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Abstract. In this paper a 3-D continuum damage mechanics formulation for composite laminates and
its implementation into a finite element model that is based on the layer-wise laminate plate theory are
described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic
material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to
the three principal material directions. The progressive damage of different angle ply composite laminates
under quasi-static loading that exhibit the free edge effects are investigated. The effects of various
numerical modeling parameters on the progressive damage response are investigated. It will be shown that
the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However,
the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at +&/-6 layers interfaces.

Keywords: continuum damage mechanic; angle ply laminate; layer-wise; FEM.

1. Introduction

The analysis of composite structures may require the construction of damage models capable of
predicting the different damage mechanisms and their evolution until final fracture. In addition,
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these models should be applicable to industrial structures subjected to complex loading.

An attractive framework for derivation of material models considering local failure is continuum
damage mechanics (CDM). In this concept, the local loss of load-carrying area due to formation of
microcracks is accounted for by damage internal variables. Kachanov (1958), Lemaitre (1985 and
1986), Chaboche (1988a and 1988b) and Krajcinovic (1983 and 1984) used continuum damage
mechanics to analyze different types of damage ranging from brittle fracture to ductile failure.
However, the application of continuum damage mechanics to composite materials has been
restricted for composites utilizing a transversely isotropic medium (Talreja 1985).

Ladeveze et al. (1990) developed a meso scale shell model for laminated composites. Ladeveze
and Le Dantec (1992), Allix and Ladeveze (1989 and 1992) and Ladeveze et al. (2000) continued
with the mesomechanical modeling where damage was independently predicted for each
homogenized composite ply, and each interface that separates adjacent plies. The laminate was
assumed to break into a series of anisotropic plies, which are homogeneous through the thickness,
and zero-thickness interface layers. By analyzing each ply at the fiber, matrix, and fiber/matrix
interface levels, qualitative information were provided about the fiber and matrix properties of the
laminate (Ladeveze 1990). Damage was also based on two independent modes; one representing
matrix cracking and fiber pull-out while the second was associated with the transverse brittle failure
of the fiber-matrix interface. The interface model incorporates three damage parameters, each
associated with a through-thickness stress, one normal, and two shears.

Voyiadjis and Kattan (1993 and 1999), Voyiadjis and Park (1999) and Voyiadjis and Deliktas
(2000) developed a 3-D model for coupled progressive damage and plasticity using a symmetric
second order damage tensor. Voyiadjis and Park (1993) and Voyiadjis and Deliktas (2000) proposed
a micromechanical based approach that incorporated damage and plastic deformations into the
analysis of metal matrix composite materials. They characterized three damage modes: matrix
damage, fiber damage, and interfacial debonding. An isotropic damage criterion was also proposed
for the three types of damages accompanied by damage evolution equations assuming that the
energy dissipated due to the plasticity and that due to the damage were independent of each other.

Barbero and De Vivo (2001) developed a 2-D plane stress model for progressive damage based
on the use of a symmetric second order damage tensor. Damage evolution and stiffness reduction
were computed for the pre-homogenized composite material simplifying the formulation. Their
model was extended by Barbero and Lonetti (2002) to include plasticity, and further extended by
Lonetti er al. (2003) to include triaxial orthotropic damage in terms of three damage eigenvalues.

Two-dimensional damage models are usually employed when plane stress or strain conditions are
imposed. Obviously, these conditions are not fulfilled for the analysis of real structures. For such
structures, the three-dimensional modeling becomes necessary. However, the use of three-
dimensional models is limited to the prediction of the elastic properties and/or the initial damage,
and not for the distinction of other important damage aspects such as the damage modes.

In this paper, progressive damage of the composite laminates under quasi-static, monotonic
loading are investigated. For this purpose continuum damage mechanics incorporated with a special
layer-wise laminated plate theory is used. The purposed CDM model uses the hypothesis of strain
energy equivalency to relate the damage and fictitious undamaged state; however in the Ladeveze
approach the strain equivalency was used. In the present method we also used the associated flow
rule, but Ladeveze used the lay-up dependent non-associated flow rule. In our approach, the
eigenvalues of the damage tensor is capable of quantitatively and indirectly describing the density
and distribution of the fiber degradation, fiber/matrix debonding, and matrix cracks that are oriented
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either parallel to the fibers direction or perpendicular to that. But, Ladeveze didn’t use a damage
tensor and he implemented the related damage parameters to each damage mode in to the material
stiffness matrix directly.

