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1. Introduction

The flexural behavior of reinforced concrete (RC) members has been well understood such that

their flexural strengths are predicted with reasonable accuracy over a wide range of cases. By

contrast, it is difficult to predict the shear strengths of RC members accurately due to the

uncertainties in the shear transfer mechanism, especially after cracks are initiated. For more accurate

prediction of the shear strengths, many sophisticated approaches have been proposed based on

mechanical or physical models of structural behavior/failure, fracture mechanics, and nonlinear

finite element analyses. The constant and variable angle truss models are known to provide reliable

bases and to give reasonable results for the shear strengths of members with shear reinforcement.

For members without shear reinforcement, however, even advanced models may show lack of

accuracy despite their complicated procedures, and often lead to fairly different predictions than

other similar models. Since there is yet no agreement on such approaches among researchers,

prediction of shear strengths of RC beams is still considered an active open research field with

important recent publications. 

As a result, most design code provisions use empirical models developed based on simplified

rules of mechanics and/or regression analyses of experimental data. The number of experimental

observations used then for developing such models was often limited. These deterministic models

exhibit uncertain biases and errors that prevent accurate predictions over a wide range of input

parameter values. This uncertainty is due to imperfect descriptions of shear transfer mechanism,

missing parameters, and insufficient amount of the test data. Recently, research efforts have been

made to develop shear strength models for RC beams without stirrups that have improved accuracy

and reduced uncertainties (Bazant and Yu 2005, Russo et al. 2005, Choi et al. 2007, Choi and Park

2007). The models were developed based on the improved shear transfer mechanisms and/or on the

consideration of the most significant parameters. The developed models were then calibrated by

experimental data, and sometimes further simplified for practical uses.

This paper envisions a stochastic framework for developing shear strength models based on

existing shear strength models and experimental observations. The framework improves the

accuracy of predictions, helps incorporate the model uncertainties into vulnerability estimations and

risk-quantified designs, and provides better understanding of shear transfer mechanisms and the

roles of various parameters on shear strengths. In particular, this paper develops probabilistic shear

strength models for RC beams without shear reinforcement (stirrup) by use of a Bayesian method

(Gardoni et al. 2002) based on widely-used, state-of-the-art deterministic shear strength models and

an extensive database of observed shear strengths (Reineck et al. 2003). First, the overall bias and

scatter of each of the selected deterministic model is quantified as constant terms that are

independent of input parameters. This is to later evaluate the overall performance of the models

developed in this paper. Second, probabilistic shear strength models are developed by identifying

the biases in the deterministic models as algebraic functions of input parameters and by estimating

the uncertain errors that remain after the bias correction. Based on understanding of the shear

transfer mechanism, a set of explanatory terms are selected for describing biases of deterministic

models. Explanatory terms with significant contributions are identified during Bayesian updating

through a systematic removal process. The performance of the developed probabilistic models is

confirmed by comparison with the actual test results. This study also attempts to calibrate the

parameters in the deterministic models based on experimental observations, and to propose a

general method that can construct probabilistic models directly from experimental data when reliable
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deterministic models are not available or influencing input parameters are not clearly identified.

This paper focuses on the shear strengths of RC members without shear reinforcement. While

structural concrete members such as slabs and footings are being designed without such

reinforcement, many members such as beams and columns typically have shear reinforcement. The

shear behaviors of RC members with shear reinforcement are considerably different from those

without. However, even in the case of designing a member with shear reinforcement, it is essential

to accurately predict the shear strength of an RC member that has no shear reinforcement. This is

because most shear design provisions require estimating the shear strength contributed by concrete

(Vc) in order to check whether shear reinforcement is necessary or not.

2. Shear strengths of reinforced concrete beams without shear reinforcement

2.1 Shear transfer mechanisms

Due to the complex stress redistribution after cracking, the shear transfer mechanisms of RC

beams have not been clearly understood yet. Fig. 1 visualizes the basic shear transfer mechanisms

in accordance with the findings of the state-of-the-art reports by joint ASCE-ACI Committees 426

(1973, 1974) and 445 (1998, 2000). The important shear transfer mechanisms include (1) the shear

in the uncracked compression zone, (2) the dowel action of the longitudinal reinforcement, (3) the

interface shear transfer due to the aggregate interlocks or the surface roughness of the cracks, and

(4) the residual tensile stresses across the cracks.

Since the shear resistance provided by the uncracked compression zone is limited by the depth of

the zone, its contribution to shear strength in a relatively slender beam with no axial compression is

insignificant. Local roughness in a crack plane results in the interface shear transfer, which

decreases as the crack opening increases or the aggregate size decreases. However, this is not

necessarily true in high strength concrete since cracks can pass through aggregates and its relatively

Fig. 1 Shear transfer mechanisms contributing to shear strength of reinforced concrete beam without shear
reinforcement
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smooth crack planes reduce interface shear transfer. The contribution of the dowel action of the

longitudinal bars is affected by the amount of concrete cover beneath the bars. The residual tensile

stresses in concrete also contribute to the shear transfer as they directly transmit it across cracks.

When a crack opening is small, the resistance provided by the residual tensile stresses is significant

while less significant in large beams. For deep beams, arch action is the most dominant shear

transfer mechanism.

2.2 Predictive parameters influencing shear strength

The aforementioned shear transfer mechanisms help identify predictive parameters that may affect

the shear strength of a RC beam, such as (1) the concrete compressive strength, (2) the beam depth,

(3) the shear span-to-depth ratio, (4) the amount of longitudinal reinforcement, and (5) the axial

forces.

