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Abstract. Presented in this paper is the behaviour of asymmetric building isolated by the double
variable frequency pendulum isolator (DVFPI). The DVFPI is an adoption of single variable frequency
pendulum isolator (VFPI). The geometry and coefficient of friction of top and bottom sliding surfaces can
be unequal. The governing equations of motion of the building-isolation system are derived and solved in
incremental form. The analysis duly considers the interaction of frictional forces in the two principal
directions developed at each sliding surface of the DVFPI. In order to investigate the behaviour of the
base isolation using the DVFPI, the coupled lateral-torsional response is obtained under different
parametric variations for a set of six far-fault earthquake ground motions and criterion to optimize its
performance is proposed. Further, influences of the initial time period, coefficient of friction and
frequency variation factors at the two sliding surfaces are investigated. The numerical results of the
extensive parametric study help in understanding the torsional behaviour of the structure isolated with the
double sliding surfaces as in the DVFPI. It is found that the performance of the DVFPI can be optimized
by designing the top sliding surface initially softer and smoother relative to the bottom one.

Keywords: double variable frequency pendulum isolator; seismic isolation; asymmetric building;
eccentricity; torsional coupling.

1. Introduction

Great advances have been made in the development of base isolation technology to protect

structures form the hazardous effect of strong earthquakes in the past three decades. A practical
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base-isolation system typically consists of three basic elements (Buckle 1986): (1) A flexible

mounting so that the fundamental period of the total system is lengthened sufficiently to reduce the

acceleration response; (2) a supplemental damper or energy-dissipation device so that the relative

displacement across the isolation interface can be controlled to a desirable level; and (3) a means of

providing rigidity under low load levels such as wind and minor earthquakes. Excellent reviews of

the base-isolation concepts and applications are available in published literature (Kelly 1986, Buckle

and Mayes 1990, Naeim and Kelly 1999).

Several investigations on the response of base isolated buildings are reported in literature. Most of

the analytical works deal with 2-D idealization, which is strictly valid for symmetric buildings. In

practice, symmetrical buildings are unlikely to occur and most buildings are unsymmetrical to some

extent. The principal candidates leading to asymmetry are unsymmetrical building plan and

elevation and unsymmetrical distribution of vertical members and masses on the floors. Compared

to the buildings with symmetric configuration, such buildings are more susceptible to lateral loads

especially earthquake hazards due to torsional coupling. It is the most important factor that

differentiates between 3-D and 2-D idealization of the building and can result in significant response

amplifications. Excessive edge deformation due to torsional coupling may cause pounding between

closely spaced adjacent buildings. Torsional coupling has been identified as one of the major causes

of poor performance or failure of buildings during recent earthquakes. The recognition of this fact

has led several researchers to focus their study on the earthquake behaviour of such systems (Lee

1980, Pan and Kelly 1983, Eisenberger and Rutenberg 1986, Zayas et al. 1987, Nagarajalah et al.

1993a, Nagarajalah et al. 1993b, Jangid and Datta 1994, Jangid 1995, Jangid and Kelly 2001, Tena-

Colunga and Gomez-Soberon 2002, Pranesh and Sinha 2004, Tena-Colunga and Escamilla-Cruz

2007). 

Recently there has been growing interest in the development of double sliding bearing

principally owing to two reasons (Fenz and Constantinou 2006): (1) the displacement capacity of

such isolator is twice that of the traditional isolator with a single sliding surface of identical plan

dimensions permitting it to accommodate large sliding displacement imposed by severe earthquake

ground motions, and (2) there is the capability to use sliding surfaces with varying isolator

geometry and coefficients of friction at top and bottom sliding surfaces, giving the designer greater

flexibility to optimize performance. Taking advantage of these extra design parameters, it may be

possible to attain certain benefits in terms of performance that are not currently achievable.

Looking to these merits, the double friction pendulum system (DFPS) (Fenz and Constantinou

2006, Tsai et al. 2005, Kim and Yun 2005) and the triple friction pendulum system (Fenz and

Constantinou 2008a, 2008b) have been designed, tested and have already found numerous

applications. These are the mainstream isolation system with thousands of bearing in service.

