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Abstract. In this paper we compare the solution of the one-dimensional beam model and the numerical
solution of the two-dimensional linearized elasticity problem for rectangular domain of the beam-like
form. We first derive the beam model starting from the two-dimensional linearized elasticity, the same
way it is derived from the three-dimensional linearized elasticity. Then we present the numerical solution
of the two-dimensional problem by finite element method. As expected the difference of two
approximations becomes smaller as the thickness of the beam tends to zero. We then analyze the
applicability of the one-dimensional model and verify the main properties of the beam modeling for thin
beams. 

Keywords: linearized elasticity; asymptotic expansion; beam model; numerical solution; finite elements.

1. Introduction

In order to apply the beam model (or any other lower-dimensional model) one needs to know how

well it approximates the real problem. Let us assume the strains are small, so we are within the

scope of linearized elasticity. Then we are left with the question of estimating the difference

between the solution of the beam model and the corresponding problem of three-dimensional

linearized elasticity for beam-like structure. This beam-like means that the structure is thin in two

directions (thickness) comparing to the third (length). It is well known that the beam model is valid

(approximation is good) if the beam is thin enough, i.e., if the ratio thickness/length is small

enough. Still, there remains open a question of being “thin enough” (or “small enough”). This paper

gives an answer to this question and puts some bounds on errors, comparing the solution of the

beam model and the numerical solution of two-dimensional linearized elasticity (since the numerical

solution, accurate enough, of the three-dimensional linearized elasticity is still out of reach). 

Lower-dimensional modeling is well established approach for thin structures (beams, plates and
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shells). Their geometry is “basically” lower-dimensional and allows for a small parameter

(thickness) to be recognized. Very complex three-dimensional (or two-dimensional) model is then

replaced by a simpler one, lower-dimensional model. 

Despite of the rapid increase of the computational ability the beam model is widely used and

serves as the keystone in many applications, like modeling of rotating shafts (e.g., see Hili et al.

2007, Gu and Cheng 2004, Vanegas Useche et al. 2007), modeling of frame structures (e.g., see

Albarracín and Grossi 2005, Igawaa et al. 2004), modeling of nanotubes (e.g., see Rafii-Tabar 2004,

Yoon et al. 2003), modeling of pipelines (e.g., see Iimura 2004, Andreuzzi and Perrone 2001).

Moreover, the research based on the one-dimensional models of beam-like structures, including the

Euler-Bernoulli beam, is still very attractive area (we mention some of recent publications Chen and

Liu 2006, Kim 2004, Li and Guo 2008, Rajasekaran and Varghese 2005, Lu et al. 2008). 

The usage of the lower-dimensional model instead of the three-dimensional one, of course, needs

to be justified. Usually it is done by the convergence theorem, where one proves a certain

convergence of the family of solutions of the three-dimensional problem, when the thickness tends

to zero, to the solution of the lower-dimensional model. For linearized elasticity and beams see

Aganovi  and Tutek 1986, Trabucho and Via o 1996, for plates see Ciarlet and Destuynder 1979,

Ciarlet 1990, for curved rods see Jurak and Tamba a 1999 and Jurak and Tamba a 2001 while for

shells see Ciarlet 1997. Even where available, the error estimates between the solution of the three-

dimensional problem and the solution of the model, do not answer to the applicability of the model.

Namely, the constant in the error estimate is usually unknown so we can not tell when the structure

is thin enough so it can be modeled by the lower-dimensional model. 

The purpose of this paper is to give an answer to the question when the beam is thin enough so

the one-dimensional model can be used. We do it by comparing the numerical approximation of the

linearized elasticity problem for beam-like structures and the associated one-dimensional problem.

In doing so we need to solve numerically the linearized elasticity problem with an error of the

numerical approximation which is of smaller order then the error of the one-dimensional model with

respect to the linearized elasticity problem. Unfortunately, the three-dimensional linearized elasticity

is still out of reach for such precision. Therefore we focus on the two-dimensional linearized

elasticity problem on a rectangle and the one-dimensional model derived by taking one side of the

rectangle to zero. The obtained model (4) for transversal displacement is of the same structure as

the one widely known which is derived from the three-dimensional elasticity, with different elastic

constant (see Section 2). We also derive the form of the first and the second corrector and state the

main convergence theorem (Theorem 2.1). As the model is derived from the two-dimensional

linearized elasticity its use is very limited, but the conclusions of the rate of approximation should

be useful. Note here that we are focused only on the model of transversal displacements of beams

and not on the extension of beams (which is of smaller order). 

