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Abstract. Quantitative condition assessment of structures has been traditionally using proof load test
leading to an indication of the load-carrying capacity. Alternative approaches using ultrasonic, dynamics
etc. are based on the unloaded state of the structure and anomalies may not be fully mobilized in the load
resisting path and thus their effects are not fully included in the measured responses. This paper studies
the effect of the load carried by a reinforced concrete beam on the assessment result of the crack damage.
This assessment can only be performed with an approach based on static measurement. The crack damage
is modelled as a crack zone over an area of high tensile stress of the member, and it is represented by a
damage function for the simulation study. An existing nonlinear optimization algorithm is adopted. The
identified damage extent from a selected high level load and a low load level are compared, and it is
concluded that accurate assessment can only be obtained at a load level close to the one that creates the
damage. 

Keywords: reinforced concrete; beam; damage; assessment; inverse problem; finite element; crack;
static load; deflection.

1. Introduction

Previous study in the condition assessment of aging reinforced concrete bridge deck (Law et al.,

1995) revealed a consistent pattern of crack zones in the bridge beams after years of service. Cerri
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and Vestroni (2000) modelled the damage zone as a beam element with a reduced flexural stiffness

with three parameters to define the damage, i.e., the position, the extent of the damage and the

reduction of the elemental flexural stiffness. Wahab et al. (1999) also proposed another set of

parameters to describe the damage zone in reinforced concrete beams, which are, the length of the

damage zone, its magnitude and the variation of the damage magnitude from the centre to the end

of the damage zone. Maeck et al. (2000) presented two techniques to calculate the stiffness

degradation of the damaged reinforced concrete beam based on this damage model from the

experimental modal characteristics. 

Qualitative condition assessment of reinforced concrete structures has been traditionally using

proof load test leading to an indication of the load-carrying capacity. Dynamics approach is very

popular nowadays to identify local damages, but it does not give any clue on the associated load-

carrying capacity of the structure. However the dynamics approach and other alternative approaches

of condition assessment are based on the unloaded state of the structure and local anomaly may not

be fully mobilized in the load resisting path and thus their effects are not fully included in the

measured responses. The identified results would be an under-estimation of the true value. 

This paper addresses the question on whether the identified results obtained by inverse analysis

from a low-level load test representative of the actual damage carried by the structure. The process

of damage detection is conducted on a reinforced concrete beam where local damage is created

experimentally under static loading and the crack damage is assessed in an inverse analysis with an

existing nonlinear optimization algorithm. The crack damage is modelled with the Wahab three-

parameters model as a cracked zone represented by a damage function. Unlike results obtained for

structures of isotropic homogeneous material, the identified damage extent of the reinforced

concrete beam is found dependent on the static load it carries. The identified damage state of the

beam using a low level loading is found in general less severe than the damage state created by

static load at a higher load level. It is concluded that accurate assessment of the crack damage in a

reinforced concrete beam is only possible with an identification load close to the one that creates

the damage.

1.1 Damage function for the reinforced concrete beam

Cracks in reinforced concrete beam will not be modeled individually but as a smeared zone of

cracks instead. The three-parameter model proposed by Wahab et al. (1999) is adopted which

models the damage effect as a distribution of reduction in the flexural rigidity of the cross-section

as

(1)

where γ, β, n are the damage parameters. lc is the position of the mid-point of the damage zone, and

L is the length of beam. The parameter β characterizes the length of the damaged zone with

. Parameter γ characterizes the magnitude of the damage with . No damage

exists if γ equals to 0.0. When γ equals to 1.0, the flexural rigidity vanishes at the mid-point of the

damage zone. Parameter n characterizes the variation of the flexural rigidity from the mid-point of

the damage zone to the ends of the beam. E0  is the original elastic modulus of the beam without

damage.

The averaged flexural stiffness of the ith element of the beam that carries the damage can be
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formulated as a function of the three parameters as

 

(2)

where le is the length of the finite element.

