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Abstract. A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-
Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated
Force Method is presented in this paper. The performance of this new element (MQP8) is studied for
accuracy and convergence by analyzing many standard benchmark plate bending problems. This new
element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also
this element is free from spurious/zero energy modes and free from shear locking problem. 

Keywords: Mindlin-Reissner theory; plate bending element; integrated force method; displacement
fields; stress-resultant fields. 

 

 

1. Introduction 

 

Considerable amount of research work has been carried out over the past few decades by research

engineers and scientists on the Mindlin-Reissner theory based plate bending elements. These

elements consider C0 continuity and avoid C1 continuity which is rather difficult to adopt for higher

order finite elements. Most of the plate bending elements developed so far use the displacement

based finite element method (Choi and Park 1999, Choi et al. 2002, Kim and Choi 2005, Kanber

and Bozkurt 2006, Ozgan and Daloglu 2007) and a very few are hybrid/mixed elements (Pian and
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Chen 1982, Dimitris et al. 1984, Chen and Cheung 1987, Dar lmaz 2005, Dar lmaz and Kumbasar

2006). In this paper Integrated Force Method, has been used to develop the Mindlin-Reissner theory

based 8-node quadrilateral plate bending element which considers C0 continuity and effect of shear

deformation. 

During pre-computer era, both the force method and the displacement method were popular tools

for analyzing civil, mechanical and aerospace engineering structures. The popularity of the force

method can be attributed to its ability to determine accurate estimates for forces in the structures.

During the formulative period of structural analysis by matrix methods, earnest research was

directed to automate both force and displacement methods. Automation of displacement method of

analysis was successful as there were no hurdles like selection of redundant forces in statically

indeterminate and continuum structures. However computer automation of the force method of

analysis was not successful. Redundant force selection of statically indeterminate and continuum

structures was the main cause of failure. It acted as the dominating road block in the path of the

force method automation. The effort in computer-assisted generation of compatibility conditions in

the process of automation of the force method was partially successful (Robinson and

Haggenmacher 1971, Kaneko et al. 1983), as it was not extended for continuum structures. 

A new novel matrix formulation of the classical force method of analysis termed “Integrated

Force Method (IFM)” has been developed (Patnaik 1973) for analyzing civil, mechanical and

aerospace engineering structures. In this method, all independent/internal forces are treated as

unknown variables which are computed by simultaneously imposing equations of equilibrium and

compatibility conditions. Unlike classical force method of analysis, the IFM is independent of

redundants and the basic determinate structure. It requires explicit generation of compatibility

conditions for skeletal as well as continuum structures. The advantages of IFM compare to

displacement-based finite element method are reported in the reference (Patnaik et al. 1991). 

The IFM integrates the system of equilibrium equations and the global compatibility conditions in

a fashion paralleling approaches in continuum mechanics (example, the Beltrami-Michell

formulation of elasticity (Love 1944). A variational energy formulation for IFM has been

established by Patnaik (1986). The stationary condition of the functional yields, the equilibrium

equations, compatibility and natural boundary conditions. 

Generation of compatibility conditions for elasticity and discrete models have been reported by

Patnaik et al. (2000). Nagabhushanam and Patnaik (1990) have developed a general purpose

program to generate compatibility matrix for the IFM. Automatic generation of sparse and banded

compatibility matrix for the Integrated Force Method has been reported by Nagabhushanam and

Srinivas (1991). IFM has been successfully implemented for analyzing, plane stress Nagabhushanam

and Srinivas (1991), two/three dimensional problems (Kaljevic et al. 1996, Kaljevic et al. 1996),

dynamics (Patnaik and Yadagiri 1976), optimization (Patnaik et al. 1986) and non-linear problems

(Krishnam Raju and Nagabhushanam 2000). A 4-node rectangular plate bending element based on

the Kirchhoff theory has been formulated using the IFM (Patnaik et al. 1991) The element considers

a transverse displacement and two rotations as degrees of freedom at each node. The performance

of this element was compared with those obtained by force method (Przemieniecki 1968, Robinson

1973). Dhananjaya et al. (2007), developed a 4-node bilinear plate bending element based on the

Mindlin-Reissner theory using IFM. The results of this element were compared with those of

similar displacement-based 4-node quadrilateral plate bending elements available literature. 

