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Abstract. In this paper a 3-D continuum damage mechanics formulation for composite laminates and
its implementation into a finite element model that is based on the layer-wise laminate plate theory are
described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic
material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to
the three principal material directions. The progressive damage of different angle ply composite laminates
under quasi-static loading that exhibit the free edge effects are investigated. The effects of various
numerical modeling parameters on the progressive damage response are investigated. It will be shown that
the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However,
the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at +θ/-θ layers interfaces.
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1. Introduction

The analysis of composite structures may require the construction of damage models capable of

predicting the different damage mechanisms and their evolution until final fracture. In addition,
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these models should be applicable to industrial structures subjected to complex loading.

An attractive framework for derivation of material models considering local failure is continuum

damage mechanics (CDM). In this concept, the local loss of load-carrying area due to formation of

microcracks is accounted for by damage internal variables. Kachanov (1958), Lemaitre (1985 and

1986), Chaboche (1988a and 1988b) and Krajcinovic (1983 and 1984) used continuum damage

mechanics to analyze different types of damage ranging from brittle fracture to ductile failure.

However, the application of continuum damage mechanics to composite materials has been

restricted for composites utilizing a transversely isotropic medium (Talreja 1985).

Ladeveze et al. (1990) developed a meso scale shell model for laminated composites. Ladeveze

and Le Dantec (1992), Allix and Ladeveze (1989 and 1992) and Ladeveze et al. (2000) continued

with the mesomechanical modeling where damage was independently predicted for each

homogenized composite ply, and each interface that separates adjacent plies. The laminate was

assumed to break into a series of anisotropic plies, which are homogeneous through the thickness,

and zero-thickness interface layers. By analyzing each ply at the fiber, matrix, and fiber/matrix

interface levels, qualitative information were provided about the fiber and matrix properties of the

laminate (Ladeveze 1990). Damage was also based on two independent modes; one representing

matrix cracking and fiber pull-out while the second was associated with the transverse brittle failure

of the fiber-matrix interface. The interface model incorporates three damage parameters, each

associated with a through-thickness stress, one normal, and two shears.

Voyiadjis and Kattan (1993 and 1999), Voyiadjis and Park (1999) and Voyiadjis and Deliktas

(2000) developed a 3-D model for coupled progressive damage and plasticity using a symmetric

second order damage tensor. Voyiadjis and Park (1993) and Voyiadjis and Deliktas (2000) proposed

a micromechanical based approach that incorporated damage and plastic deformations into the

analysis of metal matrix composite materials. They characterized three damage modes: matrix

damage, fiber damage, and interfacial debonding. An isotropic damage criterion was also proposed

for the three types of damages accompanied by damage evolution equations assuming that the

energy dissipated due to the plasticity and that due to the damage were independent of each other. 

Barbero and De Vivo (2001) developed a 2-D plane stress model for progressive damage based

on the use of a symmetric second order damage tensor. Damage evolution and stiffness reduction

were computed for the pre-homogenized composite material simplifying the formulation. Their

model was extended by Barbero and Lonetti (2002) to include plasticity, and further extended by

Lonetti et al. (2003) to include triaxial orthotropic damage in terms of three damage eigenvalues. 

Two-dimensional damage models are usually employed when plane stress or strain conditions are

imposed. Obviously, these conditions are not fulfilled for the analysis of real structures. For such

structures, the three-dimensional modeling becomes necessary. However, the use of three-

dimensional models is limited to the prediction of the elastic properties and/or the initial damage,

and not for the distinction of other important damage aspects such as the damage modes.

In this paper, progressive damage of the composite laminates under quasi-static, monotonic

loading are investigated. For this purpose continuum damage mechanics incorporated with a special

layer-wise laminated plate theory is used. The purposed CDM model uses the hypothesis of strain

energy equivalency to relate the damage and fictitious undamaged state; however in the Ladeveze

approach the strain equivalency was used. In the present method we also used the associated flow

rule, but Ladeveze used the lay-up dependent non-associated flow rule. In our approach, the

eigenvalues of the damage tensor is capable of quantitatively and indirectly describing the density

and distribution of the fiber degradation, fiber/matrix debonding, and matrix cracks that are oriented
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either parallel to the fibers direction or perpendicular to that. But, Ladeveze didn’t use a damage

tensor and he implemented the related damage parameters to each damage mode in to the material

stiffness matrix directly.  