Note that the above equation refers to five states of a finite element defined as follows:

The 1st line of Eq. (2) refers to the ith element which is outside the range of the damage zone.

The 2nd line refers to the ith element which is larger than the damage zone and it takes the whole

damage inside the element.

The 3rd line refers to the damage zone which lies partly (left part of the damage) on the ith

element and partly (right part of the damage) on the (i+1)th element.

The 4th line refers to the ith element which is smaller than the damage zone and completed

within the damage zone.

The 5th line is similar to the 3rd line and refers to the damage zone which lies partly (right part

of the damage) on the ith element and partly (left part of the damage) on the (i-1)th element.

The damage index of a finite element can be determined from the average EI of the element as

Damage index of the ith element, 

1.2 elemental damage Index

In the inverse problem of damage identification, it is assumed that the stiffness matrix of the

whole element decreases uniformly with damage, and the flexural rigidity, EIi, of the ith finite

element of the beam becomes  when there is a damage. The fractional change in stiffness

of an element can also be expressed as

(3)
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ẼI

E0I ile lc βL/2  or  i 1–( )le lc βL/2+>–<

E0I

le
------- xd

i 1–( )l
e

l
c

βL/2–

∫ 1 γcos
2 π

2
---

x lc–

βL/2
-------------⎝ ⎠
⎛ ⎞

n

⎝ ⎠
⎛ ⎞

–⎝ ⎠
⎛ ⎞ x xd

l
c

βL/2+

il
e

∫+d
l
c

βL/2–

l
c

βL/2+

∫+ ,

i 1–( )le lc βL/2  and  ile lc βL/2+>–<

E0I

le
------- xd

i 1–( )l
e

l
c

βL/2–

∫ 1 γcos
2 π

2
---

x lc–

βL/2
-------------⎝ ⎠
⎛ ⎞

n

⎝ ⎠
⎛ ⎞

–⎝ ⎠
⎛ ⎞ xd

l
c

βL/2–

il
e

∫+ ,

i 1–( )le lc βL/2  and  ile lc βL/2+<–<

E0I

le
------- 1 γcos

2 π

2
---

x lc–

βL/2
-------------⎝ ⎠
⎛ ⎞

n

⎝ ⎠
⎛ ⎞

–⎝ ⎠
⎛ ⎞ x, i 1–( )le lc βL/2  and  ile lc βL/2+<–>d

i 1–( )l
e

il
e

∫

E0I

le
------- 1 γcos

2 π

2
---

x lc–

βL/2
-------------⎝ ⎠
⎛ ⎞

n

⎝ ⎠
⎛ ⎞

–⎝ ⎠
⎛ ⎞ xd xd

l
c

βL/2+

il
e

∫+i 1–( )l
e

l
c

βL/2+

∫ ,

               i 1–( )le lc βL/2, i 1–( )le lc βL/2+<   and  ile lc βL/2+>–>⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

i 1 2 … N, , ,=( )

=

αi 1
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matrix of the ith element of the damaged beam by Eq. (2).  is the stiffness reduction of the

element. A positive value of  indicates a loss in the element stiffness. 

The stiffness matrix of the damaged structure is an assembly of all the element stiffness matrix

(4)

where  is the transformation matrix that facilitates automatic assembling of the global stiffness

matrix from the constituting element stiffness matrix. 

1.3 Damage identification from displacement measurements

The force-displacement relation of a damaged structure can be expressed as

(5)

where F is the force vector. F = ΦP is the force vectors, in which  is the

vector of static loads;  is a 2(N+1)×Np shape function matrix, Np is the

number of loads.

 and  are the vectors of nodal deformation without and with damage, and  is the

vector of deformation difference due to damage. When under the same applied load, Eq. (5)

indicates qualitatively that a reduction in the stiffness matrix corresponds to an increase in the

vector of deformations. 