Recently, the authors have proposed the double variable frequency pendulum isolator (DVFPI)

(Soni et al. 2009). The double and triple friction pendulum bearings are made of well-known

friction pendulum system (FPS) (Zayas et al. 1987) with spherical sliding surface whereas the

DVFPI consist of two variable frequency pendulum isolators (VFPI) (Pranesh and Sinha 2000)

having elliptical sliding geometry. Because of the elliptical sliding surface, isolator stiffness of the

DVFPI decreases with increase in sliding displacement and therefore, the low-frequency resonant

behaviour of the isolator can be attenuated. The similar displacement dependent isolator behaviour

can also be achieved by using triple friction pendulum having multiple spherical surfaces rather

than using variable curvature sliding surfaces. The triple friction pendulum bearing exhibits

adaptive stiffness and damping characteristics. Its behaviour is dictated by the different
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combinations of surfaces upon which sliding can occur over the course of motion. As the surfaces

upon which sliding occurs change, the stiffness and effective friction change accordingly. The

performance of the DVFPI has been examined rigorously when subjected to unilateral, bilateral

and triaxial ground excitations (Soni et al. 2009, Panchal et al. 2009). The torsional behaviour of

asymmetric building isolated by the double bearings has not been investigated yet. In view of

these, numerical studies have been carried out to examine the torsional behaviour of the DVFPI

isolated asymmetric building under bilateral far-fault ground motions by performing 429 computer

simulations.

The objectives of this investigation are (a) to present mathematical formulation for the response of

a three-dimensional torsionally coupled building isolated with the DVFPI duly considering

interaction of frictional forces at both sliding surfaces, (b) to examine the criteria to optimize the

performance of the DVFPI, (c) to study the response of asymmetric building for a set of important

parametric variations applied individually and in combination, and (d) to examine the influence of

isolator parameters on coupled lateral-torsional response.

2. Description of the DVFPI

As mentioned earlier the DVFPI is an adaptation of the VFPI having elliptical sliding surface.

Owing to the elliptical sliding surface, oscillation frequency of the VFPI decreases sharply with

increase in sliding displacement. Consequently, the dominant frequency of excitation and the

isolator frequency are not likely to tune. This property of frequency separation combined with force-

softening mechanism of the VFPI makes the isolator performance independent of both amplitude

and frequency of excitations (Pranesh and Sinha 2000). The characteristics of the VFPI can be

made more effective by introducing a second sliding surface as shown in Fig. 1(a). This device is

called the double variable frequency pendulum DFPS isolator. Since sliding is possible on both

surfaces, the displacement capacity of the DVFPI is twice that of the traditional VFPI with a single

sliding surface of identical plan dimensions. This key feature of the DVFPI permits it to

accommodate large sliding displacement produced by severe earthquake ground motions. However,

the details and operation of the DVFPI are almost same as the DFPS. The difference between the

DFPS and the DVFPI is that the shape of both sliding surfaces in the DFPS is spherical (i.e.,

constant frequency) whereas that of the DVFPI is non-spherical. The isolator geometry defining

upper surface and lower surface of the DVFPI may be unequal. The coefficient of friction of the

upper and lower sliding surfaces are also not necessarily equal.

To represent the geometry of the DVFPI, the equation of an ellipse proposed by Pranesh and

Sinha (2000) is employed. Accordingly, the geometry of the top and bottom surfaces, respectively

can be expressed as
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where b1 and b2 are semi-minor axis of the top and bottom sliding surfaces, respectively; d1 and d2

are initial value of the semi-major axis of the top and bottom sliding surfaces, respectively; x1 and

x2 depict the horizontal displacements of the articulated slider relative to the centre of the top and

bottom sliding surfaces, respectively; and sgn(x1) and sgn(x2) are incorporated to maintain the

symmetry of the top and bottom sliding surfaces about the central vertical axis. The signum

functions have a value of +1 for positive value of sliding displacement and −1 for negative value of

sliding displacement.