The developed finite element program is displacement based using eight-node 2D elements

including special layer-wise laminated plate theory. This layer-wise model uses a reduced

constitutive matrix that is based on the assumption of zero transverse normal stress; and also

includes discrete transverse shear stresses via in-plane displacement components that are C0

continuous with respect to the thickness direction. The 3D CDM model is summarized for the

special case of orthotropic damage, culminating in the damaged constitutive relations and the

governing equations that drive the evolution of the internal damage variable. Details of the

numerical implementation of the 3-D CDM model into the layer-wise finite element model are also

expanded. The numerical examples include laminate problems with angle-ply tensile test specimens

that exhibit the free edge effects. The effects of various numerical modeling parameters on the

progressive damage response of the laminates are also investigated. 

1.1 Constitutive relation for composite lamina with damage

In the CDM, damage variables can be presented through the internal state variables of

thermodynamics for irreversible processes in order to describe the effects of damage and its

microscopic growth on the macromechanical properties of the materials. Using CDM, distributed

microscopic damage can be quantified by the use of a damage tensor field that describes the

orientation and density of microcracks in the material. Since CDM involves irreversible phenomena,

attention must be paid to restrictions imposed by the first and second principles of thermodynamics.

In a homogenized description, the simplest form of the damage tensor that is capable of

accurately describing microscopic damage is a symmetric 2nd order tensor ϕ whose principal

directions are assumed to coincide with the principal material directions (Barbero 2001), i.e.,

orthotropic damage. In this case, the eigenvalues of ϕ (denoted ϕ1, ϕ2, and ϕ3) have a simple

physical interpretation. The ith eigenvalue ϕi represents the effective fractional reduction in load

carrying area on planes that are perpendicular to the ith principal material direction. Therefore, this

type of damage tensor field is capable of quantitatively describing the density and distribution of

microscopic cracks that are associated with fiber breakage, fiber/matrix debonding, and matrix

cracks that are oriented either parallel to the fibers direction or perpendicular to that as shown in

Fig. 1. The eigenvalues of the damage tensor are in the range 0 < ϕi < 1 where ϕi = 0 corresponds

to a complete lack of damages normal to the ith principal material direction, while ϕi = 1

Fig. 1 Distribution of microcracks described by damage eigenvalues ϕ1, ϕ2 and ϕ3 normal to the ith principal
material direction
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corresponds to a complete separation of the material across the planes normal to the ith principal

material direction. 

1.2 Stress transformation and stiffness definition

In a general state of deformation and damage, the effective stress tensor in fictitious undamaged

state, , is related to the Cauchy stress tensor in damage state, σ, by the following linear

transformation (Kachanov 1958)

(1)

where M is a fourth-order linear transformation operator called the damage effect tensor. Depending

on the form used for M, it is very clear from Eq. (1) that the effective stress tensor  is generally

non-symmetric. However, the use of such complicated mechanics can be easily avoided by

symmetrizing the effective stress. One of the symmetrization methods given by Cordebois and

Sidorof (1979) is used in this study, and is expressed as follows

(2)

where δ is the Kronecker delta, and ϕ is second-order damage tensor. Corresponding to Eq. (2), the

fourth-order damage effect tensor, M, is 

(3)

It is possible to define Hooke’s law in the effective fictitious undamaged and damaged state as

follows

(4)

where an over-bar indicates that the quantity is evaluated in the effective configuration and the

superscript e denotes quantities. Damaged material stiffness at each step can be expressed in terms

of the damage eigenvalues by invoking various strain energy equivalence principles, which states

that the elastic energy of the damaged material is in the same form as that of the effective material,

which the stress tensor is replaced by the effective stress (Voyiadjis 2000).

(5)

In Eq. (5),  and  are virgin material stiffness, and damaged stiffness matrix of material

respectively. 