In this paper, a new 8-node serendipity quadrilateral plate bending element (MQP8) has been

presented by assuming suitable stress-resultants and displacement fields for analysis of thin and

i i
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moderately thick plate bending problems using Integrated Force Method. Mindlin-Reissner theory

has been employed in the formulation which accounts the effect of shear deformation. Many

standard plate bending benchmark problems are analyzed to test the accuracy and convergence of

the element presented. The results obtained by this element are compared with those of similar

displacement-based 8-node quadrilateral plate bending elements available in the literature. Results

are also compared with the exact solutions. Numerical results indicate that proposed element MQP8

is free from spurious/zero energy modes and shear locking problem. The proposed element MQP8

has produced, in general, excellent results in the numerical problems considered. 

 

 

2. Formulation of element equilibrium and flexibility matrices 

 

For the sake of completeness, the basic theory of the Integrated Force Method has been given in

the appendix A. In this section brief formulation on the development of equilibrium and flexibility

matrices of plate bending element is described. The Mindlin-Reissner theory has been employed in

the formulation. In the Mindlin-Reissner theory, a line that is straight and normal to mid-surface of

the un-deformed plate remain straight but not necessarily normal to the mid-surface of the deformed

plate. This leads to the following definition of the displacement components u, v, w in the x, y, z

Cartesian coordinates system 

 
(1)

 
where 

x, y are coordinates in the reference mid-surface 

z is the coordinate through the thickness of the plate t with −t/2 ≤ z ≤ t/2 

w is the transverse (lateral) displacement 

θx, θy represent the rotations of the normal in x-z and y-z planes respectively 

Engineering strains for the Mindlin-Reissner plate theory can be written as 

 

(2)

 

 

The stress-strain relations for an isotropic two-dimensional plate material is given by 

 
 (3)
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  vector of strain components 

 

 

 

 E = Young’s modulus; 

ν = Poisson’s ratio 

 

 The stress-resultants for plates can be written as 

 

(4)

Eqs. (2), (3) and (4) yield the moment-curvature relations as 

(5)

 Where {M} = vector of stress-resultants 

    =  

 [C1] = matrix relating stress-resultants to curvatures 

 {k}  = vector of curvatures 

 

    = 

 

From the Eq. (5), the curvature-moment relations can be written as 

 
(6)

 
 where 

   = matrix relating curvatures to stress-resultants 

 
The matrix [H] for the Mindlin-Reissner plate with Reissner’s shear correction factor (Reissner
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1945) of 5/6 can be written as

  

 

(7)

 

where 

 The strain energy Up of the elastic plate in bending and shear is written as 

 (8)

The vectors {M} and {k} for a discrete plate bending element can be expressed in matrix

notations in terms of assumed stress-resultants and displacement fields respectively as 

 

 (9)

 
 (10)

 

 where [ψ] = matrix of polynomial terms for stress-resultant fields 

{Fe} = vector of force components of the discrete element 

[φ1] = matrix of polynomial terms for displacement fields

  [φ1] = [φ1][A]−1

 [A] = matrix formed by substituting the coordinates of the element 

  nodes into the polynomial of displacement fields 

{α} = coefficients of the displacement field polynomial 

{Xe} = vector of displacements of the discrete element

[Dop] = differential operator matrix = 

 

 

Substituting Eqs. (9) and (10) into the Eq. (8), the strain energy for the discrete element can be

expressed as 
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(11)

where  represents the element equilibrium matrix and is given by 

(12)

The complementary strain energy for the elastic plate in bending and shear is expressed as 

 

Using the Eq. (7), the complementary strain energy for the discrete element is written as 

 

 (13)

 

 where  represents the element flexibility matrix and is given by

    (14)

The Eqs. (12) and (14) are used to obtain element equilibrium matrix [Be] and element flexibility

matrix [Ge] respectively. These element matrices [Be] and [Ge] of all elements are assembled to

obtain the global equilibrium matrix [B] and global flexibility matrix [G] of the structure and they

are used to setup the IFM governing equation to analyze the plate problems by IFM. 