The isolator forces  and  being imposed at the top and bottom sliding surfaces can be

written as (Pranesh and Sinha 2000) 

(2a)

Fb1 Fb2

Fb1 kb1 x1( )x1 F1+=

Fig. 1 (a) Schematic details of the DVFPI, and (b) Hysteresis loops for different isolator properties
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(2b)

where,

(3a)

(3b)

(4a, 4b)

(5a, 5b)

, (6a, 6b)

here  and  are the non-dimensional parameters for the top and bottom sliding surfaces; µ1

and µ2 are the coefficients of friction of top and bottom sliding surfaces;  and  are the

masses of the deck slab, base slab and slider, respectively; F1 and F2 are the frictional forces at the

top and bottom sliding surfaces, respectively;  and  are the displacement dependent

stiffnesses (i.e., variable stiffnesses) of top and bottom bearings, respectively;  and  are the

initial frequencies of top and bottom bearings, respectively; and g is the acceleration due to

gravity. 

The total relative displacement of the base mass,  (between the centres of the top and bottom

sliding surfaces) is the sum of the displacements on the top and bottom surfaces. 

(7)

Substituting for x1 and x2 from Eqs. (2) into Eq. (7), the force-displacement relationship for the

DVFPI can be obtained as 

 (8)

where kc and Fc are combined stiffness and combined frictional force of the DVFPI, respectively.

Eq. (8) suggests that by defining two separate single VFPI and connecting them in series with a

small mass of slider, the overall behaviour of the DVFPI can be obtained. The characteristic force-

displacement relationships of the DVFPI are plotted in Fig. 1(b) for different isolator geometry and

coefficient of friction of top and bottom sliding surfaces. It is interesting to note that the shape of

the hysteretic loops shown in Fig. 1(b) is basically the same as those to be obtained in a ball-in-

cone isolation system, which consists of a steel ball sandwiched between two conical steel load

plates, as studied and tested by Kasalanati et al. (1997). The initial combined time period Tc and

combined coefficient of friction µc of the DVFPI can be expressed from Eq. (8) as
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   (9)

(10)

where T1 and T2 are the initial time period of top and bottom sliding surfaces.

The force-displacement relationship of the DVFPI under bidirectional input motion can be

extended from Eqs. (2) as

(11)

where Fbxj and Fbyj are the isolator forces of top and bottom bearing in x- and y-directions,

respectively; Fxj and Fyj are the frictional forces of top and bottom bearing in x- and y-directions,

respectively;  is the relative radial displacement of the slider on jth sliding surface;

 is the displacement dependent isolator stiffness of jth sliding surface as defined in Eqs. (3);

and xj and yj are the relative displacements of the slider on jth sliding surface in x- and y-directions,

respectively. 

Due to the elliptical sliding geometry of the DVFPI, the use of an articulated slider as shown in

Fig. 1(a) would result in point contact or large concentration of pressure. Under such conditions, the

capacity to carry load is limited, sliding friction has unpredictable behavior, frictional heating effects

are significant and excessive wear to the sliding surfaces may occur. An alternative configuration to

avoid some of these problems is the use of rolling contact, as done in Kasalanati et al (1997). This

paper presumes that the configuration of Fig. 1(a) is practical and that stable and predictable friction

is possible.

3. Structural model 

Fig. 2(a) shows a plan of idealized three-dimensional single-story building resting on the DVFPI

installed between the base mass and foundation of the building. The assumptions made for the

building-isolation system under consideration are as follows:

1. The superstructure is assumed linearly elastic.

2. The friction coefficient of the DVFPI is assumed to be constant and independent of the relative

velocity at the sliding interface (Fan et al. 1990).

3. Although, a torsional moment develops at each isolator, the contribution of this torsional

moment to the total torque exerted at the base mass is insignificant and hence is not included.

4. No overturning or tilting takes place in the superstructure during sliding over the DVFPI.

5. The DVFPI is isotropic (i.e., there is the same isolation period and the coefficient of friction in

each of the two principal directions of the motion in the horizontal plane).

 The superstructure of the system consists of a rigid deck slab and columns. The lateral dimension

of deck slab is d in x-direction and b in y-direction. The rigid deck slab is supported at the edges by
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massless, axially inextensible columns and the columns are connected to a rigid base slab. The CM

is located at the geometrical centre of the deck slab, as the columns are modelled as massless and

column masses are included in the slab mass. Each column has the same stiffness in the two

principal directions. The stiffness distribution of the columns is symmetric about the x-axis but not

about the y-axis, as a result, the structure exhibits a torsional effect when excited in the lateral y-

direction. The system of isolators consists of an array of the DVFPI arranged between the

foundation and the rigid base slab. 