The shear strength of an RC beam increases as the concrete material strength increases. The

concrete tensile strength is known to have a great influence on the shear strength, but the concrete

compressive strength  is used instead in most shear strength formulas. This is because tensile

tests are more difficult to conduct and usually show greater scatter than compression tests.

The shear strength decreases as the depth of a beam increases. This is often called “size effect”. It

has been effectively demonstrated by the experimental studies by Kani (1967) and Shioya et al.

(1989). Shioya et al. tested members with depths ranging from 100 mm to 3000 mm. They

observed that the ultimate shear stress of the largest member was only one-third of that of the

smallest one. Bazant and Kim (1984) explained this effect based on fracture mechanics, while

Collins and Kuchma (1999) and Reineck (1990) explained it by the reduction of the interface shear

transfer due to the larger crack widths that occur in members with relatively large depth.

The shear span-to-depth ratio is the ratio of the distance (a) between the support and the loading

point to the effective depth (d) of the beam, i.e., a/d. The shear strength increases as the shear span-

to-depth ratio decreases. This phenomenon is quite significant in “deep beams” with the ratio less

than about 2.5 because a portion of shear is transmitted directly to the support by an inclined strut

(“arch action”). As strut-and-tie models consider this direct shear flow in a concrete member, it is

more appropriate to use strut-and-tie models than sectional design approaches for these deep beams.

All the test data considered in this paper have shear span-to-depth ratios greater than 2.4. Therefore,

the probabilistic models developed in this paper should be used within the range.

For a given magnitude of loading, as the longitudinal reinforcement ratio decreases, flexural

stresses and strains in concrete increase. Thus the crack widths increases and the shear strength is

reduced. In addition, dowel action is weakened due to the low reinforcement ratio.

When members are subjected to axial tension, the shear strengths decrease. By contrast, axial

compression increases the shear strengths since it increases the depth of the uncracked compression

zone as well as the interface shear transfer. For members subjected to significant axial compression,

however, brittle failures often occur. This paper does not account for the effect of axial forces in

developing probabilistic shear strength models as all the beams in the shear database were tested

with no axial forces applied.

2.3 Existing shear strength models

Researchers have proposed various shear strength models by imposing different levels of relative

fc′



Probabilistic shear strength models for reinforced concrete beams 19

importance to the aforementioned shear transfer mechanisms. Strength models such as tooth model

(Kani 1964), strut-and-tie model, and truss model are proposed based on the understanding of

structural behavior and failure. Some models are developed based on fracture mechanics theories

that explain the stress concentration at the crack tip and the decrease of tensile stress on the crack

plane. Mitchell and Collins (1974) and Vecchio and Collins (1982) evolved the variable-angle truss

model by proposing the compression field theory (CFT) that considers compatibility and stress-

strain relationship in cracked concrete in addition to equilibrium conditions. However, the CFT can

be used for reinforced concrete members with shear reinforcement only because it does not account

for the tensile stress in cracked concrete. For this reason, Vecchio and Collins (1986) developed the

modified compression field theory (MCFT) that can take into account the influence of tensile

stresses on the post-cracking shear behavior, which thus can be used for predicting service load

behavior and ultimate strength in reinforced concrete members with and without shear

reinforcement. Isenberg (1993) and other researchers predicted shear strengths by nonlinear finite

element analyses, and Vecchio and Palermo (2002) also utilized the MCFT in their nonlinear finite

element analyses.

Despite their accuracy, these sophisticated approaches are difficult to follow in some practical

situations. Therefore, most shear design codes use empirical or semi-empirical models for predicting

shear strengths. As an attempt to achieve models that are not only accurate but also useful in

practice, this paper develops probabilistic shear strength models by identifying biases in eight

existing deterministic models and quantifying the remaining errors in a probabilistic manner. Table 1

lists the shear strength models that are used as base models in developing probabilistic models in

this paper.

The equation 11-3 in ACI 318-08 (ACI 2008) is the simplest and the most commonly used model.

Since it accounts for the influence of concrete strength only, it shows significant biases in its

predictions against other influencing parameters. This model tends to overestimate the strengths of

beams having relatively large depths. It overestimates the shear strength as the longitudinal

reinforcement ratio ρ decreases while it provides conservative estimates for heavily reinforced

Fig. 2 Errors of ACI 11-3 model versus longitudinal reinforcement ratio before bias-correction
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beams. This bias is demonstrated in Fig. 2, which plots the difference between the natural

logarithms of observed shear strengths Ci in a shear database (See the following subsection) and the

strengths cd predicted by the ACI equation 11-3. The equation 11-5 in ACI 318-08 (ACI 2008)

accounts for the influence of longitudinal reinforcement ratio in addition. However, it still tends to

overestimate the shear strengths for lightly reinforced beams. The overall accuracy of the equation

11-5 is considered to be similar to that of the equation 11-3 although it is more complicated.