The developed finite element program is displacement based using eight-node 2D elements
including special layer-wise laminated plate theory. This layer-wise model uses a reduced
constitutive matrix that is based on the assumption of zero transverse normal stress; and also
includes discrete transverse shear stresses via in-plane displacement components that are C°
continuous with respect to the thickness direction. The 3D CDM model is summarized for the
special case of orthotropic damage, culminating in the damaged constitutive relations and the
governing equations that drive the evolution of the internal damage variable. Details of the
numerical implementation of the 3-D CDM model into the layer-wise finite element model are also
expanded. The numerical examples include laminate problems with angle-ply tensile test specimens
that exhibit the free edge effects. The effects of various numerical modeling parameters on the
progressive damage response of the laminates are also investigated.

1.1 Constitutive relation for composite lamina with damage

In the CDM, damage variables can be presented through the internal state variables of
thermodynamics for irreversible processes in order to describe the effects of damage and its
microscopic growth on the macromechanical properties of the materials. Using CDM, distributed
microscopic damage can be quantified by the use of a damage tensor field that describes the
orientation and density of microcracks in the material. Since CDM involves irreversible phenomena,
attention must be paid to restrictions imposed by the first and second principles of thermodynamics.

In a homogenized description, the simplest form of the damage tensor that is capable of
accurately describing microscopic damage is a symmetric 2" order tensor ¢ whose principal
directions are assumed to coincide with the principal material directions (Barbero 2001), i.e.,
orthotropic damage. In this case, the eigenvalues of ¢ (denoted ¢, ¢, and @;) have a simple
physical interpretation. The i eigenvalue ¢ represents the effective fractional reduction in load
carrying area on planes that are perpendicular to the i principal material direction. Therefore, this
type of damage tensor field is capable of quantitatively describing the density and distribution of
microscopic cracks that are associated with fiber breakage, fiber/matrix debonding, and matrix
cracks that are oriented either parallel to the fibers direction or perpendicular to that as shown in
Fig. 1. The eigenvalues of the damage tensor are in the range 0 < ¢; <1 where ¢; = 0 corresponds
to a complete lack of damages normal to the i" principal material direction, while ¢ = 1

(pl 00%00%

Fig. 1 Distribution of microcracks described by damage eigenvalues ¢, ¢, and @; normal to the i principal
material direction
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corresponds to a complete separation of the material across the planes normal to the ith principal
material direction.

1.2 Stress transformation and stiffness definition

In a general state of deformation and damage, the effective stress tensor in fictitious undamaged
state, o, is related to the Cauchy stress tensor in damage state, o, by the following linear
transformation (Kachanov 1958)

c = M(e):c (1)

where M is a fourth-order linear transformation operator called the damage effect tensor. Depending
on the form used for M, it is very clear from Eq. (1) that the effective stress tensor o is generally
non-symmetric. However, the use of such complicated mechanics can be easily avoided by
symmetrizing the effective stress. One of the symmetrization methods given by Cordebois and
Sidorof (1979) is used in this study, and is expressed as follows

Gy = (Su— o) 08— o) (2)

where 8 is the Kronecker delta, and @ is second-order damage tensor. Corresponding to Eq. (2), the
fourth-order damage effect tensor, M, is

My = (85— 02)" (8- o)™ 3)

It is possible to define Hooke’s law in the effective fictitious undamaged and damaged state as
follows

o =C:g% c=C(¢):e 4)

where an over-bar indicates that the quantity is evaluated in the effective configuration and the
superscript ¢ denotes quantities. Damaged material stiffness at each step can be expressed in terms
of the damage eigenvalues by invoking various strain energy equivalence principles, which states
that the elastic energy of the damaged material is in the same form as that of the effective material,
which the stress tensor is replaced by the effective stress (Voyiadjis 2000).

C(p)=M"C"M" (5)

In Eq. (5), C* and C°() are virgin material stiffness, and damaged stiffness matrix of material
respectively.

1.3 State laws in the framework of irreversible thermodynamics

Since the internal state variables are selected independently, it is possible to decouple the Helmholtz
free energy, y; into a potential function for each corresponding internal-state variable. Therefore, an
analytical expression for the thermodynamic potential can be given as the summation of the two
terms of, strain energy, E(€°, @), and dissipation energy, l'Id( ), as follows (Voyiadjis 2000)

py = E(&5,9)+TT(x) (6)

where « is the internal variable indicating overall damage. The strain energy is defined (Voyiadjis
2007)
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E(s',9) = 167:C(0):6" (7)

In addition, the free energy Hd( x) introduced to describe the effect of the accumulated damage
can be expressed as follows (Barbero 2002, Voyiadjis 2007)