For the two-dimensional linearized elasticity problem in rectangle we use the open source finite

element package FreeFEM++ (see http://www.freefem.org) and solve it numerically by the finite

element method using P2 Lagrangian elements and for constant density of the body force. Then we

compare the numerical solution with the model. The approximation agrees with the convergence

results from the Theorem 2.1. Moreover, we are able to test the classical properties that appear in

the lower-dimensional modeling in linearized elasticity, namely, the unshearability of the cross-

sections of the beam and the Kirchhoff-Love form of the displacement. For instance, the model

approximates the behavior of the middle line in two-dimensional linearized elasticity problem with

the relative error of 3% for beams with the width to length ratio less then . The first
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approximation (0th order model plus 1th order corrector - that is the form of the Kirchhoff-Love

displacement) behaves the same way on the whole rectangle (not only on the middle line).

Moreover, the angle between the deformed cross-sections and the deformed middle line for beams

with the width to length ratio less then  is never less then 89.5 degrees. 

2. Derivation of 1D beam model

In this section we sketch the asymptotic derivation of the 1D beam model and present the main

convergence results starting from the 2D linearized elasticity. The obtained model is not the same as

in the case of derivation from the 3D linearized elasticity, so its use is very limited. The derivation

is essentially the same as in the case of three-dimensional elasticity performed in the case of curved

rods in Jurak and Tamba a 1999 and Jurak and Tamba a 2001, so we do not present it in detail but

just sketch the main steps. 

Let ε > 0 and 

be 2D beam-like domain. We assume  to be the linearized elastic body with the Lamé

coffiecients λ and µ, subjected to the volume force with density f
ε . We assume the beam is clamped

on both bases , . Then the displacement of the beam uε

belongs to the function space 

and satisfies the variational equation 

, (1)

here  is the symmetrized gradient and C is the elasticity tensor 

This is a classical problem of linearized elasticity. For the volume force  it possess a

unique solution. 

In order to derive the 1D model we follow the standard technique as in Ciarlet and Destuynder

1979 and apply the asymptotic expansion method to this problem rewritten on the canonical domain 

independent of ε. Let . The function 

is the unique solution of the problem 

, (2)
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here  and 

To obtain the family of solutions  which is bounded in L2(Ω)2, (see Jurak and Tamba a

1999), a special asymptotic of the body force is needed 

(3)

where f is independent of ε. This is the strongest force density allowed with all components equally

scaled. 

We assume that 

and proceed then in several steps inserting special test functions into Eq. (2) and considering the

equation obtained as the coffiecient of the lowest power of ε. In the first step we insert u(ε) as the

test function and consider the equation which is the coffiecient of ε−2: 

As C is positive definite it implies , so we conclude that  for

. 

In the second step we repeat the same procedure and consider the equation which is the

coffiecient of ε0: 

It follows  which implies 

where w1 is an arbitrary function of y1, . The form of the approximation u0 + εu1 for

the functions above is the so-called Kirchhoff-Love displacement. 

In the third step we just take from Eq. (2) the equation which is the coffiecient of ε0: 

,
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i.e., 

where w2 is an arbitrary function of y1, . Note here that we do not prescribe any

boundary condition for w2 as we did for w0 and w1. It should be determined by the boundary layer,

which we do not discuss here. 

Finally we insert the test function of the form 

in Eq. (2), where . The lowest order power in the equation is then 2 and its coffiecient

gives the equation 

Using calculated form of u0, u1, u2 it is equivalent to 

,

The definition of Ω implies that the term with  disappears from the equation an that the model

for transversal displacement is given by: find  such that 

, (4)

where . Note here that the only difference in the model with respect to the one derived

from three-dimensional elasticity is in the coffiecient in the equation of the model (EI in 3D case). 