1.3 State laws in the framework of irreversible thermodynamics

Since the internal state variables are selected independently, it is possible to decouple the Helmholtz

free energy, ψ, into a potential function for each corresponding internal-state variable. Therefore, an

analytical expression for the thermodynamic potential can be given as the summation of the two

terms of, strain energy, , and dissipation energy, , as follows (Voyiadjis 2000)

(6)

where κ is the internal variable indicating overall damage. The strain energy is defined (Voyiadjis

2007) 
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(7)

In addition, the free energy  introduced to describe the effect of the accumulated damage

can be expressed as follows (Barbero 2002, Voyiadjis 2007)

(8)

where  and  are the material constants. The state laws can be written from the thermodynamic

potential Eq. (6) in the following form (Voyiadjis 2007)

(9)

(10)

(11)

where σ, Y, and K are stress tensor, damage conjugate force tensor, and isotropic hardening/

softening conjugate relation, respectively. It is noted that  and  can be determined using

experimental in-plane shear strength-strain data explained in (Barbero 2001). Using these equations,

damage potential and damage evolution laws can be defined which are presented in the following

sections. 

1.4 Damage conditions

Associative damage can be used here to derive the evolution equations for the constitutive model

such that the damage potential, G, is equal to the damage criterion, g. Analogous to plasticity, it is
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basis by a damage surface of the form of (Barbero 2001)
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thermodynamic conjugate forces with the respective flux variables as follows

(13)

ρ is the mass density, q is the heat flux vector,  is the temperature gradient, and dot over the

parameters is the time derivative of parameters. Also,  is inelastic-damage part of the strain

tensor. Using the theory of functions of several variables, damage Lagrange multiplier  is utilized

to construct the objective function Ω in the following form

(14)

where G is the damage potential. In order to obtain the damage tensor rate, and deriving evolution

equations for the hardening state variables, the following conditions are used to extremize the

objective function

(15)

when , the corresponding evolution equations for the damage tensor, and the corresponding

hardening state variables, are given as follows

(16)

The following loading-unloading conditions known as the Kuhn-Tucker optimality conditions

must also be enforced (Voyiadjis 2000 and 2007).

(17)

1.6 Stress Integration algorithm

In the solution procedure, a linearized form of the governing equation is solved within an

incremental iterative Newton-Raphson solution procedure for the increment of strain over the time

increment ∆tj such that (Voyiadjis 2007)
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be computed, and then the state variables are updated using Eq. (16)
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The integration scheme used here enforces that gj = 0 at the end of the time step

(22)

In order to address this type of problem, a return-mapping algorithm is used. This algorithm has

an initial elastic-predictor step, followed by a damage-corrector step. In the elastic-predictor step,

the incremental strains are assumed to be elastic with no damage increment such that an initial trial

stress and an initial trial damage conjugate force can be computed as

(23)

(24)
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denote the through thickness interpolation functions, and Um, and Vm, are the global nodal values of

U and V at the nodes through the thickness of the laminate. Note that the transverse deflection here

is assumed to be independent of the thickness coordinate, which leads to neglect the transverse

normal stress. 

In order to understand the relation between the nodal resultant forces of laminate and

displacements in layer-wise plate theory, the first variation of potential energy, equilibrium

condition, is expanded as follows

(27)

where the resultant forces of the laminate are

(28)

σx, σy, σxy, σxz, and σyz are the stress components. The constitutive equations of the laminate in

damage state are given by 
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where  is elastic-damage reduced stiffness matrix. In the case of pure elastic behavior, 

should be replaced by the elastic stiffness tensor, and Qpq defined in mechanics of composite

materials. The local stresses in each constituent can be obtained from the applied loading increment

by using the assumption of the lamination theory.

Integration in the thickness direction is performed using linear variation; two points at the top and

bottom of each numerical layer are considered for calculation of stiffness properties through the

thickness. If the piecewise linear functions through the thickness of the laminate are considered for

damage effects, the following explicit relations can be obtained for the coefficients of the laminate

stiffness matrices.

(31)

where the coefficients are computed in terms of the damage values of the reduced stiffness

coefficients in global coordinates and superscripts T and B refer to top and bottom of each layer,

respectively.