Hd(K) = ccll[cgexp(if/cg)— K]; or Hd(K) = %c‘,jlfz (®)

where c‘,j and cg are the material constants. The state laws can be written from the thermodynamic
potential Eq. (6) in the following form (Voyiadjis 2007)

DY ey e
o = p=L = C(g):e )
o€
v =¥ 1g70C (@) (10)
o 2 o
K=-2¥ - _N-exp(x/ch)] or K=clx (1)

oK

where o, Y, and K are stress tensor, damage conjugate force tensor, and isotropic hardening/
softening conjugate relation, respectively. It is noted that cf’ and c‘zi can be determined using
experimental in-plane shear strength-strain data explained in (Barbero 2001). Using these equations,
damage potential and damage evolution laws can be defined which are presented in the following
sections.

1.4 Damage conditions

Associative damage can be used here to derive the evolution equations for the constitutive model
such that the damage potential, G, is equal to the damage criterion, g. Analogous to plasticity, it is
postulated that damaging behavior can be distinguished from non-damaging behavior on a local
basis by a damage surface of the form of (Barbero 2001)

G = g(Y, ) = JYJY = (K(x)=K,) (12)

where K(x) is defied previously in Eq. (11), the J tensor is determined by available data on a
single composite lamina, and K, is the initial damage threshold at which damage begins to occur
(Barbero 2001). Also in Eq. (12), the Y; are eigenvalues of damage conjugate force tensor defied in
Eq. (10). g(Y, k) < 0 indicates a non-damaging state, g(Y, k) = 0 indicates a damage inducing state,
and g(Y, x) > 0 is understood to be inadmissible.

1.5 Damage evolution equations

Damage evolution equations can be obtained from dissipation potential function. If the potential
function is chosen to define convex surface containing the origin of the forces space, then the
satisfaction of the second law of thermodynamics, Clausius-Duhem’s inequalities, is be assured in
the local form. The energy dissipation due to damage are found by substituting the thermodynamic
state laws into the Clausius-Duhem inequality and are thus given as the product of the
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thermodynamic conjugate forces with the respective flux variables as follows
= o:é""—Y:cp—pK.k—q.V—TTzo (13)

p is the mass density, q is the heat flux vector, VT is the temperature gradient, and dot over the
parameters is the time derivative of parameters. Also, e is inelastic-damage part of the strain
tensor. Using the theory of functions of several variables, damage Lagrange multiplier A is utilized
to construct the objective function Q in the following form

Q=T1-64" (14)

where G is the damage potential. In order to obtain the damage tensor rate, and deriving evolution
equations for the hardening state variables, the following conditions are used to extremize the
objective function

06 > oY )¢
when G >0, the corresponding evolution equations for the damage tensor, and the corresponding
hardening state variables, are given as follows

=499y =995 k= 20y (16)
oo oY oK

The following loading-unloading conditions known as the Kuhn-Tucker optimality conditions
must also be enforced (Voyiadjis 2000 and 2007).

>0, G<0; 2'G=0 (17)

0 (15)

1.6 Stress Integration algorithm

In the solution procedure, a linearized form of the governing equation is solved within an
incremental iterative Newton-Raphson solution procedure for the increment of strain over the time
increment Af; such that (Voyiadjis 2007)

g = g,+Alde = g,+Ag; (18)

where the subscripted j and 0 indicate that the variable is computed at iteration j and at the
previously converged state, respectively; and the symbol A denotes a total increment from the
previously converged state to the iteration, j. The increments of the damage multiplier, A/lfd, must
be computed, and then the state variables are updated using Eq. (16)

g =&, +Ag"s 0= 0,+A9; K= K,+AK (19)
The o and Y for this integration scheme are defined at j™ iteration as follows
o, = Cez(sf—s;d) = 0'(,+Cf:(A8,—As;d)+ Cf:(C_E:aaL:(s—sid)) :AQ, (20)
. T : . : : o o
r.(0CTY .
Y, =o; (—[) :o; (21)

o 7/,
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The integration scheme used here enforces that g;= 0 at the end of the time step

g =8, k) = JY.J.Y,—(K(x)-Ky) =0 (22)

In order to address this type of problem, a return-mapping algorithm is used. This algorithm has
an initial elastic-predictor step, followed by a damage-corrector step. In the elastic-predictor step,
the incremental strains are assumed to be elastic with no damage increment such that an initial trial
stress and an initial trial damage conjugate force can be computed as

o/ = o, +Cs:Ag (23)
rial rial 8C7 rial
¥/ = o {8 ) o @4)
J

The trial state (0'_7"“1, Y;”al, €. ¢,, x,) is then used in a trial damage criterion to decide whether an
elastic point enters the damage regimes or whether a damage point elastically unloads. For the case
when g <0, the integration point is assumed to be elastic with no additional damage and the
current state of (c,Y, €’ ¢,,k,) is equal to the trial state of (0'_]’-"'”1, Y;””l, £ ¢,,k,). When
2" >0, the current state resulting from this trial state lies outside of the damage surface. Damage

has occurred and the state has to be returned to the damage surface.
1.7 Layer-wise finite element formulation in conjunction with CDM