Using the same technique as in the modeling of curved rods from three-dimensional linearized

elasticity Jurak and Tamba a 2001 the convergence theorems can be obtained. We collect all results

in the following theorem. 
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Remark 2.1 Note that the form of γ0 implies that . Moreover, note that f1 does not play

any role here. It actually appears on the right hand side of the problem for  in the form of the

line density of the moment as well as on the right hand side of the problem for .

Remark 2.2 According to the model the undeformed cross-section at (x1, 0) is the line connecting

points  and . Considering the zeroth order approximation and the first corrector

after deformation it remains straight line connecting the points 

and . Therefore the vector connecting the edges is

The deformed middle line is parameterized by , so the tangent line at this point is given

by . Therefore in the first approximation the deformed cross-sections remain

perpendicular to the deformed middle line.
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û
ε
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3. Numerical method for 2D linearized elasticity 

In this section we describe the numerical method used for 2D linearized elasticity problem Eq.

(2), i.e., Eq. (1). We solve them by finite element method using the open source finite element

package FreeFEM++. The code we use is the one from the Freefem++ manual, Hecht, Pironneau,

Le Hyaric and Ohtsuka 2005, Example 10, page 40, but in difference we use P2 elements. 

In the following section we consider behavior of the numerical solution of Eq. (1), i.e., Eq. (2), as

ε tends to zero. Let . In the sequel we consider only ε = 1/i.

As the relation between the Lamé coefficients and the load is linear we are allowed to rescale

them. We take the Young modulus and the Poisson ratio to be 

(8)

For the volume force we consider densities of the form 

(9) 

as the asymptotic analysis performed in the previous section requires this behavior. In this case

. The factor 2 is chosen just to obtain displacements which can be easily observed. 

Now we need to choose which variational problem we solve numerically, the one on thin domain

Ωε given by Eq. (1), or the one on the canonical domain Ω given by Eq. (2). The domain in any

case is rectangle with one side of unit length. The mesh is chosen in the regular way as in the Fig. 1

with vertical edge divided in j equal subintervals and the horizontal edge divided in i * j equal

subintervals (in Fig. 1 j = 3 and i = 2). The fact that we take i times more nodes on the horizontal

edge is natural in order to have triangles with all angles not too small. 

According to the Table 1 numerical solutions of Eq. (1) and Eq. (2) agree up to the relative

difference of 10−6 for the parameters we are interested, so in the sequel we consider the solutions on

the thin domain Ωε only, i.e., Eq. (1). We also denote . 

The next task is to set the parameter j for which we will obtain numerical solution of Eq. (1)

which is good enough for all ε, i.e., i considered. 
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Fig. 1 The canonical Ω and thin Ωε domain for ε = 1/2 

Table 1 Relative sup difference of the solutions on the canonical and thin domain with P2 elements

i 10 20 40 80 160 

, j = 5 4.18e-012  6.07e-011  7.56e-010  1.12e-008  6.36e-008  

, j = 10  2.49e-011  3.06e-010 3.81e-009  2.19e-008  2.40e-007  

, j = 20  7.17e-011  5.16e-010  4.12e-009  7.70e-008  1.20e-006  

∆∞

∆∞

∆∞
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We compare the solution of Eq. (1) by P2 elements for j = 5, 10, 20 with the solution by P2

elements for j = 40 for different values of i. The relative sup, L2(Ωε) and V0(Ωε) differences are

presented in Table 2. It follows that for j = 20 all problems we will consider, namely i = 10, 20, 40,

80, 160 are numerically solved with the relative error of order 10−3. 

At the end of this section note, in Fig. 2, the form of the solution for different thickness, namely

for i = 5, 10, 20, 40, 80, 160 and j = 5 (force density is chosen according to Eq. (9)). 

4. Numerical comparison 

In this section we compare numerical solution of Eq. (1) with the approximation built through the

asymptotic analysis in Section 2. Especially we are interested in justification of conclusions derived

there about convergences (5)-(7) and the property of Kirchhoff-Love displacement, namely that the

cross-sections remain approximately rigid and perpendicular to the deformed middle curve. Finally

we check how thin the beam should be so the difference between the solution of 3D problem and

the model is less then 3%. This is possible as in Section 3 we estimated the error of the numerical

solution to be of order 10−3. 