Fig. 2 Structural model: (a) plan, (b) elevation 
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The dynamic behaviour of the system under consideration to earthquake excitation can be

described by the following eight degrees of freedom: the two translational displacements, udx and

udy, in orthogonal directions and rotation, udθ, about vertical axes of the centre of deck mass relative

to the base mass; the two translational displacements, ubx and uby, in orthogonal directions and

rotation, ubθ , about vertical axes of the centre of base mass relative to the ground; and the usx and

usy, the displacements of slider relative to ground in x- and y-directions, respectively as shown in

Fig. 2(b).

Let kxi and kyi, i = 1, 2 … N denote the lateral stiffnesses of the ith column in x- and y-directions,

respectively, where N denote the number of columns in each direction. The total lateral stiffness of

the system in each direction,  is given by

(12)

and the total torsional stiffness defined about the centre of mass (CM) of the deck is

(13)

where Xi and Yi denote the x- and y-co-ordinates of the ith column with respect to the centre of

mass of the deck slab, respectively. In Eq. (13) the torsional stiffness of each individual column

element with respect to its longitudinal axis has been neglected. The eccentricity between the CM of

the deck slab and the static centre of resistance (CR) of the columns is given by

(14)

Corresponding to the translational and rotational modes, the three uncoupled modal frequencies of

the superstructure will be equal to

(15)

in which, rd is the radius of gyration of the deck slab about the vertical axis through the CM. The

frequencies  and  may be interpreted as the natural frequencies of the fixed-base system if

it were torsionally uncoupled but, md,  and  are the same as in the coupled system. The

torsional mass of the deck and the base mass are varied to provide various uncoupled torsional to

lateral frequency ratios. This can be achieved by varying the position of the lumped mass with

respect to the CM.

Let kbi, i = 1, 2 … NB denote the lateral stiffnesses of the ith DVFPI isolator in lateral directions,

where NB denote the number of isolators in each direction. The total lateral stiffness of the jth

sliding surfaces of the isolation system, Kbj, is given by
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system defined about the CM of the base slab is given by

(17)

where, Xbi and Ybi denote the x- and y-co-ordinates of the ith DVFPI with respect to the centre of

mass of the base slab, respectively. The displacement of top sliding surface of ith DVFPI can be

expressed in terms of displacement of CM of the base mass

and (18a, 18b)

The horizontal displacements of the slider, xji and yji of the ith DVFPI relative to the centre of the

top and bottom sliding surfaces can be expressed from Eq. (7) as

(19a, 19b)

(19c, 19d)

Here, the torsional stiffness of each individual bearing is assumed to be small and is neglected.

Moreover, for the purpose of simplification it is assumed that the bearings are symmetrically placed

such that there is no eccentricity between the centre of mass and the centre of resistance.

The isolator stiffness eccentricity, ebx between the CR and CM of the base slab is given by

(20)

The two uncoupled base isolation frequencies are defined as

(21)

Here, rb is the radius of gyration of the base about the vertical axis through the CM. The values

of  and  are used to characterize the stiffness characteristics of the isolation device. 

It is worth noting that the eccentricity of the DVFPI isolation system does remain constant during

earthquake ground motion. It changes with isolator displacement as the stiffness of the isolation

system is a function of isolator displacement. Depending upon the displacement of the isolators, the

variations in isolation eccentricity can be significant (Eq. (20)).

 

4. Governing equations of motion

The governing equations of motion for the three-dimensional superstructure, base mass and slider

are expressed in matrix form as
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wherein  and  are the lumped mass, stiffness and damping matrices, respectively,

corresponding to the DOF at the deck;  is the vector of displacements at the

deck relative to the base mass;  is the vector of displacements at the base

mass;  is the vector of ground accelerations,  and  are the ground

accelerations in the x- and y-directions, respectively; and [r] is the earthquake influence coefficient

matrix; [Mb] is the lumped mass matrix corresponding to the DOF at the base mass; [Ms] is the

lumped mass matrix corresponding to the DOF at the slider; [Mbj] is the stiffness matrices of jth

sliding surfaces of the isolation system, respectively;  and 

are the vector of frictional forces at top and bottom sliding surfaces of the isolation system,

respectively, Fxj and Fyj are the frictional forces in the x- and y-directions, respectively on the

corresponding sliding surface,  is the frictional force about the vertical axis; The damping matrix