In the incremental form, the weak form of the equilibrium equation with the elastic-damaged

material stiffness matrix at jth time step is as follows
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The displacement filed, uj, is discretized using layer-wise plate theory. The interpolating relation is

defined as follows

(33)

where [N] and  contains the in-plane and through the thickness set of nodal elements of the

well-known finite element shape functions, respectively. Also (u, v, w) and (Um, Vm) are mid-plane

and numerical layers nodal displacements, respectively. By taking the required derivatives, the

strains are obtained using the following strain-displacement relation
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External forces vector:  (41)

Body forces vector :     (42)

Internal forces vector:   (43)

Using layer-wise lamination theory and finite element procedure, the stiffness matrix and its sub-

matrices are obtained

(44)

where the sub-matrices , and  are as follows

 

(45)
 

These matrices and vectors can be computed for the elements and then implemented into the

global matrices and vectors for the entire body. A finite element procedure is then followed to solve

the equations. The problem defined by these equations is nonlinear as the stiffness and the residual

loads depend on the deformations. An iterative procedure is required to solve the problem. The

nodal forces are produced by the stress field that satisfies the elasto-damage conditions. The

difference between these forces and the applied ones gives the residual forces. During a load

increment, an element or part of that may prone to damage. All stresses and strains quantities are

calculated and monitored at each Gaussian integration point and therefore the damage occurrence

can be determined at such points. Consequently, an element may have partially elastic and partially

damage behavior. For any load increment, it is necessary to determine which portion of that is in

elastic condition and which part is in damage condition. Then the stress and strain terms are

adjusted until satisfaction of the damage criterion. It is noted that the layer-wise element uses a

reduced constitutive matrix that is stored as a full 6×6 matrix where its transverse normal

components are set to zero; therefore, the layer-wise element can directly utilize the full 3-D

damage mechanics equations in the original form.

For more understanding of the solution procedure, the main steps of the developed computer

program to analyze the elastic-damage behavior of the laminates are explained as follows:
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11- Defining the problem parameters such as geometry, boundary conditions, loading conditions,

load increments functions, material stiffness and strength properties, mesh parameters, and etc.

12- Imposing the jth load increment.

13-Setting the 

14-Compute the algorithmic consistent tangent stiffness matrix of each gauss points using. 

15-Compute the element stiffness matrix of each element by considering the step (4) and

constructing sparse global stiffness matrix.

16-Solving the linearized Eq. (39) and obtaining the displacement field increment.

17-Computing the strains and stresses according to the current load increment at each gauss

points in local material coordinate system in each numerical layer, and accumulating with the

previous converged strain-stress fields. 

18-Checking the damage condition. If damage occurs then perform the damage corrector using

the fully implicit backward Euler return-mapping algorithm.

19-Updating the state variables such as 

10-Computing the nodal internal forces of each element using the last updated stress and

calculating residual forces at each gauss point. 

11- Checking the force and displacement convergence criteria of the overall problem. If they are

satisfied then go to the next loading increment; otherwise replace the residual forces in initial

incremental load of this step and go to the next iteration in Step (4). 

12-Repeating the step (2) to step (11) until the total load is applied and all state variables return

to the damage surface.

2. Numerical examples

In this section a set of numerical examples are performed to discuss about the results obtained

from the developed program and procedure. The example involve angle-ply laminate tensile test

specimens that exhibit damage localization due to the free edge effect without considerable normal

stress (in the thickness direction) caused by free edges. 

For this example, the fiber-reinforced composite material used for each of the four plies are

described by the following set of homogenized material coefficients. Elastic constants for the un-

damaged composite material are E11 = 167 GPa; E22 = E33 = 8.13 GPa; ν12 = ν13 = ν23 = 0.27;

G12 = G13 = G23 = 8.8252 GPa. Damage surface and hardening constants using Barbero et al. (2001)

approach are J11 = 0.9524e-15; J22 = J33= 0.4381e-12. ;  = 7.595e-7, and .

A symmetric angle-ply laminate tensile test specimen is chosen as a representative of problems

that exhibit localized stress concentration and damage evolution. The presence of free edges in

laminated composites introduces an additional level of complexity. The state of stress in the vicinity

of the free edges is three-dimensional, with nonzero through-thickness stresses. The through-

thickness stresses include the interlaminar normal stress, σz, and two interlaminar shear stresses. 

Insight into the influence of fiber orientation and stacking sequence on interlaminar stresses can

be obtained through a study of through-thickness distribution of the interlaminar shear forces and

moment. Distributions of interlaminar forces and moment for the adjacent layers of angle-ply

laminates are shown that the only nonzero force and moment is the interlaminar force in the x-z

plane. Herakovick (1998) showed that, it varies linearly through each layer and exhibits identical

maximum magnitudes at each +θ/-θ interface. In the real material that exhibit inelastic response
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associated with matrix plasticity and damage as contrasted with the idealized linear elastic material

under consideration, the interlaminar stresses are not singular, but they do exhibit very large

gradients near the free edges.