Considering a laminated plate composed of N orthotropic lamina, each being arbitrarily oriented
with respect to the laminate (x, y) coordinates. The coordinate center is taken to be in the mid-plane
of the laminate, z is through the thickness and (x, y) are in-plane coordinates. The displacements (u;,
uy, uz) correspond to the (x, y, z) directions at each point in the laminate are assumed to be in the
form of (Barbero 1990)

uy(x,,2) = u(x,y) + U(x,y,2)
ur(x,,2) = v(x,y) + V(x,,2) (25)
u3(x,9,2) = w(x,y)
where (u, v, w) are the displacement components of a point (x, y, 0) on the reference plane of the

laminate, and U and V are functions which vanish on the reference plane as U(x,y,0) = V(x,y,0) =
0. Also U and V can be approximated as

Ue,y2) = Y U (x,0)4"(2)
= (26)

V(x,y,0) = > V"(x,)¢"(2)
m=1
where U", and V™ are undetermined coefficients, and ¢” are any continuous functions that satisfy
the condition ¢"(0) = 0 for all m = 1,2,...,n. For example, a finite element approximation based
on the Lagrangian interpolation through the thickness can be obtained from Eq. (26) considering the
n=pN+1, where N is the number of layers through the thickness, p is the degree of the
interpolation polynomials of ¢™(z). The approximation in Eq. (25) can also be viewed as the global
semi-discrete finite element approximations of U and V through the thickness. In that case ¢"
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denote the through thickness interpolation functions, and U”, and V", are the global nodal values of
U and V at the nodes through the thickness of the laminate. Note that the transverse deflection here
is assumed to be independent of the thickness coordinate, which leads to neglect the transverse
normal stress.

In order to understand the relation between the nodal resultant forces of laminate and
displacements in layer-wise plate theory, the first variation of potential energy, equilibrium
condition, is expanded as follows

2{ (8514) (55\))_'_ ny(aau 85\1) Qxa5w angw

aV ay
27)
85[/"’) n(@é’Vm (85Um 85V"’) ,
+mZ::l[Nm( ox N; y)+Nm 2 + . +QX5U'”+Qy V’J dd =0
where the resultant forces of the laminate are
Nxa NyaN = J.h/z ( O, y, xy)dZ
Qx> Q}’ _[h/z ( Oy, O'yz)dZ
) . (28)
NLNSNG = [0 (0 03, 0,8 (2)dz
m d /n
0.0 = j“ (01, ) 2L e

0w, O, Oy, Oy, and o, are the stress components. The constitutive equations of the laminate in
damage state are given by

(alg) N maale)  m
{N} =[A]" " {e}+ > [B'] “"{e"}
k=1 (29)

(N"} = [B"]“® e} + ﬁ: (D" ey
k=1

where {e} and {¢"} are the in-plane and layers interfaces strain vectors respectively, and [4]“'?,
[D™]@'®), and [B"]“'® are extensional, bending stiffness, and bending-extensional coupling stiffness
matrices respectively, defined as follows

if (p,q =126) ;o if (p,q=4 5)
A[(;;lg) J-‘AHC(aIg)d : A[(;;lg) rk+lc(alg)d
B(alg) J-Zk+1 C(alg) ¢ d= . B(alg)’" J-Zk+1 C(alg) d¢ d= (30)

rrrrr

D(alg) rk+l C(alg) ¢ ¢rdz

“ .
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where C;‘;]g) is elastic-damage reduced stiffness matrix. In the case of pure elastic behavior, Céf]lg)
should be replaced by the elastic stiffness tensor, and (,, defined in mechanics of composite
materials. The local stresses in each constituent can be obtained from the applied loading increment
by using the assumption of the lamination theory.

Integration in the thickness direction is performed using linear variation; two points at the top and
bottom of each numerical layer are considered for calculation of stiffness properties through the
thickness. If the piecewise linear functions through the thickness of the laminate are considered for
damage effects, the following explicit relations can be obtained for the coefficients of the laminate
stiffness matrices.

