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Dynamic stress intensity factors for two parallel cracks in 
an infinite orthotropic plate subject to an impact load
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Abstract. Stresses are solved for two parallel cracks in an infinite orthotropic plate during passage of
incoming shock stress waves normal to their surfaces. Fourier transformations were used to reduce the
boundary conditions with respect to the cracks to two pairs of dual integral equations in the Laplace
domain. To solve these equations, the differences in the crack surface displacements were expanded to a
series of functions that are zero outside the cracks. The unknown coefficients in the series were solved
using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors
were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress
intensity factors were calculated numerically for selected crack configurations.
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1. Introduction

Fiber-reinforced plastics are being used increasingly for machine parts because of their high

strength and relatively light weight. Since the matrix is reinforced by fibers, cracks may appear in

the matrix along the fibers. Composite materials are essentially orthotropic, and the stresses around

the crack can be obtained using the orthotropic theory of elasticity. A static solution for a crack in

an infinite orthotropic plate was reported by Ang and Williams (1961), and it was clarified that the

stress intensity factors KI and KII correspond to those for a crack in an infinite isotropic plate. If a

crack exists near the stress free boundary, the stress intensity factors may be affected by the material

orthotropic property. Based on these considerations, the stresses were solved for two collinear

cracks in an orthotropic strip by Delale and Erdogan (1977). In the paper (Delale and Erdogan

1977), the cracks were placed normal to the stress free-boundaries. Later, the stress intensity factors

were provided for a crack and for two collinear cracks in an orthotropic strip by Cinar and Erdogan

(1983), where the crack was situated parallel to the stress free boundaries of the strip. The

composite materials are often weakened by several cracks. To clear the mutual effect of these cracks

on the stress intensity factors, the stresses were solved for a main-crack and a parallel micro-crack

in an infinite orthotropic plane by Chen and Hasebe (1994). The stress intensity factors were also
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solved for two interacting cracks, one of which coincides with the axis of material orthotropy, with

the other being oriented in a general direction (Chen and Hasebe 1995).

If cracked composite materials are loaded dynamically, the stresses are affected by the inertia

effect. A time-harmonic solution was first obtained for a crack in an infinite orthotropic plane

(Ohyoshi 1973). Later, transient dynamic stress intensity factors were solved for a crack in an

infinite orthotropic plane under a load applied suddenly to the crack surfaces (Kassir and

Bandyopadhyay 1983). The transient dynamic stress intensity factors were given for the case in

which an impact load is applied to the crack surfaces in an orthotropic strip with a central crack

situated perpendicular to the stress-free surfaces (Shindo et al. 1986). Cracks often initiate from the

stress-free surfaces of the strip and travel toward the interior of the strip. Therefore, it is meaningful

to solve dynamic edge crack problems. Dynamic stress intensity factors were solved for two

symmetrically situated edge cracks in an infinite orthotropic strip under an applied impact load

(Shindo et al. 1991). The corresponding solutions were also provided for a single edge crack in an

orthotropic strip (Shindo et al. 1992). 

If the functionally graded materials are manufactured by using a plasma spray technique, the

material properties may not be isotropic, but orthotropic (Sampath et al. 1995, Kaysser and Ilschner

1995). Scattering of anti-plane harmonic waves by a finite crack in the functionally graded

orthotropic medium was investigated by Ma et al. (2007a). Later, the corresponding problems were

also solved for a crack in the functionally graded orthotropic materials under the time-harmonic

Mode I and II loadings (Ma et al. 2007b). 

The dynamic stress intensity factors for two parallel cracks in an infinite isotropic plane were

solved for the incident time-harmonic stress waves which impinge normal to the cracks (Takakuda

1982) and it was revealed that the peak values of the dynamic stress intensity factors were

considerably larger than those for the corresponding static solution. The corresponding dynamic

stresses were solved for two parallel cracks in an infinite isotropic plate during the passage of

impact shock stress waves (Itou 1995). In composite materials, cracks have a tendency to appear in

the matrix parallel to the fibers. The dynamic stress intensity factors were clarified for two parallel

cracks in an infinite orthotropic plane during the passage of the incident time-harmonic stress waves

(Itou and Haliding 1997). 

The composite materials used in aircraft, vehicles, and other applications are often loaded

suddenly. In the present paper, transient dynamic stresses are solved for two parallel cracks in an

infinite orthotropic plane during the passage of shock stress waves that propagate normal to the

cracks. Using a method similar to that employed in the Refs. (Itou 1995), the boundary conditions

were reduced to dual integral equations in the Laplace domain. In order to solve these equations, the

differences between the crack surface displacements are expanded to a series of functions that are

equal to zero outside the cracks. The Schmidt method explained in Refs. (Morse and Feshbach

1958, Yau 1967, Itou 1976) is then applied to solve the unknown coefficients in the series so as to

satisfy the boundary conditions inside the cracks. 