 

2.1 Displacement and stress-resultant fields 

 

A typical 8-node quadrilateral plate bending element is shown in the Fig. 1. Three degrees of

freedom namely a transverse displacement w and two rotations θx, θy are considered at each node of

the proposed 8-node serendipity quadrilateral plate bending element MQP8. 

The assumed polynomials for displacement fields in Integrated Force Method should satisfy the

convergence requirements. Assumed displacement fields for w, θx and θy in terms of generalized

displacement parameters  are given in the Eq. (15) for this proposed 8-node

quadrilateral element. 

 

(15)
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Fig. 1 A typical 8-node quadrilateral plate bending element
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In the Integrated Force Method, the assumed stress-resultant fields must satisfy the equilibrium

equations. Eq. (16) shows the assumed stress-resultant fields for this proposed 8-node quadrilateral

plate bending element. in terms of polynomials with independent generalized force parameters

. The stress-resultant fields for the shear forces Qy and Qx are obtained by

considering moment equilibrium equations of the element. 

 

 (16)

The displacement and stress-resultant fields given in the above Eqs. (15) and (16) are used in the

Eqs. (12) and (14) to obtain element equilibrium and flexibility matrices for this proposed element

MQP8. 

 

3. Numerical tests and results 

 

To validate the proposed element MQP8, the numerical tests for convergence, spurious/zero

energy modes and shear locking are considered. 

A square/rectangular plate with simply supported/clamped boundary conditions, the Morley’s plate

problem and the Razzaque’s plate problem are considered to study the performance of the proposed

element MQP8. These numerical/example problems are analyzed to estimate moments and

deflections for various mesh sizes using the proposed element MQP8 via Integrated Force Method.

The results of the proposed element MQP8 are compared for accuracy and convergence with those

of existing 8-node displacement based quadrilateral plate bending elements available in the literature

(Spilker 1982). The results of the proposed element MQP8 are also compared with the exact

solutions (Timoshenko and Krieger 1959, Jane et al. 2000). The details of example problems

considered here are given below. 

1. A square thin plate (t/L = 0.01) with simply supported/clamped boundary conditions subjected

to central point load. The parameters of the problem are : L = 100, B = 100, t = 1, E = 107, ν =

0.3, P = 400 (Spilker 1982) 

2. A rectangular thin plate (t/B = 0.01) with aspect ratio 2 for simply supported/clamped boundary

conditions subjected to uniform load. The parameters of the problem are : L = 200, B = 100, t =

1, E = 107, ν = 0.3, q = 10 (Spilker 1982) 

3. The Morley’s plate problem (Fig. 2). Parameters of the problems are: L = 100, B = 100, t = 1,

E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ = 30o, w = 0 on all boundaries

(Morley 1963) 

4. The Razzaque’s plate problem (Fig. 3). Parameters of the problems are: L = 100, B = 100, t = 1,

E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ = 60o (Razzaque 1973) 

F1  F2  …  F21

Mx F1 F2x F3y F4x
2

F5xy F6y
2

F7x
2
y F8xy

2
+ + + + + + +=

My F9 F10x F11y F12x
2

F13xy F14y
2

F15x
2
y F16xy

2
+ + + + + + +=

Mxy F17 F18x F19y F20x
2

F21y
2

+ + + +=

Qy F11 F18+( ) F13 2F20+( )x 2F14y 2F16xy F15x
2

+ + + +=

Qx F2 F19+( ) 2F4x F5 2F21+( )y 2F7xy F8y
2

+ + + +=



492 H.R. Dhananjaya, P.C. Pandey and J. Nagabhushanam

Due to symmetry of the plate with respect to the shape, boundary and loading conditions in the

above example problems 1 and 2, one quadrant of the plate is analyzed with appropriate boundary

conditions for various mesh sizes. A typical mesh (2 × 2) considered in one quadrant of the

rectangular/square plate is shown in the Fig. 4. As the force-based 8-node quadrilateral plate

bending finite elements are not available in the literature, the displacement based 8-node

quadrilateral plate bending finite elements are considered for the purpose of comparison of the

results of the proposed element MQP8. 