N k N
A(alg)pq = Z—(Tc(alg)pq +BC(al’°)pc/ )fk p,9=1,2,4,5,6
k=1
1 -1 .
B(a]g)m _ [ Tc(alg,)m BC(alg)’;q tm~| + Tc(alg):q + BC(alé)’;‘] ]tm p q __1 2 6
prqg — Y T Ly~
6 6 3
B(alg)’” 1 (Tc(am’” ! chlg)’” ‘) (TC(aIgV" BC(alg>’" ) p,q=4,5
2 2 9 b
T ~(alg™! B (alg)n] T ~(alg)™ B (alg)™
plate™ _ C"% C I % + C%h " p,g=12,6 (31)
rq — s T b4
4 12 12 4
T ~(alg)™ ! | B ~(algym! T (alo)’" 4B (alg
C +°C C C
D(alg)’;’;” _ Pq Py p.q=4,5
2t"! 2t’”
m
per _ pem _ (rc(algw LBCt” )’ p.q=1,2,6
12 b b b
T ~(alg)™ | B (alg)™
mr rm C + C
(alg)™ _ ~(alg)™ _ »q pq _
Dy =D"¥ pg = e p.q=4,5

where the coefficients are computed in terms of the damage values of the reduced stiffness
coefficients in global coordinates and superscripts 7 and B refer to top and bottom of each layer,
respectively.

In the incremental form, the weak form of the equilibrium equation with the elastic-damaged
material stiffness matrix at j" time step is as follows

[ de:C;"deidV = [ SuzbdV— | Su:tdl - J, oe:0,dV (32)

where € C* o, u, b, t, and 7 are strain vector, material stiffness matrix, stress vector,
displacement vector, body inertia force vector, traction external force vector, and total volume of
body respectively. Note that this equation is enforced over the entire body, including both the
damage and elastic domains. In the right hand side of the governing equations, the stress at j"
iteration must be known. It was explained in the integration scheme, that for each integration point
in an inelastic state, the implicit backward Euler elastic predictor-inelastic corrector algorithm is
used to compute the stress. The governing equation can be linearized consistently and solved within
an incremental iterative Newton-Raphson solution procedure.
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The displacement filed, u; is discretized using layer-wise plate theory. The interpolating relation is
defined as follows

A u
uj=w]{ } (ay=1{v, {A’"}={Um}, [t//]=[[N] 0} (33)
z) y % 0 [¢"]

where [N] and [#"] contains the in-plane and through the thickness set of nodal elements of the
well-known finite element shape functions, respectively. Also (u, v, w) and (U", V™) are mid-plane
and numerical layers nodal displacements, respectively. By taking the required derivatives, the
strains are obtained using the following strain-displacement relation

€; _
e = [B]{u}: g = { ;}; ¢, = [B,][A]; ¢ = [B/][A"] (34)
&
[B] = [[BL] _0} (35)
0 [B.]

where [B,] and [B;] are matrices of shape function derivatives of mid-plane and numerical layers
degree of freedom respectively. Using this discretization, the weak form of the equilibrium equation
becomes

{ou} [[B]'[E“) *[B]{du}dr

= {5u},-T(j[w]T{b},dV+ [Lw]"{t},ar - j[B]T{c}jdV) 36)
where [EE“’],Hlg is
[Eed]qlg: [A]j(.alg) [Bm]/(_alg) o)

(alg) (alg)

[B"], " [D™];

It is noted that transpose of matrix [B]" is specially defined as follows

r_|B]" 0
5 17|
0 [B.]
This governing equation must be admissible for any displacement variation, which can be written
as a set of algebraic equations

[B] (38)

[K1“{du}; = (F )+ (7" + 40 (39)

where the sub-matrices are defined as follows

Stiffness matrix: K] = j[B]T[E”’]j-”g[B]dr (40)
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External forces vector:  {f™'} = '[[ ] {t};dT 41)
r
Body forces vector : {f b} = '[[ q/]T{b} AV (42)
Vv
Internal forces vector: {f im} = —.[[B]T{ o} dV (43)
Vv

Using layer-wise lamination theory and finite element procedure, the stiffness matrix and its sub-
matrices are obtained

[K"T k7T ... Thy]
(K] = |[a'T Thi] oo TGy (44)

kv 1Tkl - Tkl

where the sub-matrices [k''], [k 1, [k.], and [k..

m mr

] are as follows

=2, j( "TA1“®[B,]dr,

[Ki]1=2, j( B “®[B.ydr,  m=1,2,3,..,N

(alg)

(45)

K2']=2, j( [B.1'1B"1“ ¥ [B,])dr, m=1,2,3,...N

(alg)