If we replace ω by (is), all the expressions in time-harmonic problems having the time factor

exp(iωt) are valid in the Laplace transform in which exp(−st) is the kernel of the Laplace

transformation. Then, it may be considered that solving the transient dynamic problem is trivial

because the conversion is quite straightforward. It is true, but the work to convert the problem is not

so easy in practice. It is also not easy to make the FORTRAN programming to perform numerical

calculations for the dynamic stress intensity factors. Furthermore, it is useful to find the peak values

of the dynamic stress intensity factors. In the present paper, it is verified that the incoming shock
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stress wave can propagate through the orthotropic medium.

The stress intensity factors defined in the Laplace domain are inverted to physical space using the

numerical technique (Miller and Guy 1966). Stress intensity factors are calculated numerically for

typical composite materials and for an isotropic material.

2. Fundamental equations

Consider a crack located along the x-axis from −a to a at y = 0, with respect to the rectangular

coordinates (x, y), and another along the x-axis from −b to b at , as shown in Fig. 1. For

convenience,  is referred to as layer (1),  is referred to as upper half-plane (2), and

 is referred to as lower half-plane (3). When the problem is solved under the plane stress

condition, the equations of motion can be reduced to the following form 

(1)

with

, , , (2)

where u and v are defined as the x and y components of the displacement, respectively, Ex and Ey

are the Young’s moduli of the x and y components, respectively,  is the modulus of rigidity, 

is Poisson’s ratio, ρ is the density of the material, and t is time.

The stresses can be expressed as follows

(3)

The incident stress wave that propagates along the y-axis in the negative direction through the

infinite orthotropic plane can be expressed as follows

(4)

y h–=

h– y 0< < 0 y<
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Fig. 1 Geometry and coordinate system 
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where v0 is a constant and  is the Heaviside unit step function. Time t is considered to be zero

when the wave front reaches the upper crack at y = 0. Next, Eq. (4) is shown to satisfy the second

equation in Eq. (1). Partial differentiating  with respect to y, we obtain

(5) 

(6)
 

Next, from Eqs. (5) and (6), we obtain the following equations 

(7)

Thus, the following equation can be satisfied 

 
 (8)

 
The expression in Eq. (5) can be converted to the following

 (9)

Replacing  in Eq. (9) with Y, and letting Y approach zero, we obtain

(10)

Thus, the first equation in Eq. (5) can be replaced by the following equation 

 
(11)

 
As a result, the incident stresses can be expressed by

 

(12)

 

with

 
(13)

 
Therefore, the boundary conditions for the present problem can be expressed as
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(17)

 
(18)

 
(19)

 
where the subscript 1 indicates the layer, the subscript 2 indicates the upper half-plane (2), and the

subscript 3 indicates the lower half-plane (3). 

3. Analysis

To obtain a solution, the following Laplace transforms are introduced

, (20)

and the following Fourier transforms are also introduced

, (21)

Applying Eqs. (20) and (21) to Eq. (1), we obtain 
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with
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(28)

 

(29)

with

(30)

For all cases, λ2 and λ4 are given by

(31)

For the layer (1), the solutions of Eq. (22) have the following forms  

(32)

with

(33)

where  are unknown coefficients. For the upper half-plane (2) and the lower half-plane

(3), the solutions of Eq. (22) have the following forms in terms of the unknown coefficients

 

(34)
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Hereinafter, the mathematical derivation is basically the same as that of a previous paper (Itou and

Haliding 1997). If ω is replaced by (is) in the previous paper (Itou and Haliding 1997), all of the

expressions are valid in the present paper. Therefore, the previous paper is described only briefly.

The stresses and displacements can be expressed by eight unknowns: G1, H1, E1, F1, C2, D2, C3, and

D3. Using Eqs. (14) and (15), which are valid for , the eight unknowns are reduced to four

unknowns . 

The differences of the displacements are expanded in the Laplace domain as follows

(38)

 

(39)

(40)

 

(41)

where , and dn are unknowns, and the subscripts a and b indicate the values at  and

, respectively. If the differences of the displacements are expanded by Eqs. (38)-(41), then

boundary conditions (17) and (19) have been satisfied. Then, the remaining boundary conditions

(16) and (18), which must be satisfied inside the cracks, reduce to the forms

(42)

(43)

where known functions  have the same expressions provided by Eq. (C3) in

Appendix C in the previous paper (Itou and Haliding 1997), and  and  are given by

(44)

The unknowns  , and  in Eqs. (42) and (43) can now be solved using the Schmidt

method (Morse and Feshbach 1958, Yau 1967, Itou 1976).
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4. Stress intensity factors

Once the unknown coefficients , and  have been solved, all of the stresses and

displacements can be obtained. The stress intensity factors in the Laplace domain can be expressed as

(45)

(46)

where the known constants  have the same expressions given in Eq. (41) in the

previous paper (Itou and Haliding 1997). 

The inverse Laplace transformations of the stress intensity factors are carried out by the numerical

method described in Ref. (Miller and Guy 1966). When the Laplace transform  can be

evaluated at discrete points given by

, (47)

the coefficients CM are determined using

(48)

where,  and . If the coefficients are calculated up to , an approximate value of

 can be found, as follows 

(49)
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(50)

Therefore, the static results of the stress intensity factors in physical space can be obtained using

Eq. (50).

