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1. Introduction

In the analysis and design of structures, some unavoidable uncertainties should be reasonably taken

into account. Probability theory, fuzzy mathematics and interval analysis are the three main tools to

handle these uncertainties (Elishakoff 1998, Rao and Berke 1997, Theodorou et al. 2007, Galal et al.

2008). When data are insufficient to validate the correctness of probability density function and

membership function of uncertainties or its functions, which are necessary for probability and fuzzy

method respectively, and yet the interval ranges of uncertainties can be given exactly, interval

analysis is a natural method to deal with this case.

In recent years, researches on structural analysis using interval method focus mainly on uncertain

structural static analysis, static inversion and reliability and so on, also dynamic eigenvalue is referred

to Deif (1986) gave the standard eigenvalue solution theorem of symmetrical interval matrix, which

was then generalized to the standard eigenvalue of interval matrix by Chen and Qiu and the matrix

perturbation method was given in (Chen and Qiu 1994, Qiu and Wang 2005). A direct optimization

method was presented for solving eigenvalue problems of interval matrices in Chen and Chen (2000).

The available methods mostly deal with the formed interval matrix, not considering the correlations

between matrix elements, which may enlarge the range of eigenvalue. Recently, Wang and Li (2004)

put forward a global optimization method, moreover, a real-code genetic algorithm is used.

To minish the expansion of computed result by using interval arithmetic directly, an affine

arithmetic is given here to study dynamic eigenvalue of structure with uncertain parameters based

on interval division, in which the affine forms of interval functions are adopted to describe

uncertainties of problems. Through mathematical example and an engineering application, feasibility

and validity of this method are illustrated and some important conclusions are obtained.

2. Description of problems

For determinate structures with n-degree-of-freedom, its generalized eigenvalue problem can be
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expressed as follows

(1)

where  is stiffness matrix of n steps;  is mass matrix of n

steps; X is eigenvector and λ is eigenvalue.

For uncertain problems, when the elements in stiffness matrix and mass matrix are interval

variables, K and M are interval matrixes with  and .

Here Eq. (1) becomes a generalized interval eigenvalue question, and the eigenvalue and

corresponding eigenvector are turned into interval numbers and vectors respectively.

For mechanical engineering, K and M are functions of uncertain parameter a, such as elastic

modulus, mass density of material and structural geometric dimensions. The relativity of some

elements in K and M should be taken into account adequately in dynamic analysis.

Suppose that  is interval vector composed of structural uncertain

parameters, its bounds are expressed as , where

 and  are lower and upper bounds respectively, m is the dimension. And K and M are 

,

Then the set of structural generalized eigenvalue is

(2)

Seen form Eq. (2), structural eigenvalue is also interval variables denoted as  with

 and  .

3. Affine arithmetic

3.1 Affine form and its interval transform

Specifically, in affine arithmetic (Stolfi and de Figueiredo 2003) a partially unknown quantity x is

represented by an affine form , which is a first-degree polynomial

 (3)

Here we call x0 the central value of the affine form ; the coefficients  are

the jth partial deviations of . Each  is the jth noise symbol which stands

for an independent source of error or uncertainty that contributions to the total uncertainty of the

quantity x. The corresponding xj gives the magnitude of that contribution.

Conversions between affine forms and intervals are defined: given an ordinary interval 

representing a quantity x, the corresponding affine form can be written as

, where ,

Conversely, given an affine form , the corresponding interval is

, where .
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3.2 Modified Affine arithmetic

The regular affine arithmetic is improved in this paper, whose main idea is to divide the

independent variables  step by step, then to do affine operation in every sub-

interval and solve corresponding structural generalized eigenvalue. 

A more formal description of the procedure of this method goes like this:

(1) Confirm structural independent interval variables . Given , the partition

number of interval , the allowable error δ > 0.

(2) Divide the intervals  into nk parts according to desired accuracy.

   

Then we transform the split intervals into several affine representations where the coefficients

of uncertainty variables are 1/N of the original coefficients.

(3) No longer introduce any new uncertainty symbol as a result of each basic non-affine arithmetic

operation, keep the affine form in K and M as certain representations. Then solve the structural

generalized eigenvalue in Eq. (5).

(4) Calculate the expressions of  by affine arithmetic. 

(5) Search the  and  from the jth generalized eigenvalue λj.

(6) Let iteration number be . When , ; when ; when , then

.

(7) Repeat the step (2) to step (5), then we obtain a new round of  and .

(8) Calculate  and . If  (j = 1, 2,…

, n),

return to step (9), otherwise to step (6).

(9) Output generalized eigenvalue , where  and .

4. Examples

Example 1: Solve the range of , where ,

.

By using interval arithmetic, the result of original function is [−45,
5.1765], whereas the result of

changed form +  is [−33, 33.7647]. If the

affine arithmetic based on interval division is adopted, let 

be independent variable, allowable error be , when the

partition number is  we obtain the result [−9, 33.7647] which

is consistent with the factual solution domain.

Example 2: Fig. 1 shows a multi-story frame structure. Structural

stiffness parameters are [k1] = [2000, 2020] N/m, [k2] = [1800, 1850] N/m,

[k3] = [1600, 1630] N/m, [k4] = [1400, 1420] N/m and [k5] = [1200,

1210] N/m. The mass parameters are [m1] = [29, 31] kg, [m2] =[26, 28]
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Fig. 1 A multi-story frame
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kg, [m3] = [26, 28] kg, [m4] = [24, 26] kg and [m5] = [17, 19] kg. To solve the structural eigenvalue.

By using affine arithmetic based interval division, let allowable error be δ = 0.001, when nk = 2, the

iteration stops. Table 1 shows the eigenvalue of the frame structure by using the improved affine

arithmetic, the global optimization method and the matrix perturbation method respectively.

Affine arithmetic takes structural interval parameters as independent variables and considers the

correlatives between elements of mass matrix and stiffness matrix adequately. However, the matrix

perturbation method takes into account no effects of parameters on matrix elements, and solves the

corresponding interval generalized eigenvalue after the stiffness matrix and mass matrix formed

perfectly. Table 1 shows the results solved by the proposed method in this paper are almost

consistent with that solved by global optimization method, and its solution domain of eigenvalue is

subset of that by using matrix perturbation method.
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Table 1 Eigenvalue of the frame structure 

Global optimization method
(Wang and Li 2004)

The proposed method Matrix perturbation method

λ1 [5.858, 6.502] [5.8581, 6.5020] [4.617, 7.830]

λ2 [42.029, 46.309] [42.0293, 46.3088] [40.643, 47.820]

λ3 [98.856, 108.689] [98.8564, 108.6890] [99.180, 109.399]

λ4 [158.051, 173.778] [158.0514, 173.7776] [157.848, 174.002]