Vector ∆U can be estimated from Eq. (5) as

(6)

by neglecting the second order terms. Substituting the force displacement relation of the intact

structure and the stiffness matrix of the damage structure into Eq. (6), the analytical vector of

deformation due to damage is obtained as

(7)

where , and Ai is the transformation matrix for the ith element for

assembling the global stiffness matrix from the constituting element stiffness matrix. 

The measured displacement us at location xs can be obtained from the shape functions ϕs and

nodal displacement u of the beam as

(8)
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For Ns measuring points at , Eq. (8) can be written as follows 

 (9)

where  and 

The error between the vectors of difference between the calculated and measured deformations of

the structure is obtained from Eqs. (7) and (9) as

(10)

where  is the vector of differences between the measured displacement of structures with and

without damage.

The algorithm to identify the damage is based on minimizing the least-squares error function in

Eq. (10) as (Wang et al. 2001)

Minimize

subject to (11)

This model can be cast into the following quadratic programming problem (Bannan and

Hjelmstad 1994a) for determining the damage indices 

Minimize

subject to (12)

where . The algorithm presented by Goldfarb and Idnani (1983) is used to solve this

quadratic programming problem. Detail of the iterative algorithm used to solve the nonlinear

optimization problem is listed as follows:

1) Calculate the matrix .

2) Initially assume that there is no damage in the beam, i.e., .

3) Since we cannot measured the deformation of the intact beam under a given load for a

reinforced concrete beam (the beam will naturally crack under load), the baseline deformation

vector of the structure without damage  is calculated and used instead of the measured

deformation vector from the intact beam, and the initial vector of measured deformation

difference from the intact and damage beams is obtained as .

4) Identify damage index aj using Eq. (12). j = 1 for the first cycle of iteration.

5) Calculate ∆U by Eq. (7) with the updated  and .

6) Calculate the following criteria of convergence 
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 are the identified damage indices in two successive iterations. Convergence is achieved

when both errors are less than the pre-defined tolerance values.

7) When the computed error does not converge, calculate  and .

Repeat Steps 4 to 6 until convergence is reached.

The damage identification is performed iteratively. The initial value of the damage index is

assumed as zero. The difference between the measured and the calculated baseline deformation is

used to identify the local damages by Eq. (12), and then the deformation from the improved finite

element model of the beam under the same set of applied load is reconstructed. The difference

between the reconstructed and measured deformations is again used to update the finite element

model of the beam until the convergence criteria of Eq. (13) is achieved. 

2. Numerical simulations

2.1 Example 1: A reinforced concrete beam with damage in a single element

A numerical example with a four metre long simply supported uniform rectangular concrete beam

is studied. It has a 300 mm high and 200 mm wide cross-section and 3.8 m clear span. There are

three 20 mm diameter mild steel bars at the bottom of the beam corresponding to a steel percentage

of 1.57%, and two 6 mm diameter steel bars at the top of the beam section. 6 mm diameter mild

steel links are provided at 195mm spacing over the whole beam length. The density, tensile

strength, Young’s modulus, and Poisson’s Ratio of concrete are respectively 2351.4 kg/m3,

3.77 MPa, 30.2 GPa and 0.16. The Young’s Modulus and yield stress of the mild steel bars are

respectively 181.53 GPa and 300.07 MPa. All the above parameters are measured from experiment.

This study is to verify the identification algorithm and a local damage in the form of stiffness

reduction in a single finite element is used.

2.2 Study 1: Verification of the damage identification algorithm

The beam is discretized into eight elements. Damage is located at the third element and modelled

with α3 = 0.1. The location of the damage is intentionally selected to avoid symmetry of the

measured information which may lead to a set of non-unique identified results. A static load of