All numerical computations are done for the data from Section 3, namely Eq. (8) and Eq. (9) and

for j = 20. For given force density solution of the model (4) is given by

Fig. 2 Solutions of Eq. (1) for i = 5, 10, 20, 40, 80, 160 and j = 5

Table 2 Relative errors of solutions of Eq. (1) by P2 elements on two meshes 

i 10  20  40  80  160 

, j = 5 0.00232 0.00108 0.00052 0.00025 0.00012 

, j = 10 0.00140 0.00036 0.00017 8.4e-005 4.2e-005 

, j = 20 0.00078 0.00019 4.9e-005 2.3e-005 1.7e-005 

, j = 5 0.00265 0.00125 0.00060 0.00029 0.00014 

, j = 10 0.00089 0.00042 0.00020 9.6e-005 4.8e-005 

, j = 20 0.00024 0.00011 5.6e-005 2.6e-005 1.8e-005 

, j = 5 0.00604 0.00226 0.00086 0.00035 0.00015 

, j = 10 0.00353 0.00128 0.00046 0.00017 6.8e-005 

, j = 20 0.00196 0.00071 0.00024 8.8e-005 3.4e-005 

∆∞

∆∞

∆∞

∆2

∆2

∆2

∆0

∆0
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Therefore

First we want to check the convergence from Theorem 2.1, i.e., corresponding convergences (5)-

(7) rewritten on the thin domain. In Table 3 we compare the numerical solution of Eq. (1) and

approximation by u0. The results suggest the convergence is linear, i.e.,  for all

norms, with the constant in the equation of order 1. In the Fig. 3 the pointwise error in the Euclid

norm is plotted.

Zeroth order approximation consists only of the transversal displacement. Therefore all cross-

sections are just translated. The first corrector accounts for the rotation of the cross-sections. If we

add it the convergence improves to quadratic, i.e., , with constant of order 10,
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Fig. 3 Pointwise error in the Euclid norm of the 0th order approximation (i = 20)

Table 3 Relative difference of solutions of Eq. (1) and the model (4)

i 10 20 40 80  160

0.15721 0.07713 0.03843 0.01922 0.00961
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0.22009 0.10697 0.05304 0.02649 0.01325
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see Table 4. This convergence rate is a consequence of w1 being zero (actually  being zero, as

 always is). Note here that the error of the numerical solution for i = 160 and the error of the

model are of the same order, i.e., the error can not be improved unless j is increased (and more

accurate numerical solution is obtained). Pointwise error of this first order approximation is plotted

in Fig. 4.

Second order corrector is obtained by the requirement that symmetrized gradient is approximated,

see Eq. (7). It accounts for the stretching of the cross-sections. This approximation does not

improve the convergence of the approximation of the displacement for sup, L2 and V0 norms as can

be seen from the Table 5. Moreover, it introduces the error at the fixed ends of the beam due to the

boundary layer, see Fig. 5. For i = 20 the error introduced is still smaller then the overall error, but

for i = 160 the boundary layer error dominates. The data from Table 6 suggests that the

convergence (7) is linear in ε.

As it is suggested by the shape of the error at Fig. 3 the sup error on the middle line of the beam

is smaller then the overall sup error. Therefore we compare uε and u0 only on the middle line and

do it with and without of averaging uε over the cross-section. The results are presented in Table 7.

There is no difference in averaging the solution on the cross-section or not. Moreover, u0

w2

1

w1

1

Table 4 Relative difference of solutions of Eq. (1) and the model (4) with the first corrector

i 10 20 40 80 160

0.11257 0.02877 0.00627 0.00102 5.75e-005

 0.12440 0.03212 0.00700 0.00113 4.06e-005

0.11741 0.03082 0.00722 0.00157 0.00042
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Fig. 4 Pointwise error in the Euclid norm of the 1st order approximation (i = 20) 

Table 5 Relative difference of solutions of Eq. (1) and the model (4) with two correctors

i 10 20 40 80 160

0.11270 0.02878 0.00627 0.00102 6.69e-005

0.12584 0.03251 0.00710 0.00115 3.31e-005

0.12521 0.03291 0.00772 0.00167 0.00042
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approximates the middle line at the same order as the approximation with the first corrector. 