(K] = X, [([B D" V[Bdl,  mr=1,2,3,.,N
Te

These matrices and vectors can be computed for the elements and then implemented into the
global matrices and vectors for the entire body. A finite element procedure is then followed to solve
the equations. The problem defined by these equations is nonlinear as the stiffness and the residual
loads depend on the deformations. An iterative procedure is required to solve the problem. The
nodal forces are produced by the stress field that satisfies the elasto-damage conditions. The
difference between these forces and the applied ones gives the residual forces. During a load
increment, an element or part of that may prone to damage. All stresses and strains quantities are
calculated and monitored at each Gaussian integration point and therefore the damage occurrence
can be determined at such points. Consequently, an element may have partially elastic and partially
damage behavior. For any load increment, it is necessary to determine which portion of that is in
elastic condition and which part is in damage condition. Then the stress and strain terms are
adjusted until satisfaction of the damage criterion. It is noted that the layer-wise element uses a
reduced constitutive matrix that is stored as a full 6x6 matrix where its transverse normal
components are set to zero; therefore, the layer-wise element can directly utilize the full 3-D
damage mechanics equations in the original form.

For more understanding of the solution procedure, the main steps of the developed computer
program to analyze the elastic-damage behavior of the laminates are explained as follows:
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1-Defining the problem parameters such as geometry, boundary conditions, loading conditions,
load increments functions, material stiffness and strength properties, mesh parameters, and etc.

2- Imposing the j® load increment.

3-Setting the AL =0; &V =¢’; =0 ; & =x_,

4-Compute the algorithmic consistent tangent stiffness matrix of each gauss points using.

5-Compute the element stiffness matrix of each element by considering the step (4) and
constructing sparse global stiffness matrix.

6-Solving the linearized Eq. (39) and obtaining the displacement field increment.

7-Computing the strains and stresses according to the current load increment at each gauss
points in local material coordinate system in each numerical layer, and accumulating with the
previous converged strain-stress fields.

8- Checking the damage condition. If damage occurs then perform the damage corrector using
the fully implicit backward Euler return-mapping algorithm.

9-Updating the state variables such as Aﬂ;i, o, t—:_;d, 0, K

10-Computing the nodal internal forces of each element using the last updated stress and
calculating residual forces at each gauss point.

11- Checking the force and displacement convergence criteria of the overall problem. If they are
satisfied then go to the next loading increment; otherwise replace the residual forces in initial
incremental load of this step and go to the next iteration in Step (4).

12-Repeating the step (2) to step (11) until the total load is applied and all state variables return
to the damage surface.

2. Numerical examples

In this section a set of numerical examples are performed to discuss about the results obtained
from the developed program and procedure. The example involve angle-ply laminate tensile test
specimens that exhibit damage localization due to the free edge effect without considerable normal
stress (in the thickness direction) caused by free edges.

For this example, the fiber-reinforced composite material used for each of the four plies are
described by the following set of homogenized material coefficients. Elastic constants for the un-
damaged composite material are E;;=167 GPa; Ep=FE;=8.13 GPa; vp=vi3=13=0.27
G12= G13= Go3=8.8252 GPa. Damage surface and hardening constants using Barbero et al. (2001)
approach are Jj; = 0.9524e-15; Jy, = J33= 0.4381e-12. ; cf =7.595e-7, and ¥(0)=0.0.

A symmetric angle-ply laminate tensile test specimen is chosen as a representative of problems
that exhibit localized stress concentration and damage evolution. The presence of free edges in
laminated composites introduces an additional level of complexity. The state of stress in the vicinity
of the free edges is three-dimensional, with nonzero through-thickness stresses. The through-
thickness stresses include the interlaminar normal stress, o,, and two interlaminar shear stresses.

Insight into the influence of fiber orientation and stacking sequence on interlaminar stresses can
be obtained through a study of through-thickness distribution of the interlaminar shear forces and
moment. Distributions of interlaminar forces and moment for the adjacent layers of angle-ply
laminates are shown that the only nonzero force and moment is the interlaminar force in the x-z
plane. Herakovick (1998) showed that, it varies linearly through each layer and exhibits identical
maximum magnitudes at each +&-6 interface. In the real material that exhibit inelastic response
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associated with matrix plasticity and damage as contrasted with the idealized linear elastic material
under consideration, the interlaminar stresses are not singular, but they do exhibit very large
gradients near the free edges.