5. Numerical examples

The dynamic stress intensity factors were calculated numerically with quadruplex precision using

a Fortran program. Here, overflow and underflow do not occur within the range  to .

Numerical calculations are carried out for graphite-epoxy composites and for steel. The material

properties for the composites are provided in a handbook (Peters 1998), and these are given in

Table 1, in which the material properties for steel are also presented. For steel, Eq. (24) has two

kinds of multiple roots because Ex is equal to Ey. In this case, solutions given by Eqs. (32) and (34)

are invalid. However, if Ey is replaced by Ey × 0.999, the expressions given by Eqs. (32) and (34)

are still valid. In Table 1, the density of the material ρ is not shown, because a dimensionless time

 is used instead of time t. 

The semi-infinite integrals, which appear in the known functions , must

be evaluated numerically. It can be verified that the numerical integrations have been performed

satisfactorily because the integrands decay rapidly as the integration variable ξ increases. To solve

sg s( )[ ]
s 0→
lim g t( )

t ∞→
lim=

10 5500– 10+5500

cTt/a µxy/ρ( )1/2
t/a×=[ ]

kna x( ) lna x( ) … rnb x( ), , ,

Table 1 Material properties

Constants Materials Steel Graphite-Epoxy Composites

Ex (GPa)
Et (GPa)
µxy (GPa)

νxy

206.0
206.0×0.999

82.4 
0.25  

145.0
9.6
5.8

0.30

Fig. 2 Stress intensity factors KIa, KIIa, KIb, and KIIb

for graphite-epoxy composites (b/a = 1.0 and
h/a = 0.2) 

Fig. 3 Stress intensity factors KIa, KIIa, KIb, and KIIb

for steel (b/a = 1.0 and h/a = 0.2)



706 Shouetsu Itou

the unknown coefficients , and , the Schmidt method has been applied by truncating

the infinite series in Eqs. (42) and (43) by summing from  to . It has been verified

that the values for the left-hand side of Eqs. (42) and (43) coincide to those for the right-hand side

with acceptable accuracy. The numerical Laplace inversions are carried out by setting

 in Eq. (49). 

The stress intensity factors , and  are calculated for  and 

and these are plotted with respect to  for graphite-epoxy composites and for steel in Figs. 2

and 3, respectively. The corresponding values  for a single crack in an infinite plane are

solved separately, and these are shown by the dotted lines in these figures. The straight lines drawn

on the right-hand side show the corresponding static values calculated using Eq. (50). 

6. Conclusions

Based on the numerical calculations outlined above, the following conclusions are obtained:

(1) For composite materials weakened by two parallel cracks, the significant stress intensity factor

is  at the end of the upper crack. The peak value,  for 

and , is approximately 1.05 for graphite-epoxy composites and is considerably

smaller than 1.25, which is the corresponding value for a single crack in an infinite orthotropic

plate. For an isotropic material, the peak value,  for  and , is

considerably smaller than that for a single crack in an infinite plate. 

(2) The value of KIa reaches the first peak value, and somewhat later, that of KIb reaches the peak

value. However, for Mode II, the peak value first appears in KIIb, and somewhat later, (−KIIa)

reaches its first peak value. 

(3) For a single crack in an infinite plane, the dynamic stress intensity factor increases

continuously, eventually reaching the upper peak value. The dynamic stress intensity factor

then tends to fall, eventually reaching the lower peak value. Somewhat later, the value

converges at the corresponding static value. In contrast, the dynamic stress intensity factors

around the two parallel cracks oscillate toward the corresponding static values.

7. Correction

The elastic constant c11 is given by Eq. (2) as follows

(51)

In the previous paper (Itou and Haliding 1997), the authors mistakenly presented the following

expression

(52)

If  in Eq. (52) is replaced by the following

(53)

then all of the expressions in the previous paper by (Itou and Haliding 1997) are applicable. In the

an bn cn, , dn

n 1= n 10=

β 0.0= δ 0.2= N 11=, ,( )
KIa KIIa KIb, , KIIb b/a 1.0= h/a 0.2=

cTt/a

KIa

single

KIa/ p πa( ) KIa

peak
/ p πa( ) b/a 1.0=

h/a 0.2=

KIa

peak
/ p πa( ) b/a 1.0= h/a 0.2=

c11 Ex/ µxy 1 Ey/Ex( )νxy

2
–[ ]{ }=

c11 Ex 1 Ey/Ex( )νxy

2
–{ }/µxy=

µxy

µxy 1 Ey/Ex( )νxy

2
–{ }

2
µxy→
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paper (Itou and Haliding 1997), the absolute values of the dynamic stress intensity factors are

plotted with respect to the dimensionless circular frequency ωa/cT , which is given by the following

equation 

ωa/cT  = (54)

The modulus of rigidity  does not appear in the numerical calculations in the previous paper

(Itou and Haliding 1997), but their numerical results are the correct values. 

Using the correct Eq. (51), the dynamic stress intensity factors have been recalculated numerically,

and numerical results are verified to correspond to those provided of the previous paper (Itou and

Haliding 1997).
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