[C] is not explicitly known. It is constructed from the assumed modal damping for the fixed-base

structure using its mode shapes and frequencies. If α is the angle of incidence of ground

acceleration wave with respect to the x-axis, then the matrix [r] is given by

(25)

The stiffness matrices [K] and [Kbj] are written as

(26)
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5. Solution of equations of motion

Due to non-linear force-deformation behaviour of the DVFPI and significant difference in

damping of superstructure and the isolation system the governing equations of motion of the base

isolated structure cannot be solved using the classical modal superposition technique. Therefore,

they are solved in the incremental form using Newmark’s step-by-step method assuming linear

variation of acceleration over small time interval in this study. The frictional forces are obtained by

hysteretic model, which is a continuous model of the frictional force proposed by Constantinou et al.

(1990), using Wen (1976) equation. In the hysteretic model, the interaction between the frictional

forces has been expressed by coupling of the hysteretic displacements components in two directions

(Park et al. 1986). Due to highly non-linear behaviour of the system, and the strong influence of

initial conditions at each time-step on the numerical solution, a very small time step of the order of

1 × 10−5 has been found suitable for step-by-step solution. The complete procedure of the solution

of equations of motion can be found in Panchal et al. (2009).

6. Parametric study

The response of asymmetric building isolated with the DVFPI to the selected ground motions is

investigated with respect to the following parameters: eccentricity ratio of the superstructure, ex/d,

ratio of uncoupled torsional to lateral frequencies of the superstructure, , uncoupled time

period of the superstructure, Tx, and mass ratio, . Since these parameters predominantly

influence the torsional coupling and base isolation characteristics, the range of these parameters was

carefully selected in order to obtain a better understanding of the influence of the system parameters

on torsional coupling. The specifications for the values of the other parameters are: lateral

dimension, ; number of the DVFPI isolators is 4; modal damping for the

superstructure is taken as 2 per cent of the critical damping for all modes; and the ratio of mass of

slider to mass of base slab,  is taken as 0.001.

Six response quantities, viz. peak rotation of deck slab, uθ , peak rotation of base slab, ubθ , peak

base torque, peak resultant isolator displacement, ubr, peak base shear in y-direction and deck corner

displacement magnification (Nagarajalah et al. 1993a) are considered for the present study. The

deck corner displacement provides the magnitude of deformation due to the combined effect of

translation and torsion. By investigating the extent of magnification of deck corner displacement in

comparison with the displacement at the centre of mass of the deck, the effect of torsional coupling

can be qualitatively evaluated. For this purpose, the corner displacement magnification is utilized. It

is defined as the ratio of peak deck corner displacement (relative to base) to peak displacement at

the CM (relative to base).

The parametric variations in isolation eccentricity, , and the ratio of uncoupled torsional to

lateral frequencies of the isolator,  are not presented explicitly due to continuous variation in

restoring force of the DVFPI and hence in  and  during earthquake ground motion.

However, the present formulation includes these variations in its mathematical model consequently

these effects are automatically reflected in the analysis results. 

The structural response is obtained under a set of six far-fault ground motions having

magnitude ranging from 6.6 to 7.0 recorded at a distance of 8 to 16 km on firm soil or rock site.

The ground motions selected are representative of typical Large-Magnitude-Small-distance ground

ωθ /ωx

mb/md

b d 10.0 m= =

ms/mb
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ωbθ /ωb

ebx/d ωbθ /ωb
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Fig. 3 Acceleration and displacement spectra of the six far-fault ground motions for 5 per cent damping

Table 1 Details of earthquake ground motions used in the study

Earthquake Magnitude

Applied in 
x-direction

Applied in 
y-direction

Distance from 
surface projection 

of the fault
(km)Component

PGA
 (g)

Component
PGA 
(g)

Imperial Valley, 1940 
(El Centro)

6.9 180 0.313 270 0.215 8.0

Loma Prieta, 1989
(Saratoga Aloha Ave.)

