lamination (90o/0o)S scheme show stable response. The response of anti-symmetric lamination

schemes (0o/90o)2 and (90o/0o)2 exhibit qualitatively similar behaviour for α = 0o (cylindrical panel)

whereas behaviour is different for conical panels.

5. Conclusions

The nonlinear thermoelastic response characteristics of laminated composite conical panels

subjected to uniform temperature rise are studied employing finite element approach. The influence

of semi-cone angle, boundary conditions, radius-to-thickness ratio and lamination scheme is

examined through a parametric study. It is brought out that the panels with all edges simply

supported (SSSS) exhibit significant snap-through type of response compared to panels with all

edges clamped (CCCC). The degree of snap-through increases with the increase in the radius to

thickness ratio. Further, the symmetrically laminated panels with outer layer fibres in meridional

direction reveal snap-through response whereas panels with outer layer fibres in circumferential

direction show stable response. 
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