Table 1 Shear strength models used for developing probabilistic models

Model Equation

ACI 11-3
(ACI 2008)

ACI 11-5 
(ACI 2008)

Eurocode draft
(2003)

Tureyen and Frosch 
(2003)

Zsutty
(1971)

Okamura and Higai
 (1980)

Bazant and Yu
(2005)

Russo et al.
 (2005)

Notations: Vc (N): shear strength; (MPa): concrete compressive strength; bw (mm): web width; d (mm):
effective depth; ρ = As/bwd: longitudinal reinforcement ratio in which  As is the amount (area) of longitudinal
reinforcement; Vu (N): factored shear force; Mu (N⋅mm): factored moment; Es = 2.0 × 105 (MPa): elastic mod-
ulus of reinforcement; Ec = 4700  (MPa): elastic modulus of concrete; a (mm): shear span length; da

(mm): the maximum aggregate size; and fy (MPa): the yielding strength of the longitudinal reinforcement.
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The model in the Eurocode draft (2003) considers the size effect, but its predictions tend to be

conservative in most cases. The model by Tureyen and Frosch (2003) looks similar to the ACI

equations, but its conceptual basis is fairly different as it neglects the shear transfer in cracked

concrete. This model provides more accurate predictions than ACI equations, but it tends to

overestimate for large beams. The model by Zsutty (1971) is more accurate than the ACI models

despite its simple form. However, it often overestimates the strengths for deep beams since it does

not account for the size effect. The model by Okamura and Higai (1980) contains all the

aforementioned influencing parameters except axial forces, and provides good estimations without

any severe biases in most cases.

Recently, Bazant and Yu (2005) proposed a shear strength formula that can account for the “size

effect.” This model was theoretically derived based on fracture mechanics and calibrated by a large

number of experimental test data. The effects of primary influencing parameters were considered.

The size effect law was verified utilizing dimensional analysis and cohesive crack model in which

the shear strength was inversely proportional to the square root of the depth, . They proposed

two models: the “design” model with embedded conservatism and the “fit” model for accurate

prediction. In this paper, the “fit” model was selected to develop a probabilistic model that can

account for the size effect based on facture mechanics theory.

Russo et al. (2005) proposed models for the shear strength of RC beams without shear

reinforcement by utilizing beam and arch action and by determining necessary unknown parameters

included in their formula from experimental data collected from the literature. They modified the

shear formula to yield the best prediction uniformity of shear strength by minimizing the coefficient

of variation (c.o.v.) of shear strength ratios, i.e., the measured to calculated shear strength. They also

developed two models: “proposed design formula” (with embedded conservatism) and “shear

strength formula” (accurate prediction). The latter model was used in this study. 

2.4 Database for shear strengths of reinforced concrete beams

Existing design code provisions usually do not provide uniform levels of safety. This is mainly

because only small sets of existing test results were used to develop shear strength models. In order

to overcome this, Reineck et al. (2003) developed an extensive database for the shear strengths of

RC beams without shear reinforcement. The database has 439 shear strengths observed for a wide

range of structural parameters. This database has been checked against various selection criteria

discussed by the ACI-ASCE Committee 445, including the minimum concrete compressive strength

and the minimum size of beams, and assurance of shear failure. Removing some test beams cast

with light-weight concrete and the tests for which maximum aggregate size is not available, this

paper uses the reduced database of 341 tests to develop probabilistic strength models based on the

deterministic models listed in Table 1.

Most members (93%) of the reduced database have rectangular cross-sections while the rest of

them are T-shaped beams. Fig. 3 provides an overview on the distributions of four influencing

parameters (fc', d, ρ and a/d) and four other notable ratios (Es/Ec, da/d, d/h and bw/h where h denotes

the height of the beam) that are used for deterministic and probabilistic shear strength models in this

paper. 230 beams have concrete compressive strengths lower than 40 MPa. The vast majority of the

members have the effective depth between 200 to 300 mm while a few members are about 2 meters

deep. More than half of test specimens have the longitudinal reinforcement ratios greater than 2.0%

while 55 beams have less than 1.0% reinforcement ratios. 135 members have the shear-span-to-

d
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depth ratios 2.4~3.0, and the ratios of some slender members are about 6.0. Since the experiments

were conducted for the purpose of research, some cases may not represent the realistic conditions of

existing structures necessarily. However, the comprehensiveness of the database enables us to

investigate the shear strengths of members over a wide range of parameter values. The database

lacks uniformity in the distribution of key parameters or explanatory terms since it is a collection of

numerous test results in the literature. This may prevent models developed based on the database

from achieving uniform accuracy over a wide range of parameter values. Therefore, this study will

examine the errors of the developed models in sub-ranges of key parameters to confirm its uniform

accuracy. 

3. Probabilistic shear strength models

3.1 Bayesian methodology for probabilistic models

We aim to develop probabilistic models for the shear strengths of RC beams by identifying the

biases in the base deterministic models and quantifying the uncertainty in the remaining errors. We

adopt a Bayesian methodology originally developed for constructing probabilistic models for the

capacities of RC columns (Gardoni et al. 2002) and later for the seismic demands of RC bridges

(Gardoni et al. 2003). The probabilistic shear strength models predict the shear strength C in the

form

(1)

where x is the vector of input parameters measured during tests on RC beams, e.g., ρ, fc', bw, a and

d;  denotes a set of model parameters introduced to fit the model to the test results;

C x Θ,( ) cd x( ) γ x θ,( ) σε+ +=

Θ θ σ,( )=

Fig. 3 Distributions of parameter values of reinforced concrete beams in shear database (341 test results)
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 is an existing deterministic model;  is the correction term for the bias inherent in the

deterministic model that is expressed as a function of the input parameters x and uncertain model

parameters θ = ; ε is the normal random variable with zero mean and unit variance;

and σ is a model parameter that represents the magnitude of the model error that remains after the

bias-correction.