Fig. 2(a) shows the geometry and boundary conditions for a symmetric angle-ply laminate tensile

test specimen with the lay-up configurations of [+θ/-θ]s. Three different lay-ups of [+15/-15]s, [+30/

-30]s, and [+45/-45]s are considered. The specimens are loaded by imposing a uniform axial

displacement at the end x = L, while the axial displacement is constrained at x = −L. The imposed

axial displacement is increased in a series of non-uniformly load steps until one of the damage

eigenvalues achieving a value of unity indicating a local material failure Fig. 2(b) shows the 2-D

mesh of 8-node quadratic elements used to model the specimen. The mesh consists of uniform

distribution of 6 elements along the length of the specimen; however, the refinement level is

purposely varied across the width of the specimen. The size of the elements are varied across the

width of the specimen from y = −W to y = W. The element widths are tL/16, tL/16, tL/8, tL/4, tL/2, tL,

tL, 2tL, 3tL, 3tL, 2tL, tL, tL, tL/2, tL/4, tL/8, tL/16, and tL/16 that tL is the thickness of a single material

layer of the laminate. This non-uniform mesh is chosen to permit the free edge interlaminar stresses

to be resolved along the lateral edge at y = W and y = −W. The 2-D mesh shown in Fig. 2(b) is used

in conjunction with three different discretizations of 2, 4 and 6 per material layer through the

thickness of laminate in order to illustrate the effect of discretizations on the progressive damage

response. All models are capable of resolving the free edge stress concentrations; however, the

accuracy that they can meet depends on the level of the employed transverse discretizations.

Considering the laminates with four layers and using six discretizations at each material layer leads

to the FEM modeling with 24 elements through the thickness. Then using the number of 108

elements for in-plane mesh, the total number of 2592 elements was used for each model, which

Fig. 2 Geometry, loading, boundary conditions and FEM mesh of a typical laminate
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make the nonlinear analyses quite time consuming.

Fig. 3 shows the distribution of damage eigenvalues through the thickness of a laminate with the

lay-up of [+45/-45]s for various number of discritizations at each material layer. These results are

obtained for free edges at the point of x = L/3 and y = W. This figure shows that the maximum

values of both damage parameters occur at the interface of +45/-45 layers. It also shows that with

increasing the number of discritizations, the maximum damage eigenvalues are increased which

indicating that by refining the discritization, the obtained damage values at +45/-45 interfaces

approach to unity and may cause debounding between the layers. In the present study, the maximum

of six discritizations through the each material layer were used due to the CPU time limitation. It is

noted that when ϕ2 = 1.0 the shearing delamination modes can be activated, however, by ϕ3 = 1.0 the

normal or opening delamination mode can be occurred. When the refined discritizations are applied,

the values of ϕ3 through the thickness of the laminate tend to zero value except at the interfaces of

+45/-45 layers which are rapidly increased as shown in Fig. 3(b). The sudden increase of the

damage parameter at the interfaces of +45/-45 layers is also observed for ϕ2 in Fig. 3(a). This

behavior is due to the almost singular nature of the stresses at the free edges of these interfaces.

Variation of maximum damage eigenvalues versus the average applied strain for various

symmetric angle ply laminates at free edges are depicted in Fig. 4. Fig. 4(a) indicates that the

maximum values of ϕ2 obtained for the lay-up of [+30/-30] are very close to those obtained for

[+15/-15]. The obtained damage eigenvalues of ϕ3 are smaller than those obtained for ϕ2 for the lay-

up of [+45/-45]. The increasing rate of ϕ3 damage values obtained for [+15/-15] lay-up is

significantly larger than the rate of ϕ2 and ϕ3 of the other lay-ups. 