6.9 000 0.512 090 0.324 9.0

Superstition Hills, 1987
(El Centro Imp. Co. Center)

6.5 000 0.358 090 0.258 13.9

Loma Prieta, 1989
(Capitola)

6.9 000 0.529 090 0.443 14.5

Northridge, 1994
(Canoga Park - Topanga Canyon)

6.7 196 0.420 106 0.356 15.8

Northridge, 1994
(Northridge-Saticoy St.)

6.7 180 0.477 090 0.368 13.3
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Fig. 4 Comparison of median response quantities for various cases of the DVFPI design

Table 2 Properties of the different DVFPI design cases

Group Case
T1

(sec)
T2

(sec)
Tc

(sec)
µ1 µ2 µc Remark

A

A1 1.5 2 2.5 0.04 0.07 0.06 T1<T2;  µ1<µ2

A2 1.5 2 2.5 0.07 0.053 0.06 T1<T2;  µ1>µ2

A3 2 1.5 2.5 0.07 0.04 0.06 T1>T2;  µ1>µ2

A4 2 1.5 2.5 0.053 0.07 0.06 T1>T2;  µ1<µ2

B

B 1.77 1.77 2.5 0.06 0.06 0.06 T1=T2;  µ1=µ2

C C1 1.77 1.77 2.5 0.05 0.07 0.06 T1=T2;  µ1<µ2

C2 1.77 1.77 2.5 0.07 0.05 0.06 T1=T2;  µ1>µ2

D D1 1.5 2 2.5 0.06 0.06 0.06 T1<T2;  µ1=µ2

D2 2 1.5 2.5 0.06 0.06 0.06 T1>T2;  µ1=µ2

T1 T2≠

µ1 µ2≠⎝ ⎠
⎛ ⎞

T1 = T2

µ1 = µ2

⎝ ⎠
⎛ ⎞

T1 = T2

µ1 µ2≠⎝ ⎠
⎛ ⎞

T1 T2≠

µ1 = µ2

⎝ ⎠
⎛ ⎞
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motion records. The characteristics of these earthquakes are listed in Table 1 and their

displacement and acceleration spectra for 5 per cent damping are shown in Fig. 3. The stronger

component among the two lateral components is applied in a direction perpendicular to the

direction of eccentricity. 

In order to study the optimum performance of the DVFPI supporting asymmetric building, nine

different isolator design cases have been considered as listed in Table 2. These are categorised into

four groups depending on the isolator geometry and coefficient of friction of top and bottom sliding

surface as (a) unequal isolator geometry and unequal coefficient of friction, (b) equal isolator

geometry and equal coefficient of friction, (c) unequal isolator geometry and equal coefficient of

friction, and (d) equal isolator geometry and unequal coefficient of friction of the two sliding

surfaces. The isolators have been design to give same combined initial time period, Tc, and

coefficient of friction, µc, for all design cases to make meaningful comparison among them. The

median response of the example system for all design cases are plotted in Fig. 4. As observed from

the figure that most of the response quantities minimize for A4 Case, i.e., the DVFPI with higher

initial time period and lesser coefficient friction of the top sliding surface relative to the bottom one.

Fig. 5 Effect of ex /d on the response of the asymmetric building isolated with the DVFPI; Tx = 1 sec, ωθ /ωx =
1.0, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 = 0.3
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This observation suggests that in order to optimize the performance of the DVFPI for torsion the

top sliding surface should be made initially softer and smoother than the bottom surface. Moreover,

it should be noted that initially stiffer and smoother top sliding surface (Case A1) amplifies the

responses.

6.1 Effect of superstructure eccentricity

The superstructure stiffness eccentricity, ex/d is the most important parameter causing torsional

coupling and torsional motions. Fig. 5 is plotted to show the effects of superstructure eccentricity in

torsionally coupled structure isolated with the DVFPI (T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 =

0.04, d1 = 0.3 m and d2 = 0.3 m), under the six selected ground motions. The median response of

the six earthquakes is also plotted in the figure. The superstructure eccentricity is varied from a

symmetric case, ex/d = 0 to asymmetric case, ex/d = 0.4. As shown in figure that the eccentricity

increases torsional responses, i.e., the deck slab rotation, base slab rotation and base torque.