The displacements and moments are estimated for the above example problems using the

proposed element MQP8 via IFM. The results of MQP8 are compared with those of displacement

based 8-node quadrilateral plate bending elements QH1, QH2, QH3, QH4 available in the literature

(Spilker 1982) for the example problems 1 and 2. 

Fig. 2 Morley’s plate : L = 100, B = 100, t = 1, E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ 
30o, w = 0 on all sides of the plate

Fig. 3 Razzaque’s plate L = 100, B = 100, t = 1, E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate
θ = 60o (Two opposite edges simply supported while other two free)

Fig. 4 A typical (2 × 2) mesh in one quadrant of the plate
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The central displacements and moments obtained for the example problems 1 and 2 are

normalized with respect to the solution obtained from thin plate bending theory. Tables 1, 2

summarize the normalized central displacements of a square thin plate (t/L = 0.01) for the example

problem 1 for various grid sizes, and the Figs. 5, 6 show the corresponding convergence trends. The

normalized central displacements and moments of a rectangular thin plate (t/B = 0.01) with aspect

ratios 2 for the example problem 2 are summarized in the Tables 3, 4, and the corresponding

convergence trends are shown in the Figs. 7, 8. These Tables and Figs. indicate that the proposed

element MQP8 is consistently performing well in estimating the central deflections and moments

for thin square/rectangular plate with various boundary conditions and loadings considered and the

results are fast approaching towards the exact solutions as shown in the Figs. 5-8.

 

  

Table 1 Normalized central deflection for a simply supported square thin plate with the central point load
(t/L = 0.01, Example problem 1) 

Elements QH1 QH2  QH3  QH4  MQP8 

1 × 1 0.96 1.06 0.93 0.76 0.97 

2 × 2 1.00 1.02 1.00 0.93 1.01 

3 × 3 1.00 1.01 1.00 0.95 1.00 

4 × 4 1.00 1.00 1.00 0.97 1.00 

Table 2 Normalized central deflection for a clamped square plate with the central point load (t/L = 0.01,
Example problem 1)

Elements QH1 QH2  QH3  QH4  MQP8 

 1 × 1  1.150  1.280  1.100  0.505  1.154 

 2 × 2  1.000  1.040  0.980  0.810  1.002 

 3 × 3  1.010  1.030 1.000  0.920  1.009 

 4 × 4  1.010  1.020  1.010  0.960  1.009 

Fig. 5 Normalized central deflection for a simply
supported square thin plate with central point
load 

Fig. 6 Normalized central deflection for a clamped
square thin plate with central point load
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The Morley’s plate problem (example problem 3) and the Razzaque’s plate problem (example

problem 4) are analyzed for central deflections and moments by considering the full plate with

various mesh sizes using the proposed element MQP8 via the Integrated Force Method. Central

deflections and moments of the Morley’s plate and the Razzaque’s plate obtained by the proposed

element MQP8 are plotted against no of elements in the Figs. 9-11. The exact values of central

deflections and moments of the Morley’s plate (finite difference solution) (Morley 1963) and the

Razzaque’s plate (Razzaque 1973) are also plotted in the Figs. 9-11. These Figures show that the

estimated central deflections and moments of the proposed element MQP8 are fast converging to

the exact solutions. 