This model is based on the following two assumptions: (1) the model variance is independent of

input parameters x (“homoskedasticity” assumption). Note that for given x, θ and σ, the variance of

the model  is  that is not the function of x; and (2) ε has the normal distribution

(“normality” assumption). In order to justify these assumptions, we often need to employ a suitable

transformation of the quantity of interest. Diagnostic plots of the observed data versus the model

predictions are often used to verify the suitability (Rao and Toutenburg 1997).

Since the true form of the bias-correction function   is unknown, one can try to express it

using a suitable set of p “explanatory” functions , , in the form

(2)

Based on mechanics theories or expert opinions, one may try some functions of influencing input

parameters as explanatory functions. Applying the natural logarithms to satisfy the homoskedasticity

assumption, we develop probabilistic models using the form

(3)

A probabilistic shear strength model is constructed by finding the values of the model parameters

 that makes the model in Eq. (3) fit the test results best. We use Bayesian parameter

estimation method for this purpose. Suppose  is the joint probability density function (PDF) of

a “prior” distribution reflecting the knowledge about Θ prior to obtaining objective observations

such as test results. The Bayesian approach updates this prior distribution to the “posterior”

distribution  based on the test results. The well-known Bayesian updating rule (Box and Tiao

1992) is

(4)

where  is the “likelihood” function representing the likelihood of the test results; and

 is the normalizing factor. We consider the posterior means of the posterior

function, i.e.,  as the best-fitting parameters and substitute

them into  of Eq. (3) to construct a probabilistic shear strength model. It is

not straightforward to compute the multifold integrals for obtaining the normalizing factor κ, the

posterior mean vector , and covariance matrix . Among various

methods for this computation including Markov Chain Monte Carlo sampling (MCMC), we use an

importance sampling method employing the sampling density function centered at the maximum

likelihood point (Gardoni 2002).

When there is no available information that may be used for the prior distribution of parameters,

one can employ a “non-informative” prior that has little influence on the posterior distribution. Box

and Tiao (1992) showed that the non-informative prior distribution of θ is locally uniform such that

. The non-informative prior of σ then takes the form

cd x( ) γ x θ,( )

θ1 θ2 … θp, , ,[ ]T

C x θ,( ) σ
2

γ x θ,( )
hi x( ) i 1 … p, ,=

γ x θ,( ) θihi x( )
i 1=

p

∑=

ln C x Θ,( )[ ] ln cd x( )[ ] θihi x( ) σε+

i 1=

p

∑+=

Θ θ σ,( )=

p Θ( )

f Θ( )

f Θ( ) κL Θ( )p Θ( )=

L Θ( )
κ L Θ( )p Θ( )dΘ∫[ ] 1–
=

MΘ Θf Θ( )dΘ∫ µθ
1
µθ

i

… µθ
n

µσ, , , ,[ ]T= =

Θ θ1 θ2 … θp σ, , , ,[ ]T=

MΘ ΣΘΘ ΘΘ
T
f Θ( )dΘ MΘMΘ

T
–∫=

p Θ( ) p σ( )≅
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(5)

The likelihood function  is defined as a function proportional to the conditional probability

of the observations for given input parameters x. One of three kinds of observations can be made

from the i-th test: (1) “failure datum”: the demand Ci is measured at the instant of the failure, i.e.,

; (2) “lower bound datum”: the component does not fail up to the demand

level Ci, i.e., ; and (3) “upper bound datum”: the component has failed

under a lower demand than measured Ci, i.e., . Under the assumption of

statistically independent tests and the normality assumption of ε, the likelihood function is derived

(Gardoni et al. 2002) as 

(6)

where  and  respectively denote the PDF and the cumulative distribution function (CDF)

of the standard normal distribution. Note that the likelihood function can use even the information

of lower and upper bound data in constructing a probabilistic model while these are usually

neglected during model development.

This Bayesian approach is particularly useful when (1) a database has non-failure data, i.e., lower

or upper bound data or (2) a small number of data are used while subjective information is available

for informative prior distribution. However, the shear database used in this paper contain “failure

datum” only, and non-informative prior distribution is used. Therefore, the results from the Bayesian

approach would converge to those by classical statistical parameter estimation methods. The main

reason for using the aforementioned Bayesian approach in this paper is to utilize its stepwise

procedure (Gardoni et al. 2002) for removing insignificant explanatory terms. When a parameter

has the largest posterior coefficient of variation (c.o.v.) after a Bayesian updating, its corresponding

explanatory function is considered the least informative function and then dropped from the bias-

correction function . A Bayesian updating is performed again using this bias-correction

function with fewer terms. This process is repeated until such a removal increases the posterior

mean of σ by an unacceptable amount. This removal process of the Bayesian methodology allows

researchers to not only try any explanatory functions they consider important but also identify

informative terms in a systematic manner without performing numerous regression analyses with all

possible combinations of explanatory terms.