Fig. 6 Effect of ωθ /ωx on the response of the asymmetric building isolated with the DVFPI; Tx = 1 sec, ex /d =
0.15, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 = 0.3
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However, the lateral responses, i.e., resultant isolator displacement and peak base shear are not

much influenced by superstructure eccentricity. Further, the deck corner displacement magnification

also increases with eccentricity as expected.

6.2 Effect of torsional to lateral frequency ratio of the superstructure

The ratio of uncoupled torsional to lateral frequency is an important parameter in the behaviour of

the asymmetric buildings; that is, highly influences the response of such systems. As shown in

Fig. 6 with the increase of ωθ /ωx in the range of , the deck corner magnification and

deck slab rotation increases, remains nearly constant in the range of  and decreases

as the system become stiffer. Base torque and base rotation on the other hand decreases

continuously with the increase of ωθ /ωx. Further, the lateral responses remain essentially insensitive

to the variation of ωθ /ωx. 

Thus, the ex/d and ωθ /ωx have opposing effects on the coupled lateral-torsional response. It will

0.8 ωθ /ωx 1≤ ≤
1 ωθ /ωx 1.5≤ ≤

Fig. 7 Combined effect of ex /d and ωθ /ωx on the response of the asymmetric building isolated with the
DVFPI; Tx = 1 sec, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 =
0.3
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be interesting to examining the combined effect of these two parameters. This is explained by three

dimensional plots of response for Imperial Valley, 1940 (El Centro) earthquake ground motion for

the aforesaid combination in Fig. 7. The figure indicates that the superstructure eccentricity

increases the torsional response quite rapidly than the uncoupled torsional to lateral frequency ratio

suppresses them. This observation suggests that it is advisable to control the eccentricity rather than

increasing the torsional stiffness to reduce torsional responses.

6.3 Effect of uncoupled time period of superstructure

In Fig. 8, response of the DVFPI isolated asymmetric building is plotted for different values of

superstructure time period, Tx. Increasing the Tx thereby making superstructure flexible in horizontal

direction all the torsional responses increase and lateral responses decrease. The deck corner

displacement magnification on the other hand decreases due to increase in deck lateral displacement

with the increase in superstructure flexibility. 

Fig. 8 Effect of Tx on the response of asymmetric building isolated with the DVFPI; ex /d = 0.15, ωθ /ωx = 1,
mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec,  µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 = 0.3
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6.4 Effect of mass ratio

Fig. 9 depicts the influence of variation in mass ratio, mb/md, on the structural response. The base

shear is highly influenced by variation of mb/md. This is expected as the base shear is directly

proportional to the weight of the building. The base torque and deck slab rotation increases slowly

with the increases of mass ratio. However, the base rotation, deck corner displacement

magnification and the resultant isolator displacement remains almost same for all values of mass

ratio.

6.5 Effect of angle of incidence

In Fig. 10, the variation of the structural response is plotted against the angle of incidence, α

for the six ground motions. The figure indicates that the responses are moderately influenced by

Fig. 9 Effect of mb/md on the response of the asymmetric building isolated with the DVFPI; Tx = 1, ex /d =
0.15, ωθ /ωx = 1, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 = 0.3
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the angle of incidence of ground acceleration with respect to the principal direction of the

structure.

6.6 Influence of isolator geometry

The isolator geometry of the DVFPI can be completely defined by parameter bi and di. As the

initial time period, Ti is directly proportional to bi, the influence of isolator geometry is studied by

varying d1, d2 and T1, T2. The value of di and Ti are varied within range of 0.1-0.5 m and 1.0-2.0

sec, respectively. It should be noted that the reciprocal of di is the FVFi of corresponding sliding

surface. To study the effect of d1 and d2, other parameters are kept equal, i.e., µ1 = µ2 = µc and T1 =

T2 = Tc. Fig. 11 shows three dimensional plots of response quantities considered for Imperial Valley,

1940 (El Centro) ground motion. It is seen that for the given value of d1 the torsional response is

independent of d2. Figure also suggests that for lower value of d1 (i.e., higher value of the FVF1) the

Fig. 10 Effect of α on the response of the asymmetric building isolated with the DVFPI; Tx = 1, ex /d = 0.15,
ωθ /ωx = 1, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and d2 = 0.3
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lateral response is essentially independent of d2 (i.e., the FVF2). However, for higher value of d1, the

lateral responses are sensitive to d2. Further, the deck corner displacement magnification is not

influenced by variations in FVFs. 