Fig. 5 shows the distribution of damage eigenvalues through the width of the laminates with

various lay-ups of [+15/-15]s, [+30/-30]s and [+45/-45]s at the θ/-θ layers interfaces. Fig. 5(a)

shows that the obtained values of ϕ2 for the lay-ups of [+30/-30]s and [+45/-45]s are larger than

those obtained for [+15/-15]s. This phenomenon leads to the higher spreading of matrix cracks in

the lay-ups of [+30/-30]s and [+45/-45]s. This figure also shows that in the area of about 0.15W in

the vicinity of the free edge boundaries, the in-plane transverse eigenvalues are rapidly increased for

the lay-ups of [+30/-30]s and [+45/-45]s indicating the free edge effects on ϕ2. These free edge

effects are not significant for the lay-up of [+15/-15]s.

Fig. 3 Distribution of damage eigenvalues through the thickness of laminate with lay-up of [+45/-45]s with
various number of discritization for each material layer; (a) ϕ2, (b) ϕ3
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Fig. 5(b) shows that the values of ϕ3 are almost zero through the width of the laminates except

for the free edge effect zone which they are suddenly increased. The values of ϕ3 for the lay-up of

[+15/-15]s in the vicinity of the free edges are larger than those obtained for [+30/-30]s and [+45/

-45]s. In this way, all of the angle ply laminates, specially [+15/-15]s tend to delaminate between

+θ/-θ layers at the free edges. 

Considering the distribution and values of the damage eigenvalues, it can be concluded that the

dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking.

However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at +θ/-θ

layers interfaces.

Fig. 6(a) shows the convergence of the average stress-strain behaviour for [+45/-45]s laminate

with various number of divisions through the thickness of each material layer. It shows that the

obtained results using 4 and 6 number of discretizations for each material layer are very close to

Fig. 4 Variation of maximum damage eigenvalues versus the average applied strain for various symmetric
angle ply laminates at free edges; (a) ϕ2, (b) ϕ3

Fig. 5 Distribution of damage eigenvalues through the width of laminates with various lay-ups between the
θ/-θ layers interfaces; (a) ϕ2, (b) ϕ3 
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each other. However, using the 2 number of discretizations leads to under estimate the results. It

may be concluded that using 4 numerical layers through the thickness of each material layer, is

enough to produce the acceptable results. 

Variations of the average stress versus the average applied strain for different symmetric angle ply

laminates are shown in Fig. 6(b). It shows that the axial stiffness and failure stress obtained for the

lay-up of [+15/-15]s are larger than those obtained for the other two lay-ups. In this lay-up, by

increasing the applied axial strain, the resultant axial stress is increased without significant stiffness

reduction up to the final failure of the laminate. In contrast, for the lay-ups of [+30/-30]s and [+45/-45]s,

the stiffness reduction plays an important role in stress-strain behavior. These facts can be explained

considering Fig. 5. The presented results in this figure showed that the matrix cracks are widely

developed for the lay-ups of [+30/-30]s and [+45/-45]s, and therefore caused the overall stiffness

reduction. But, for the lay-up of [+15/-15]s, the dominant damage mode is ϕ3 which cause

delamination between +15/-15 layers interface and may yield an unstable delamination propagation

near the final failure load. It is known that the delamination has not considerable effect on the axial

stiffness reduction as was explained for [+15/-15]s lay-up stress-strain behavior in Fig. 6(b).

3. Conclusions

A 3-D continuum damage mechanics formulation for composite laminates and its implementation

into a finite element model that is based on the layer-wise laminate plate theory was described.

Details of the numerical implementation of the 3-D CDM model into the layer-wise finite element

model were also performed. The progressive damage of different angle ply composite laminates

under quasi-static loading that exhibit the free edge effects were investigated. It was shown that in

the area of about 0.2W in the vicinity of the free edge boundaries, the in-plane transverse

eigenvalues are rapidly increased for the lay-ups of [+30/-30]s and [+45/-45]s indicating the free

edge effects. These free edge effects are not significant for the lay-up of [+15/-15]s. The obtained

through the thickness damage eigenvalues were smaller than those obtained for transverse

eigenvalues for the lay-up of [+45/-45]. The increasing rate of through the thickness damage values

Fig. 6 Average axial stress versus the applied strain; (a) effects of through the thickness discretization (b)
various symmetric angle ply laminates
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obtained for [+15/-15] lay-up were rapidly tend to unity. Considering the distribution and values of

the damage eigenvalues, it was concluded that the dominant damage mechanism in the lay-ups of

[+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated

in the vicinity of the edges and at +θ/-θ layers interfaces.
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