3.2 Overall biases and scatters of deterministic shear strength models

Before developing probabilistic models, we first evaluate the overall biases and scatters of the

eight models in Table 1 through comparison with the shear database. This is to judge the overall

performance of the probabilistic models in this paper during their development. For this purpose, we

p σ( ) 1

σ
---∝

L Θ( )

Ci cd xi( ) γ xi θ,( ) σε+ +=

Ci cd xi( ) γ xi θ,( ) σε+ +<
Ci cd xi( ) γ xi θ,( ) σε+ +>

L Θ( ) 1

σ
---ϕ

Ci cd xi( )– γ xi θ,( )–

σ
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
failure data

∏∝

        Φ
Ci cd xi( )– γ xi θ,( )–

σ
----------------------------------------------– ×

lower bound data
∏

Φ
Ci cd xi( )– γ xi θ,( )–

σ
----------------------------------------------

upper bound data

∏

ϕ ·( ) Φ ·( )

γ x θ,( )
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use the aforementioned Bayesian methodology with the following model employing a constant bias-

correction term 

(7)

The natural logarithms are applied to the strength quantities for consistency with the probabilistic

shear strength models developed later in this paper. Since the error terms, θ and σε are independent

of the input parameters in x, the posterior means of θ and σ respectively estimate the overall bias

and scatter of each deterministic model. Since ε is assumed to be the standard normal random

variable, the error measure  is a normal random variable whose mean and

standard deviation are the posterior means of θ and σ, respectively if the uncertainties in Θ are

neglected.

Table 2 lists the posterior means of θ and σ of the eight base models. Both ACI models are

known to exhibit significant amount of bias and scatter, which is confirmed by the large values of

the posterior means. Due to the embedded conservatism, the models by Eurocode draft and Tureyen

and Frosch show significant biases on the conservative side. However, they can predict the strengths

with smaller scatter than the ACI models. Zsutty’s model shows small bias overall and its scatter is

comparable to those by Eurocode. Tureyen and Frosch, Okamura and Higai, Bazant and Yu, and

Russo et al. predict the shear strength with the smallest scatter among the considered models. In

particular, the last two models show significantly reduced overall biases and scatters. This is due to

their rigorous derivations based on fracture mechanics theories and calibration of parameters using

extensive database of experimental observations. 

3.3 Development of probabilistic shear strength models

As demonstrated in Fig. 2, the biases of deterministic shear strength models depend on given

input parameter values. Therefore, we aim to develop probabilistic shear strength models with bias-

correction term that is given as a function of input parameters. We use the Bayesian methodology

employing the form in Eq. (3) with explanatory functions of input parameters selected based on the

aforementioned shear transfer mechanisms and influencing parameters. The posterior mean of σ

represents the error due to the effects that are not captured completely by the selected deterministic

model or the explanatory functions. Therefore, we can confirm the effects of a selected bias-

γ x θ,( ) θ=

ln C x Θ,( )[ ] ln cd x( )[ ] θ σε+ +=

ln C/cd( ) ln C( ) ln cd( )–=

Table 2 Overall bias and scatter of base models

Model
Posterior means

θ (bias) σ (scatter)

ACI 11-3 0.257 0.382

ACI 11-5 0.165 0.335

Eurocode Draft 0.456 0.223

Tureyen and Frosch 0.287 0.245

Zsutty 0.0261 0.244

Okamura and Higai 0.116 0.176

Bazant and Yu 0.0142 0.166

Russo et al. 0.00120 0.156
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correction term by how much reduction can be made for the posterior mean of σ.

We try a set of explanatory functions, . The constant

 is selected to detect the bias that is independent of the variables in x. The explanatory

functions , ,  and  are selected to capture the

biases related to the input parameters that mainly affect the shear transfer mechanisms. These

explanatory functions or influencing parameters appear in the formulas shown in Table 1 as well.

 is selected to detect the effect of dowel action of the longitudinal bars that depends on

the amount of concrete cover beneath the bars.  is selected for the possible effect of

the sectional aspect ratio. Note that these explanatory functions are made dimensionless for

consistency with the dimensionless residual, .

The posterior means of σ are listed in the third column of Table 3. For all the base models

considered, the mean values are significantly reduced from the previous results by the form in

Eq. (7) (shown in the second column). This indicates that significant portions of the errors that are

H1 2 ρ a/d Es/Ec da/d d/h bw/h, , , , , ,{ }=

h1 x( ) 2=

h2 x( ) ρ= h3 x( ) a/d= h4 x( ) Es/Ec= h5 x( ) da/d=

h6 x( ) d/h=

h7 x( ) bw/h=

ln C x Θ,( )[ ] ln cd x( )[ ]–

Table 3 Posterior means of σ after Bayesian updating

Model
Posterior mean of σ

Constant bias (Table 2) H1 H2

ACI 11-3 0.382 0.222 0.165

ACI 11-5 0.335 0.218 0.177

Eurocode Draft 0.223 0.172 0.165

Tureyen and Frosch 0.245 0.178 0.167

Zsutty 0.244 0.185 0.168

Okamura and Higai 0.176 0.159 0.157

Bazant and Yu 0.166 0.156 0.154

Russo et al. 0.156 0.146 0.146

Fig. 4 Errors of ACI 11-3 shear strength model versus longitudinal reinforcement ratio after bias-correction by
H1
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previously identified as scatters are now captured as parameter-dependent biases. For example,

Fig. 4 plots the differences between the natural logarithm of the observed shear strengths Ci and

, i.e., the strengths predicted by the probabilistic model developed based on the

ACI equation 11-3. A comparison with Fig. 2 shows that the bias against the longitudinal

reinforcement ratio is significantly reduced.