To verify the spurious/zero energy modes, regular and irregular meshes as shown in the

Figs. 12(a) and 12(b) respectively are considered. The parameters of the problem are L = 100,

  

Table 3 Normalized central deflection for a simply supported rectangular thin plate with uniform load (t/B =
0.01, L/B = 2, Example problem 2)

Elements  QH1 QH2  QH3  QH4  MQP8 

1 × 1 0.975  0.870  0.910  0.855  0.980 

2 × 2 1.000  0.990  1.010  0.980 1.010 

3 × 3 1.000 1.000  1.000  0.990 1.000 

4 × 4 1.000 1.000  1.000  0.995 1.000 

Table 4 Normalized central moment Mx for a simply supported rectangular thin plate with uniform load (t/B =
0.01, L/B = 2, Example problem 2) 

Elements QH1  QH2  QH3  QH4  MQP8 

1 × 1  0.720  1.800 1.020  1.090  0.700 

2 × 2 1.040 1.550  0.970  0.980  0.980 

3 × 3  1.020  1.140  0.980  0.985  0.950 

4 × 4  1.010  1.090  0.990  0.990  0.990 

Fig. 7 Normalized central deflection for a simply
supported rectangular thin plate with uniform
load

Fig. 8 Normalized central moment Mx for a simply
supported rectangular thin plate with uniform
load
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Fig. 9 Central deflection for a Morley’s plate with
uniform load

Fig. 10 Central Moment Mx for a Morley’s plate
with uniform load

Fig. 11 Central deflection for a Razzaque’s plate with uniform load

Fig. 12 (a) 8-node 2 × 2 regular mesh, (b) 8-node 2 × 2 irregular mesh
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B = 100, t = 10, 1, 0.1, 0.01, 0.001, E = 107, ν = 0.3 and uniform load q = 1. Eigen values

corresponding to element 1 of the Figs. 12(a) and 12(b) for various thicknesses-span ratios are given

in the Tables 5 and 6. The results show that the proposed element MQP8 is free from spurious/zero

energy modes. 

The simply supported square plate with various thickness-span ratio (thin: t/L = 0.00001, 0.0001,

0.001, 0.01 and moderately thick t/L = 0.1) subjected to uniform load is analyzed using the

proposed element MQP8 for the grid size 4 × 4 in one quadrant of the plate to estimate the central

deflections and moments. The parameters of the problem considered are: L = 50, B = 50, t = 5, 0.5,

0.05, 0.005, 0.0005, E = 200000, ν = 0.3, q = 1. The exact central displacements and moments are

Table 5 Eigen values for regular mesh (element 1 in the Fig. 14(a)), t/L = 0.1, 
0.01, 0.001, 0.0001, 0.00001

t/L Eigen values 

0.1 

.3815E+10; .3701E+10; .2673E+10; .1783E+10; 

.2680E+10; .1538E+10; .1682E+10; .1516E+10; 

.7518E+09; .7309E+09; .7399E+09; .3112E+09; 

.5770E+09; .1594E+09; .3179E+09; .1371E+09; 

.2022E+08; .1158E+07; .3899E+07; .6510E+07; 

.3924E+07; -.6820E-07; -.1031E-06; .7443E-07; 

 0.01 

.5525E+07; .5673E+07; .2310E+07; .3034E+07; 

.3044E+07; .1994E+07; .2090E+07; .2138E+07; 

.8480E+06; .7771E+06; .8520E+06; .6127E+06; 

.3253E+06; .1628E+06; .3340E+06; .1377E+06; 

.2275E+05; .1232E+04; .4268E+04; .7027E+04; 

.4296E+04; .8830E-10; -.1625E-10; -.1625E-10; 

 0.001 

.5588E+04; .5747E+04; .3065E+04; .2347E+04; 

.3063E+04; .2266E+04; .2182E+04; .2149E+04; 

.8575E+03; .7817E+03; .8743E+03; .6149E+03; 

.3473E+03; .1629E+03; .3555E+03; .1377E+03; 

.2281E+02; .1241E+01; .4327E+01; .7040E+01; 

.4359E+01; .3658E-13; .8672E-13; .2055E-12; 

 0.0001

.5587E+01; .5746E+01; .3041E+01; .2299E+01; 

.3051E+01; .2084E+01; .2145E+01; .2104E+01; 

.8541E+00; .7783E+00; .8606E+00; .3342E+00; 

.6145E+00; .1629E+00; .3430E+00; .2281E-01; 