αj αj 1+,

Us∆ URe constructed Us–= α0 α=

Table 1 Displacements (mm) at different locations under the static load

Load location 

Measuring location

1/3L 1/2L 3/4L

1/8L 0.10 0.10 0.10 0.10 0.06 0.06

1/4L 0.18 0.19 0.18 0.19 0.11 0.12

3/8L 0.23 0.24 0.25 0.25 0.16 0.16

1/2L 0.23 0.23 0.28 0.28 0.19 0.19

5/8L 0.20 0.20 0.26 0.26 0.20 0.20

3/4L 0.15 0.15 0.19 0.19 0.17 0.17

7/8L 0.08 0.08 0.10 0.10 0.10 0.10

Us U
s

Us U
s

Us U
s



Damage assessment of reinforced concrete beams including the load environment 771

5000 N is applied to the beam at 1/3L, 1/2L or 3/4L separately. Seven displacement measurements

evenly distributed along the beam are used for the identification. The Young’s modulus of material

of each element is taken as the unknown. Table 1 shows the measuring locations and their values.

The tolerance values for Error1 and Error2 are 0.01 in the simulations and the result converges

after 21 iterations. Fig. 1 shows the identified results from the three load cases. The identified

results are very close to the true value. This shows that the proposed damage identification

algorithm is reliable and accurate results can be obtained from the static response measurements.

2.3 Study 2: Effect of noise in measurement

One percentage white noise is added to the calculated displacements of the beam to simulate the

polluted measurements with

(14)

where  and  are the polluted and the original “measured” displacements. Ep is the noise

level and  is a standard normal distribution vector with zero mean value and unit standard

deviation, and it is generated independently for each component of the measured displacement. 

The parameters are the same as in the above study with the load located at 1/2L. Monte Carlo

method is used in the simulations. One hundred sets of simulated results are obtained. Figs. 2(a) and

(c) shows the relation between the mean values of the identified results for Element 3 and the

number of simulations when the damage index α3 is 0.1 and 0.3, separately. This corresponds to

State 2 of Eq. (2) where only element 3 has a 10% and 30% in the flexural stiffness respectively.

Figs. 2(b) and (d) show their histograms compared with the corresponding normal distributions. In

Figs. 2(a) and (c), the mean values of the identified damage indices converge to a constant value

when the number of simulations is larger than 80. In Figs. 2(b) and (d), the histograms of the

identified results are close to the normal distribution. These results indicate the estimated damage

indices have normal distributions approximately if the displacement measurement noise follows a

normal distribution. More simulated results would give a more clear indication of distribution with

the damage indices.

Fig. 3 shows the range of identified results from 1% noise polluted static responses when the

damage index α3 is 0.1 and 0.3, separately. In practice, static measurement is more accurate than

dynamic measurements, and 1% simulated noise pollution is considered good enough to represent

Us Ucalculated 1 Ep*Nnoise+( )=

Us Ucalculated

Nnoise

Fig. 1 Identified results from using different load locations
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the random error with real static measurements. The damage location and extent can be determined

accurately for the large damage case of α3 = 0.3 but not for the small damage case. The identified

results for Elements 2 and 3 overlap for the small damage case  of α3 = 0.1. The predicted mean

and standard deviation of the identified results show a large variation in the adjacent elements close

to the left support, and a smaller variation in all other elements. This statistical approach adds more

information to the behaviour of the identified damage of the structure with polluted measurement.

Fig. 2 The identified results for element 3 in the simulations

Fig. 3 Identified results from 1% noise polluted static responses; (■) denotes the mean value, ( ) denotes
the range of standard deviation.

___
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2.4 Example 2: A reinforced concrete beam with a damage zone

Since this study is on the effect of static load on the identification of system parameters, the effect

of other parameters should preferably be removed. Therefore, before applying the above technique

to the experimental reinforced concrete beam, a study is made on the optimal number of sensors

and finite element discretization required for an accurate assessment. A concentrated load of 5000 N

is applied at mid-span of the beam. The damage zone is defined by the three-parameter model with

, ,  and . The equivalent set of damage indices in the different beam

elements are shown in column 2 of Table 2. The damage index in each beam element is taken as

the unknown in the identification.

2.5 Study 3: Optimal number of sensors

The beam is discretized into 16 finite elements, and 7, 15 and 31 number of displacement

“measurement” recorded at equal spacing along the beam are separately used in the identification.