In order to improve the bias-correction, we try another set of explanatory functions, H2 which is

obtained by applying natural logarithm to each of the explanatory terms in H1. This enables us to

correct the deterministic model by multiplying the explanatory functions in H1, i.e., 

. As shown in the fourth column of Table 3, the posterior means of σ

are further reduced by this set of explanatory terms, which confirms that the biases are captured

ln cd x( )[ ] γ x Mθ,( )+

cd x( ) ⋅
2
θ
1

ρ
θ
2

a/d( )
θ
3… bw/h( )

θ
7⋅ ⋅[ ]

Fig. 5 Errors of ACI 11-3 shear strength model versus longitudinal reinforcement ratio after bias-correction by
H2 

Table 4 Posterior means of θi after Bayesian updating

Model

Posterior means of corresponding θi

ln2 lnρ

ACI 11-3 2.53 0.395 –0.451 0.466 0.175 –1.68

ACI 11-5 3.09 0.336 –0.275 0.194 0.233

Eurocode 0.95 0.122 –0.380 0.228 –2.38

Tureyen and Frosch 1.61 –0.414 0.184 –1.45

Zsutty 1.13 0.0638 –0.0954 0.193 –1.20

Okamura and Higai –0.298 0.154 –1.35

Bazant and Yu 0.80 –0.242 0.118 –0.048 –1.17

Russo et al. 0.48 –0.0565 0.186 –1.162

ln
a

d
---⎝ ⎠

⎛ ⎞
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E
s

E
c

-----⎝ ⎠
⎛ ⎞ ln

d
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d
-----⎝ ⎠
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h
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more effectively. To demonstrate this improved bias-correction visually, the errors of the

probabilistic strength model based on ACI 11-3 model are plotted in Fig. 5, which confirms that the

bias against the reinforcement ratio has been further reduced. Table 4 shows the posterior means of

 for the H2 explanatory terms that survived the stepwise removal process. The explanatory term

ln  does not survive for any of the deterministic models considered, which implies the effects

of the sectional aspect ratio are already being considered by the base models or its effect on shear

strength is not significant according to the shear database.

Applying exponential functions to Eq. (3), the probabilistic shear strength model takes the form

(8)

where S denotes the set of indices of the explanatory terms that survive the stepwise removal

process. If the uncertainties of the model parameters in Θ are neglected, the normal random variable

ε is the only random variable in the model. Hence, the shear strength follows the lognormal

θi

bw/h( )

C x( ) cd x( ) exp µθ
i

hi x( )
i S∈

p

∑ exp µσε( )⋅ ⋅=

        c̃
d
x( ) exp µσε( )⋅=

Table 5 Means (divided by the base model cd(x)) and coefficients of variation (c.o.v.) of predictions by the
developed probabilistic strength models

Base model Mean/cd(x) c.o.v.

ACI 11-3 0.166

ACI 11-5 0.178

Eurocode draft 0.166

Tureyen and Frosch 0.168

Zsutty 0.169

Okamura and Higai 0.158

Bazant and Yu 0.154

Russo et al. 0.146
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distribution while the mean and c.o.v. of the strength are derived as  and

 respectively (Ang and Tang 2006). In the case , the mean and c.o.v are

closely approximated by  and µ
σ
. Table 5 lists the means (divided by the base deterministic

model  and c.o.v.’s of the probabilistic models developed by using the explanatory terms in

H2. The developed probabilistic models provide the mean values as unbiased predictions on the

shear strengths while quantifying significantly reduced scatters by the c.o.v.’s.

For given input parameters x, the lognormal PDF of the shear strength prediction is given as

(9)

When the input parameters x have significant uncertainty due to measurement errors or intrinsic

aleatory uncertainties, the PDF of the shear capacity should be obtained by total probability

theorem, that is

, (10)

where  denotes the joint PDF of x. Using this PDF of the shear strength, one can

systematically incorporate the uncertainties of strength models and input parameters into risk-

quantified designs or structural vulnerability/fragility estimations. 

4. Bayesian methodologies for model calibration and construction

4.1 Calibration of deterministic models by adjusting model parameters

One can use the Bayesian parameter estimation method also for calibrating parameter values in

existing deterministic models. Consider a form

(11)

Note that this does not contain a deterministic model . Instead we select the parts constituting

a deterministic model as explanatory terms so that the strength model in Eq. (11) will take the same

expression as the deterministic model but with the model constants (such as 0.5 in ACI 11-3 model,

) replaced by θi’s. We perform only one Bayesian updating without the

removal process so that the dimension of the shear strength is not changed by this calibration. The

posterior mean of σ can be compared to those by the forms in Eqs. (3) and (7) to check the

improvement by the calibration.

Table 6 lists the means and the c.o.v’s of the calibrated models. Without any additional

explanatory terms, this parameter calibration achieves significant bias-correction. This is confirmed

by the c.o.v’s that are smaller than the posterior means of σ shown in Table 2. However, the c.o.v.’s

of these calibrated models are larger than those by the probabilistic models developed using

additional explanatory terms, which are shown in Table 5. Comparable c.o.v.’s are obtained only for

Zsutty, Okamura and Higai, Bazant and Yu and Russo et al. models. Note that these four models

use the terms , (a/d), bw and d, which may be considered as critical terms that shear strength
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model should incorporate. Also note that the calibration of ACI 11-5 model leads to unusually small

values for some of the terms. This is due to the limit of calibration of a deterministic model that has

inaccurate form or that lacks important parameters or terms. Therefore, this model calibration

should be considered only for improvement of deterministic models that contain critical parameter

terms in a reasonable form.