Fig. 12 portrays the influence of initial time period of top and bottom sliding surface on the

seismic response of the DVFPI. As shown in figure, the response varies more rapidly within small

range of T1 and T2 showing its sensitivity for lower value of initial time period of both sliding

surfaces. For higher value of T1, the torsional responses are essentially independent of T2. 

6.7 Influence of coefficient of friction

The influence of coefficient of friction is studied by varying µ1 and µ2 at the two sliding surfaces

in the range of 0.01-0.07, keeping other parameters constant, i.e., T1 = T2 = Tc and d1 = d2 = 0.3 m

and is shown in Fig. 13. The response is found sensitive for all values of coefficient of friction.

Increasing friction coefficient, the limiting value of sliding force increases. As a result, more force

Fig. 11 Variations in peak response quantities of the DVFPI isolated torsionally coupled building for different
values of T1 and T2; Tx = 1, ex /d = 0.15, ωθ /ωx = 1, mb/md = 1.0, µ1 = 0.04, µ2 = 0.07, d1 = 0.3 and
d2 = 0.3
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will be transmitted by the sliding surfaces into the superstructure which in turn magnifies all

responses quantities except resultant isolator displacement.

7. Conclusions

The non-linear response of a torsionally coupled system isolated with double variable frequency

pendulum system (DVFPI) to bilateral far-fault ground motions is obtained by considering the

interaction of frictional forces in two orthogonal directions. The response behaviour of the

torsionally coupled system is studied for a set of important parametric variations. The criterion to

optimize the performance of the DVFPI for coupled lateral-torsional response is proposed. Further,

the influences of the initial time period, the coefficient of friction and the frequency variation

factors at the two sliding surface are investigated. The conclusions of this study are based on the

Fig. 12 Variations in peak response quantities of the DVFPI isolated torsionally coupled building for different
values of d1 and d2; Tx = 1, ex /d = 0.15, ωθ /ωx = 1, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, µ1 = 0.04,
µ2 = 0.07
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assumption of stable and predictable sliding friction at the sliding interfaces, which are configured

as depicted in Fig. 1(a). As discussed earlier in this paper, this may not be possible due to high

concentration of pressure at the sliding interface. The following conclusions may be drawn from the

trend of numerical results of the present study:

1. For the optimum performance of the DVFPI supporting asymmetric building, the top sliding

surface should be designed initially softer and smoother.

2. The superstructure eccentricity magnifies the torsional response and the uncoupled torsional to

lateral frequency ratio reduces it. However, the superstructure eccentricity increases the torsional

response quite rapidly than the uncoupled torsional to lateral frequency ratio suppresses them.

Therefore, the superstructure eccentricity should be control rather than making superstructure

torsionally stiff.

3. The superstructure flexibility magnifies torsional response and reduces lateral responses and

deck corner displacement magnification of the DVFPI system. 

4. The torsional responses are not much influenced by the ratio of base mass to deck mass.

Fig. 13 Variations in peak response quantities of the DVFPI isolated torsionally coupled building for different
values of µ1 and µ2; Tx = 1, ex /d = 0.15, ωθ /ωx = 1, mb/md = 1.0, T1 = 1.5 sec, T2 = 2.0 sec, d1 = 0.3
and Tx = 0.3
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However, base shear increases significantly with the mass ratio.

5.The angle of incidence of the ground motions with respect to the principal direction of structure

moderately influences the performance of the DVFPI system.

6. For the given value of frequency variation factor of top sliding surface of the DVFPI, the

torsional response is independent of frequency variation factor of bottom sliding surface.

7. When the top sliding surface of the DVFPI is design to have lower initial time period, the

torsional response becomes sensitive to the initial time period of bottom sliding surface. On the

other hand, for higher value of initial time period of top sliding surface, the response is

independent of the initial time period of bottom sliding surface.

8. The torsional response is significantly influenced by coefficient of friction of both sliding

surfaces. Increasing coefficient of friction either at top or bottom or both sliding surfaces of the

DVFPI torsional response magnifies considerably.
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