Fig. 2(a) shows the geometry and boundary conditions for a symmetric angle-ply laminate tensile
test specimen with the lay-up configurations of [+&-6);. Three different lay-ups of [+15/-15];, [+30/
-30]s, and [+45/-45]; are considered. The specimens are loaded by imposing a uniform axial
displacement at the end x = L, while the axial displacement is constrained at x =—L. The imposed
axial displacement is increased in a series of non-uniformly load steps until one of the damage
eigenvalues achieving a value of unity indicating a local material failure Fig. 2(b) shows the 2-D
mesh of 8-node quadratic elements used to model the specimen. The mesh consists of uniform
distribution of 6 elements along the length of the specimen; however, the refinement level is
purposely varied across the width of the specimen. The size of the elements are varied across the
width of the specimen from y =—W to y = W. The element widths are #,/16, #,/16, #,/8, t;/4, t;/2, t,,
t, 2t1, 3t, 3t, 2t;, 1, t;, 1,/2, t;/4, t;/8, t;/16, and #,/16 that t;, is the thickness of a single material
layer of the laminate. This non-uniform mesh is chosen to permit the free edge interlaminar stresses
to be resolved along the lateral edge at y = W and y = —W. The 2-D mesh shown in Fig. 2(b) is used
in conjunction with three different discretizations of 2, 4 and 6 per material layer through the
thickness of laminate in order to illustrate the effect of discretizations on the progressive damage
response. All models are capable of resolving the free edge stress concentrations; however, the
accuracy that they can meet depends on the level of the employed transverse discretizations.
Considering the laminates with four layers and using six discretizations at each material layer leads
to the FEM modeling with 24 elements through the thickness. Then using the number of 108
elements for in-plane mesh, the total number of 2592 elements was used for each model, which

Computaional Domain:
-L<x<L ; -W<y<W ; -t<z<t
Boundary Conditions & Loading:
u(-L,y,z)=0 ; u(L,y,z)=u0>0
v(-L,y,z)= v(L,y,z)=0
Mesh in thickness direction:
T2= 2 per material layer
X T4= 4 per material layer
T6= 6 per material layer
Mesh in length direction:

2t

Mesh in width direction:

W => 0; t1/16, ti/16, tL/8, tL/4, tr/2, tr, tL, 2tL, 3tL 6 uniform elements
+W => 0 ; tL/16, tL/16, tL/8, tL/4, tL/2, tu, tL, 2tL, 3tL  tL=Thickness of material layer

@
Ay

W~

L w | w_l

(®)
Fig. 2 Geometry, loading, boundary conditions and FEM mesh of a typical laminate
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make the nonlinear analyses quite time consuming.

Fig. 3 shows the distribution of damage eigenvalues through the thickness of a laminate with the
lay-up of [+45/-45]; for various number of discritizations at each material layer. These results are
obtained for free edges at the point of x=L1/3 and y = W. This figure shows that the maximum
values of both damage parameters occur at the interface of +45/-45 layers. It also shows that with
increasing the number of discritizations, the maximum damage eigenvalues are increased which
indicating that by refining the discritization, the obtained damage values at +45/-45 interfaces
approach to unity and may cause debounding between the layers. In the present study, the maximum
of six discritizations through the each material layer were used due to the CPU time limitation. It is
noted that when ¢, = 1.0 the shearing delamination modes can be activated, however, by ¢;=1.0 the
normal or opening delamination mode can be occurred. When the refined discritizations are applied,
the values of ¢; through the thickness of the laminate tend to zero value except at the interfaces of
+45/-45 layers which are rapidly increased as shown in Fig. 3(b). The sudden increase of the
damage parameter at the interfaces of +45/-45 layers is also observed for ¢, in Fig. 3(a). This
behavior is due to the almost singular nature of the stresses at the free edges of these interfaces.

Variation of maximum damage eigenvalues versus the average applied strain for various
symmetric angle ply laminates at free edges are depicted in Fig. 4. Fig. 4(a) indicates that the
maximum values of ¢, obtained for the lay-up of [+30/-30] are very close to those obtained for
[+15/-15]. The obtained damage eigenvalues of ¢; are smaller than those obtained for ¢, for the lay-
up of [+45/-45]. The increasing rate of ¢; damage values obtained for [+15/-15] lay-up is
significantly larger than the rate of ¢, and ¢; of the other lay-ups.

Fig. 5 shows the distribution of damage eigenvalues through the width of the laminates with
various lay-ups of [+15/-15]s, [+30/-30]s and [+45/-45]s at the &-0 layers interfaces. Fig. 5(a)
shows that the obtained values of ¢, for the lay-ups of [+30/-30]s and [+45/-45]s are larger than
those obtained for [+15/-15]s. This phenomenon leads to the higher spreading of matrix cracks in
the lay-ups of [+30/-30]s and [+45/-45]s. This figure also shows that in the area of about 0.15W in
the vicinity of the free edge boundaries, the in-plane transverse eigenvalues are rapidly increased for
the lay-ups of [+30/-30]s and [+45/-45]s indicating the free edge effects on ¢,. These free edge
effects are not significant for the lay-up of [+15/-15]s.