4.2 Construction of probabilistic models using influencing parameters

One can construct a probabilistic model using the Bayesian method even when reliable

deterministic models are not available (Clearly this is not the case for the shear strengths of

reinforced concrete beams without shear reinforcement). In this case, a Bayesian parameter

estimation with a form such as Eq. (11) is performed by employing parameters and explanatory

terms selected based on the understanding of physics, test results and expert opinions. The Bayesian

parameter estimation method helps identify influencing parameters and explanatory functions

thereof through a step-wise removal process. The only restriction is that we select the explanatory

functions such that the dimension of the bias correction function is the same as that of the quantity

of interest. One possible way to assure this is to select a set of explanatory terms such that the sum

of the terms has the same dimension as the term on the other side of Eq. (11), and add as many

dimensionless explanatory functions as needed.

Although we have good deterministic models to be used as a base model for developing

Table 6 Means and coefficients of variation (c.o.v.) of strength models by model parameter calibration

Base model Mean c.o.v.

ACI 11-3 0.259

ACI 11-5 0.214

Eurocode draft 0.182

Tureyen and Frosch 0.184

Zsutty 0.166

Okamura and Higai 0.163

Bazant and Yu 0.156

Russo et al. 0.150
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probabilistic shear strength models of RC beams (as demonstrated by eight base models above), we

hereby try developing shear strength models following this approach to explore its feasibility in

other problems. In order to make the bias-correction term have the same dimension as the shear

strength of the beam, we first select three explanatory functions,  so that the

sum of these three explanatory functions have the same dimension as the natural logarithm of the

shear strength. Now we can add many dimensionless explanatory functions as we wish. In this

example, we use all the dimensionless explanatory functions in H2. After Bayesian updating with

successive deletion process for the dimensionless terms only, we derive the mean and the c.o.v. of

the strength using the posterior means of the model parameters. The mean of the strength (in force

unit) is derived as

(12)

and the c.o.v is 0.165. Approximating  by b
w
 and dividing by b

w
d, the strength is predicted in

stress unit as

(13)

Note that the strength model obtained by this approach looks similar to Zsutty’s formula, which is

one of the deterministic models with the smallest overall bias according to the results in Table 2.

The c.o.v. is comparable to those of the probabilistic models developed in this study.

As seen in Table 1, some deterministic models are made as the product of the sums. In order to

construct a probabilistic shear strength model in such a form, we try a form

(14)

We first use explanatory functions in H3 in the summation to guarantee that the expression on the

right hand side has the same dimension as the natural logarithm of the shear capacity. Then, we use

the dimensionless explanatory terms in H1 for each of the two product terms. As a result, the mean

of the strength is derived as (in force unit)

(15)

The c.o.v. of the strength is 0.153, which is comparable to that of the probabilistic models

developed in this study. Approximating  by b
w
 and dividing by b

w
d the strength is predicted in

stress unit as

(16)

Encouraged by this result, Kim et al. (2007, 2008) used this model construction approach to

develop shear strength/behavior models for RC beam-column connections under lateral earthquake

load. The proposed approach successfully identified and modeled the contributions of various key

parameters including concrete compressive strength without being limited by the specific

descriptions of existing models.
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5. Performance of probabilistic strength models 

5.1 Comparison with experimental observations

In order to confirm the performances of the developed probabilistic models relative to

experimental observations, we plot the observed strengths and the predictions by each deterministic

model relative to the distribution by the probabilistic model developed based on the deterministic

model (See Fig. 6). First, the test results in the database are rearranged in increasing order of the

mean shear strengths  predicted by the probabilistic model. The mean curve is plotted together

with a shaded area representing mean ± 1 standard deviation (SD) interval, which covers

approximately 70% of the probability distribution of the strength. The observed strengths and the

predictions by the corresponding deterministic model are shown by circles and x-marks,

respectively.

The mean curves of all probabilistic models based on eight deterministic base models successfully

represent the central tendencies of the observed shear strengths. This means that the developed

probabilistic models achieve unbiased predictions successfully. It is also seen that the majority of

µC x( )

Fig. 6 Performance of probabilistic models developed based on (a) ACI 11-3,  (b) ACI 11-5, (c) Eurocode,
(d) Tureyen and Frosch, (e) Zsutty, (f) Okamura and Higai, (g) Bazant and Yu, and (h) Russo et al.
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the observed strengths fall within the mean ± 1SD intervals for all the models. By contrast, the

deterministic models show significant scatter and/or biases. Most of the biases are observed on the

conservative side especially in the ACI models, Eurocode draft and Tureyen and Frosch. The

models by Bazant and Yu and Russo et al. show good performance in terms of both bias and

scatter, which has been slightly further improved by developing the probabilistic models. Although

not shown in this paper, the probabilistic models developed without using a deterministic model in

Eqs. (12) and (15) matched the experimental observations successfully.

5.2 Uniform performance of the developed models

As seen in Fig. 3, the experimental database does not show uniform distribution in terms of key

parameters. When models are developed based on a database with such non-uniform distribution,

there is a risk that the models perform poorly in the ranges with fewer data points. An ideal solution

is to partition the database and develop different models for predetermined ranges. For usefulness in

practice, however, this paper develops probabilistic models that cover the entire range of the

database instead of providing a set of range-specific models. In order to confirm the uniform

performance of the developed models, the errors of the developed models were checked for selected

Fig. 6 Continued
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ranges of key parameters by use of boxplots (Navidi 2007). Table 7 shows the ranges of key

parameters selected for the boxplots.