The identified results are compared with the true equivalent damage indices of 0.1 and 0.3 in the

second column of Table 2. The error, Error2, defined in Eq. (13) for 7, 15 and 31 displacement

readings are 25.3%, 18.1% and 7.0%, respectively. The results show that higher accuracy is

achieved with more sensors, while results from seven sensors are considered acceptable. 

lc L/3= β 0.2= γ 0.5= n 2=

Table 2 Damage indices from different number of sensor and finite element discretization

Element 
number

Equivalent 
damage indices

Identified damage indices

Number of sensors Number of finite elements

7 15 32 4 8 16

1 0.00 0.00 0.00 0 0.03 0.01 0.00

2 0.00 0.00 0.00 0 0.03 0.01 0.00

3 0.00 0.00 0.00 0 0.03 0.04 0.00

4 0.01 0.12 0.21 0 0.03 0.04 0.12

5 0.38 0.28 0.15 0.434 0.27 0.43 0.28

6 0.49 0.57 0.55 0.451 0.27 0.43 0.57

7 0.22 0.00 0.18 0.236 0.27 0.11 0.00

8 0.00 0.06 0.01 0 0.27 0.11 0.06

9 0.00 0.00 0.00 0 0.00 0.00 0.00

10 0.00 0.00 0.00 0 0.00 0.00 0.00

11 0.00 0.00 0.00 0 0.00 0.00 0.00

12 0.00 0.00 0.00 0 0.00 0.00 0.00

13 0.00 0.03 0.00 0 0.01 0.01 0.03

14 0.00 0.00 0.00 0 0.01 0.01 0.00

15 0.00 0.00 0.00 0 0.01 0.00 0.00

16 0.00 0.00 0.00 0 0.01 0.00 0.00
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2.6 Study 4: Optimal finite element discretization

The beam is discretized into four, eight and sixteen finite elements in turn for the identification.

Seven measured displacements recorded at equal spacing along the beam are used. The identified

results are shown in Table 2, and the errors, Error2, defined in Eq. (13) are 33.9%, 16.6% and

25.9%, respectively for the 4, 8 and 16 elements discretization configuration. The results show that

the accuracy of the identified damage indices is higher with increasing number of finite elements,

and eight finite elements are considered giving acceptable results when there are seven

measurements. The 16 element configuration gives poorer results than the 8 element configuration

when only seven transducers are used. When looking at results from this and the last studies, it may

be concluded that more sensor would give more spatial information on the damage location in the

structure and the benefit of having a more refined finite element model would be realized only

when the number of sensor be increased to the maximum with one sensor at each internal node of

the beam.

3. Laboratory study

The 4 m length beam described in the numerical study is test as shown in Fig. 4(a). The beam

was simply supported on two 50 mm diameter steel bars 3.8 m apart. The steel bars lie on top of a

solid steel support fixed to a large concrete block on the strong floor of the laboratory. A piece of

thin rubber pad is placed between the steel bar and the bottom of the concrete beam for level

Fig. 4 Reinforced concrete beam and sensor locations
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adjustment. The vertical stiffness of the rubber pad was measured as 39.41 kN/mm after the test and

it will be used to modify the measured displacements. 

The initial flexural rigidity of the concrete beam is estimated by direct calculation using the

measured material property and the geometrical dimensions of the beam. The beam carries no crack

and therefore the steel bars insides are not considered contributing as a composite component of the

beam. The beam was incrementally loaded at mid-span to create crack damage using three-point

loading. Eight loading cycles starting from 0.0 kN to a specified load level as shown in Table 3

were conducted. The load was subsequently unloading after reaching the maximum. After unloading

in the last loading cycle from 67 kN, the beam was loaded up to failure by yielding of steel bars at

75 kN. The crack locations and lengths were recorded in addition to the displacement measurements

and they are shown in Table 4. 