05 05
+45 x~L/3 +45 x~L/3
YRW/2 | ; , ! yRW/2
025 » > = 025 1 { <
-45° Kl i—“ ‘X N -45°
Lo | Ro |
0.2 0.4 06 0.8 1 ‘T 0.2 0.4 06 08 1
45° 1, ! -45°
0% ) > ‘> ——T2 02 L *\ <x < —=—T2
+45° i;—/ —-—T4 F—LX +45° T4
0. d ——T6 | ——T6
00 o2} 05 03
(a) (b)

Fig. 3 Distribution of damage eigenvalues through the thickness of laminate with lay-up of [+45/-45]s with
various number of discritization for each material layer; (a) @, (b) ¢;
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Fig. 4 Variation of maximum damage eigenvalues versus the average applied strain for various symmetric

angle ply laminates at free edges; (a) ¢, (b) @5
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Fig. 5 Distribution of damage eigenvalues through the width of laminates with various lay-ups between the
040 layers interfaces; (a) @, (b) ¢;

Fig. 5(b) shows that the values of ¢; are almost zero through the width of the laminates except
for the free edge effect zone which they are suddenly increased. The values of ¢; for the lay-up of
[+15/-15]s in the vicinity of the free edges are larger than those obtained for [+30/-30]s and [+45/
-45]s. In this way, all of the angle ply laminates, specially [+15/-15]s tend to delaminate between
+8-0 layers at the free edges.

Considering the distribution and values of the damage eigenvalues, it can be concluded that the
dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking.
However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at +6/-6
layers interfaces.

Fig. 6(a) shows the convergence of the average stress-strain behaviour for [+45/-45]s laminate
with various number of divisions through the thickness of each material layer. It shows that the
obtained results using 4 and 6 number of discretizations for each material layer are very close to
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Fig. 6 Average axial stress versus the applied strain; (a) effects of through the thickness discretization (b)
various symmetric angle ply laminates

each other. However, using the 2 number of discretizations leads to under estimate the results. It
may be concluded that using 4 numerical layers through the thickness of each material layer, is
enough to produce the acceptable results.

Variations of the average stress versus the average applied strain for different symmetric angle ply
laminates are shown in Fig. 6(b). It shows that the axial stiffness and failure stress obtained for the
lay-up of [+15/-15]s are larger than those obtained for the other two lay-ups. In this lay-up, by
increasing the applied axial strain, the resultant axial stress is increased without significant stiffness
reduction up to the final failure of the laminate. In contrast, for the lay-ups of [+30/-30]s and [+45/-45]s,
the stiffness reduction plays an important role in stress-strain behavior. These facts can be explained
considering Fig. 5. The presented results in this figure showed that the matrix cracks are widely
developed for the lay-ups of [+30/-30]s and [+45/-45]s, and therefore caused the overall stiffness
reduction. But, for the lay-up of [+15/-15]s, the dominant damage mode is ¢; which cause
delamination between +15/-15 layers interface and may yield an unstable delamination propagation
near the final failure load. It is known that the delamination has not considerable effect on the axial
stiffness reduction as was explained for [+15/-15]s lay-up stress-strain behavior in Fig. 6(b).

3. Conclusions

A 3-D continuum damage mechanics formulation for composite laminates and its implementation
into a finite element model that is based on the layer-wise laminate plate theory was described.
Details of the numerical implementation of the 3-D CDM model into the layer-wise finite element
model were also performed. The progressive damage of different angle ply composite laminates
under quasi-static loading that exhibit the free edge effects were investigated. It was shown that in
the area of about 0.2W in the vicinity of the free edge boundaries, the in-plane transverse
eigenvalues are rapidly increased for the lay-ups of [+30/-30]s and [+45/-45]s indicating the free
edge effects. These free edge effects are not significant for the lay-up of [+15/-15]s. The obtained
through the thickness damage eigenvalues were smaller than those obtained for transverse
eigenvalues for the lay-up of [+45/-45]. The increasing rate of through the thickness damage values
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obtained for [+15/-15] lay-up were rapidly tend to unity. Considering the distribution and values of
the damage eigenvalues, it was concluded that the dominant damage mechanism in the lay-ups of
[+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated
in the vicinity of the edges and at +&/-6 layers interfaces.
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