In Table 8 are relative differences between the model and the numerical solution of Eq. (1). For

instance, for i = 20 the relative difference is below 3%, so for  we may say the beam is

thin. 

In Table 9 the maximal cosine of the angle between the deformed middle line and the deformed

cross-section for the numerical solution of Eq. (1) is given (end-points of the cross-section are used

in calculation of the angle). As expected the maximal value is for the thickest beam (i = 10), and

corresponds to 1.5 degrees, as the unshearability of the cross-section holds only for beams which

are thin enough. Note that for i = 5 maximal angle is with cosine equal to 0.09109 (about 5

ε 1/20≤

Fig. 5 Pointwise error in the Euclid norm of the 2nd order approximation (i = 20 and i = 160)

Table 6 Relative difference of symmetrized gradient of the numerical solution and the model with two
correctors

i 10 20  40  80  160

 0.45054 0.24696 0.13235 0.07304 0.04279
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ε

---e u
ε

û
ε

–( )
2

Table 7 Relative difference of solutions of Eq. (1) and the model (4)

i 10 20 40 80 160

0.15721 0.07713 0.03843 0.01922 0.00961

0.11257 0.02877 0.00627 0.00102 5.7e-005

0.12685 0.02962 0.00631 0.00102 2.4e-005

0.12405 0.02891 0.00613 0.00098 3.5e-005
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Table 8 Relative difference of solutions of Eq. (1) and the model (4) on the middle line

i 15 16 17 18 19 20 21  22 23 24 25 

100 5.1 4.5 4.0 3.5 3.2 2.8 2.5 2.3 2.1 1.9 1.7 

100 5.4 4.7 4.1 3.7 3.3 2.9 2.6 2.4 2.1 1.9 1.8 
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degrees). The deformed cross-sections are in Fig. 6, plotted for beam with i = 5 just to stress its

form. Real shape of the cross-section can be seen on the right figure, but note the different scales. 

5. Conclusions

The main purpose of this paper is to analyze the applicability of the beam model for thin beam-

like linearized elastic bodies and to put some bounds on the errors between the solution of the beam

model and numerical solution of the two-dimensional linearized elasticity problem for thin

rectangles. 

First we derive the one-dimensional model starting from the two-dimensional linearized elasticity

problem on a thin rectangular domain. We formulate the zeroth order model and its corrector. The

solution of the two-dimensional linearized elasticity problem on a thin domain is denoted by , the

solution of zeroth order model by  and the correctors by . The comparison of the finite

element method solution of the two-dimensional problem with the exact solution of the one-

dimensional model suggests 

1) the one dimensional model approximates the two-dimensional problem with the order ε, i.e.,

, 

2) the one dimensional model with correctors approximates the two-dimensional problem with the

order ε2, i.e., ,

3) the second corrector does not improve the error estimate, 

4) the solution of the one dimensional model approximates the behavior of the solution of the

two-dimensional problem on the middle line with the order ε2, 

5) for the beam with  ratio less then of  the solution of the beam model with correctors

approximates the solution of two-dimensional problem with an error which is less then 3%, 

6) for the beam with  ratio less then of  the solution of the zeroth order model (the beam

model) approximates the solution of two-dimensional problem at the middle line with an error

which is less then 3%, 
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Table 9 Maximal cosine of the angle between the deformed middle line and the deformed cross-section for the
numerical solution of Eq. (1)

i 10 20 40 80 160 

sup
x1

cos (∠) 0.02494  0.00664 0.00317 0.00206 0.00115 

Fig. 6 Deformed cross-sections of the beam
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7) the correctors correct the rotation of the cross-sections of the beam. For beams with  ratio

less then  the deformed cross-section remains orthogonal on the deformed middle line with

an error which is less then 1.5 degrees. 
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