The beam is divided into eight and sixteen finite elements for the study. First crack appears in

elements 8 and 9 at 17 kN in the sixteen finite element model. Nine displacement transducers are

located at the bottom of the beam to measure the deflection under load as shown in Fig. 4(b). The

static responses at all the nine measurement points are used in the damage identification. The

INV300 data acquisition system is used to record data from all the 9 displacement sensors and the

Table 3 Load Level in different loading stages 

Load stage 1 2 3 4 5 6 7 8

Assessment load (kN) 10 17 25 35 45 50 55 60

Maximum load (kN) 15 25 35 45 50 55 60 67

Table 4 Cracks in each element at the end of the final loading stage

Element No. 4 5 6 7 8 9 10 11 12 13

Front 
view

No. of cracks 1 1 1 1 2 2 1 2 1 1

Length (mm) 162 162 150 177 163, 211 211, 192 181 141, 137 163 171

Back 
view

No. of cracks - 1 1 1 2 2 - - - -

Length (mm) - 161 170 145 180, 160 160, 202 - - - -

Fig. 5 Comparison of deflections at midspan at 60 kN
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applied load with a sampling rate of 200.12 Hz. 

Fig. 5 compares the measured and reconstructed deflection at midspan of the beam at 60 kN in

the final load stage. The reconstructed deflection is from the beam incorporating the identified

damage indices α. The two curves are very close to each other and nearly symmetrical about the

mid-span of the beam. This is consistent with the small error (results not shown) between the two

curves calculated by the following formula.

(15)

By Eq. (15), the difference between the measured and reconstructed responses at 60 kN is 2.53%. 

3.1 Damage identification – study on the damage evolution under load

Firstly, the displacement in a subsequent loading stage with an assessment load close to the

maximum load of the previous stage is used to identify the damage. For example, the displacement

at an assessment load of 45 kN in the sixth loading stage is used to assess the damage created by

the same load at the fifth loading stage. This is to simulate the real practice of assessment at a

second loading cycle instead of the same load cycle. The assessment load for each load stage is

shown in Table 3. Elements 4 and 5 are identified to have damage in the case of the 8 finite

element model, while elements 8, 9 and 11 are identified to have damage in the 16 finite element

model. The identified damage indices are plotted in Figs. 6(a) and 6(b) indicating a nonlinear

increase with an increase in the applied load. The element numbers are marked as (•) beside the

Error
Us URe constructed–

Us

----------------------------------------- 100%×=

Fig. 6 Identified damage indices. (a), (b) evolution with load; (c), (d) after the final loading stage
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curves. In Figs. 6(a) and (c), the blue solid line with the legend (4) is the identified damage indices

for Element 4, and the red dashed line with the legend (5) is the identified damage indices for

Element 5. In Figs. 6(b) and (d), the blue solid line with the legend (8), the red dashed line with the

legend (9), and the red dashed-dot line with the legend (11) are the identified damage indices for

Elements 8, 9 and 11, respectively. 

The curve flattens at around 35 kN for element 5 and 45 kN for element 4. This is because part

of the deformation does not recover after unloading in the previous load cycle and the damage

index would be an underestimation of the true value. Table 4 shows the dimensions and locations of

cracks in the sixteen finite element model when the beam was loaded up to 67 kN. It is noted that

the damage is more or less symmetrical about the midspan, and the crack damage in the right halve

of the beam is slightly more severe than the left halve. Elements 8, 9 and 11 are identified to have

damage as shown in Fig. 6(b). It should be noted that Figs. 6(a) and 6(b) are damage evolution

diagrams of the damaged elements with load. Each data point on the curve corresponds to the

damage created by the associated load. After the beam was loaded up to 60 kN in the eighth

loading stage, the damage indices in elements 4 and 5 becomes 0.41 and 0.55 respectively. Similar

discussions apply to the damages in the 16 element model.