In a given boxplot, the lower and upper edges of the rectangle correspond to the first and third

quartile values (25- and 75-percentiles) respectively while the horizontal line inside indicates the

median value (50-percentile). Therefore, the location and vertical length of the rectangle in a box

plot respectively visualize the bias and scatter of the prediction of a model in the given range of a

parameter. The dotted lines (“whiskers”) are extended from the top and bottom of the box to the

maximum and minimum data points within a distance of 1.5×(the vertical length of the rectangle).

All the extreme data points outside these whiskers, “outliers” are indicated by hollow circles. The

horizontal length of the rectangle is given proportional to the number of data in the given range.

For example, Figs. 7 and 8 present the boxplots of the errors by ACI 11-3 and Tureyen and

Frosch models and their corresponding probabilistic models developed in this paper. Fig. 7(a) shows

that the ACI 11-3 model tends to underestimate the shear strengths for heavily reinforced members

and to overestimate for lightly reinforced members. Fig. 7(b) shows that ACI 11-3 model fails to

account for the size effect as significant biases are observed depending on the given effective depth.

The probabilistic model developed based on ACI 11-3 (“ACI 11-3” in Table 5) corrects these biases

uniformly in all the considered ranges.

Table 7 Ranges of parameters selected for box plots of errors

Parameter Selected ranges

10~30 (low strength), 30~70 (medium), 70~120 MPa (high)

d 100~300 (small), 300~900 (ordinary), 900~2000 mm (large)

ρ 0.1~1.0 (lightly reinforced), 1.0~2.0 (moderately reinforced), 2.0~7.0 % (heavily reinforced)

a/d 2.4~3.0 (short shear span length), 3.0~4.0 (medium), 4.0~8.0 (slender)

fc′

Fig. 7 Box plots of the errors of the ACI 11-3 model and its corresponding probabilistic model for selected
ranges of (a) reinforcement ratio, and (b) effective depth
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As seen in Fig. 8, Tureyen and Frosch model has biases with similar trends. However, the

magnitudes of the biases are smaller than those for ACI 11-3. This is because Tureyen and Frosch

model indirectly considers the effect of longitudinal reinforcement ratio through the neutral depth

and accounts for the shear strength contribution of larger uncracked concrete section for members

with larger depth. As shown by the boxplots centered near zero, these biases have been successfully

corrected by the developed probabilistic model (“Tureyen and Frosch” in Table 5) over the entire

Fig. 8 Box plots of the errors of Tureyen and Frosch model and its corresponding probabilistic model for
selected ranges of (a) reinforcement ratio, and (b) effective depth

Fig. 9 Box plots of the errors of Bazant and Yu model and its corresponding probabilistic model for selected
ranges of (a) reinforcement ratio; and (b) effective depth
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range of key parameters. The boxplots of all the eight probabilistic models in Table 5 have been

created for the selected ranges of the key parameters in Table 7. Although not shown due to the

limited space of the paper, these boxplots confirmed that the developed probabilistic models

perform uniformly well over the entire ranges of the selected key parameters despite the non-

uniform distributions of parameters in the database.

As shown by the results in Table 2, the models by Bazant and Yu, and Russo et al. have good

overall accuracy relative to the experimental database used in this paper. In order to check their

uniform performance in different ranges of parameters, the boxplots of the errors by the original

models and their corresponding probabilistic models developed in this paper have been created

(Figs. 9 and 10). The boxplots confirm that these models provide accurate predictions uniformly

over the entire ranges as well even in their original forms. No significant improvement either in bias

correction or scatter reduction has been made by the probabilistic models developed in this paper.

However, it is also noteworthy that the proposed method upgraded the accuracy of the other

relatively simpler models to the level of these two sophisticated models without losing their

simplicity and convenience in practical applications.

6. Conclusions

Probabilistic shear strength models are developed for reinforced concrete beams without shear

reinforcement using a Bayesian methodology based on deterministic shear strength models and an

extensive database of observed shear strengths. The overall biases and the scatters of eight shear

strength models are first identified independently of input parameters so that the performance of

newly developed models in this paper is assessed appropriately. Then, probabilistic models are

developed by identifying the biases of the deterministic models in terms of explanatory functions of

input parameters and by quantifying the errors remaining after the bias-correction. The Bayesian

Fig. 10 Box plots of the errors of Russo et al. model and its corresponding probabilistic model for selected
ranges of (a) reinforcement ratio, and (b) effective depth
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methodology allows researchers to try any explanatory functions they consider important, and then

to identify informative terms based on experimental observations. It is observed that nonlinear

transformation of explanatory terms may improve the bias-correction. Using the mean and

coefficient of variation of the shear strengths provided by the developed probabilistic models, one

can predict the shear strengths with reduced bias with model errors quantified. The probabilistic

distributions of the strengths are derived to help incorporate the model uncertainties into risk-

quantified designs and vulnerability estimations. A general procedure is proposed for calibrating

model parameters in existing models without using additional explanatory terms. This calibration

helps improve the accuracy of the deterministic models that employ critical terms in appropriate

forms. The calibration of deterministic shear strength models revealed critical terms of shear

strength models: longitudinal reinforcement ratio, concrete compressive strength, shear span-to-

depth ratio, web width and effective depth. Also proposed is a method that would enable

construction of probabilistic models in case reliable models do not exist or when influencing input

parameters are not clearly identified. The improved performance of the developed probabilistic

models and its uniform performance over different ranges of key parameters are confirmed

successfully by comparison between predicted and observed strengths and by boxplots of model

errors in selected ranges of key parameters.
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