Comparison of the identified results from the assessment loads of 10, 17, 25, 35, 45, 50 and

55 kN with those from the assessment load 60 kN shows a difference of 101.32%, 76.83%, 53.48%,

26.60%, 12.02%, 7.29% and 7.43%, respectively. When the assessment load is not smaller than

35 kN, the identified results are acceptable. Although the load that creates the damage is not known

in real case, acceptable results can be obtained from any assessment load that falls in the range of

the flattened part of the curve.

3.2 Damage identification – simulating practical assessment

The crack damage in the beam after the eighth loading stage was again assessed with loads at

different load levels. The beam was unloaded and then loaded again with the assessment loads of

10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 kN in turn. This is equivalent to the common practice

of assessing a structure which has been badly damaged under extreme loading with a smaller

loading in the assessment. Existing dynamic approaches of assessment are conducted with the

structure unloaded. Results from such assessment procedure at different load level smaller than that

creates the damage are shown in Figs. 6(c) and 6(d). The damage index for element 4 associated

with the damage created at 67 kN is 0.41 and that for element 5 is 0.55.

When the assessment load is smaller than 25 kN, concrete at different cross-sections crack with

the embedded reinforcement exposed. Many cracks open up leading to variations in the second

moment of inertia of the beam with applied load within this loading range. When the assessment

load is larger than 25 kN, most of the tensile strains are taken up at some of the existing cracks for

their development into major cracks while new crack occurrence is scarce. The stiffness of the beam

is affected mainly by the existing cracks and is thus relatively stable. It was also observed in the

experiment that only some of the flexural cracks in the beam are closed after the beam was

unloaded. The identified damage indices are therefore smaller at a low loading level when the crack

damage was not fully mobilized at this small load level. The identified damage value becomes

relatively stable when a load above and close to 25 kN is reached. This illustrates a basic problem

encountered with damage detection of reinforced concrete structure with a low load level where the

flexural crack and crack damage in the steel-concrete interface will not show up under small load,
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and they will be fully mobilized only under the load that creates them. Therefore the inclusion of an

appropriate proportion of the operation load in the condition assessment would be essential.

4. Discussions

Taking the application of the proposed method to a bridge structure, there are always some design

load cases for a bridge deck that would be representive of the operational load of the structure. Also

for most of the major bridge structures, there is a static load test before the hand-over of the

structure from the contractor to the client. These two types of loading are considered sufficient to

cause significant crack damage in the bridge deck with the damage stage falls in the plateau region

of Figs. 6(c) and 6(d). These loadings could be considered as responsible for the crack damages in

the structure.

For the beam studied, assessment with approximately one-third of the load that create the crack

damage, i.e., 25 kN out of 67 kN, gives approximately the same damage index as when using the

full load of 60 kN as denoted by the flatten region in Figs. 6(c) and 6(d). This is considered valid

only for beams that have sustained some permanent deformation (Law et al. 1995). Further studies

are required for beams with crack damage created at different load levels. 

A dynamics approach of assessment which is very popular nowadays can be performed with the

structure virtually unloaded, but large underestimation of the damage extent will incur due to

reasons discussed as above, and it should be used with utmost care for the assessment of reinforced

concrete structures.

It should be mentioned that all the available static measured information are used in the above

studies does not mean an application of a sophisticated method to solve a simply supported beam

problem. Every effort is made to ensure the identified results can be shown to be dependent on the

load environment of the beam instead of other influencing factors. Beam of other configurations

including continuous beams can be similarly treated for the effect of the load the beam carries on

their condition assessment.

5. Conclusions

This paper studies the effect of the load carried by a reinforced concrete beam on the final

assessment result of the crack damage. The assessment is performed with a static approach. The

crack damage is modelled as a crack zone. The identified damage magnitudes from a selected high

load level and a low load level are compared. Unlike results obtained for structures of isotropic

homogeneous material, the identified damage level of the reinforced concrete beam studied is found

dependent on the static load it carries. It may be concluded that accurate assessment of the crack

damage in a reinforced concrete beam is only possible when a load similar to the one that creates

the damage is used in the identification.
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