.1377E+00; .1224E-02; .4297E-02; .7040E-02; 

.4326E-02; .1306E-15; -.9310E-16; .3515E-17; 

 0.00001 

.5587E-02; .5746E-02; .3041E-02; .3051E-02; 

.2299E-02; .2084E-02; .2145E-02; .2104E-02; 

.8541E-03; .7783E-03; .8606E-03; .6145E-03; 

.3342E-03; .1629E-03; .3430E-03; .1377E-03; 

.2281E-04; .1224E-05; .4297E-05; .7040E-05; 

.4326E-05; .2151E-19; .1129E-18; -.1532E-18; 
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calculated from the Kirchhoff theory (Timoshenko and Krieger 1959) and Mindlin theory (Jane et

al. 2000) solutions for thin and moderately thick plate bending problems respectively. The results

are shown in the Figs. 13 and 14. These Figures indicate that the proposed element MQP8 performs

quite well for both thin and moderately thick plate bending problems. 

Tables and Figures of all example problems considered here show that the proposed element

MQP8 has consistently estimated the deflections and moments quite closely to exact values and are

better, in general, than those of displacement based similar finite elements considered. Also the

performance of the proposed element MQP8 is quite excellent for both thin and moderately thick

plate bending problems. 

 
Table 6 Eigen values for irregular mesh (element 1 in the Fig. 14(b)), t/L = 0.1, 0.01,

0.001, 0.0001, 0.00001

t/L Eigen values 

 0.1 

 .4367E+10;  .4134E+10;  .2763E+10;  .1728E+10; 

 .2821E+10;  .1817E+10;  .1721E+10;  .1827E+10; 

 .9234E+09;  .7344E+09;  .4587E+09;  .1940E+09; 

 .8356E+09;  .6545E+09;  .4183E+09;  .1245E+09; 

 .2050E+08;  .9304E+06;  .3055E+07;  .5687E+07; 

 .2934E+07;  -.1459E-06;  -.4187E-07;  -.4187E-07; 

 0.01 

 .9096E+07;  .6075E+07;  .4003E+07;  .3020E+07; 

 .3246E+07;  .2250E+07;  .2417E+07;  .2110E+07; 

 .9966E+06;  .8004E+06;  .1228E+07;  .5489E+06; 

 .1979E+06;  .7029E+06;  .4703E+06;  .1258E+06; 

 .2263E+05;  .3408E+04;  .9745E+03;  .6088E+04; 

 .3149E+04;  -.1195E-09;  .2334E-09;  .8574E-11; 

 0.001 

 .1449E+05;  .6643E+04;  .3880E+04;  .3009E+04; 

 .3367E+04;  .2254E+04;  .2907E+04;  .2162E+04; 

 .1011E+04;  .8146E+03;  .1159E+04;  .4933E+03; 

 .1984E+03;  .6944E+03;  .4391E+03;  .1260E+03; 

 .2312E+02;  .3517E+01;  .9755E+00;  .6215E+01; 

 .3204E+01;  -.2832E-13;  .1340E-12;  -.1083E-12; 

 0.0001 

 .1449E+02;  .6643E+01;  .3880E+01;  .3009E+01; 

 .3367E+01;  .2254E+01;  .2907E+01;  .2162E+01; 

 .1011E+01;  .8146E+00;  .1159E+01;  .4933E+00; 

 .1984E+00;  .6944E+00;  .4391E+00;  .1260E+00; 

 .2312E-01;  .3517E-02;  .9755E-03;  .6215E-02; 

 .3204E-02;  -.2589E-15;  -.1283E-15;  -.1418E-16; 

0.00001 

 .1449E-01;  .6643E-02;  .3009E-02;  .3880E-02; 

 .2254E-02;  .3367E-02;  .2907E-02;  .2162E-02; 

 .1011E-02;  .8146E-03;  .1159E-02;  .4933E-03; 

 .1984E-03;  .6944E-03;  .4391E-03;  .1260E-03; 

 .2312E-04;  .3517E-05;  .9755E-06;  .6215E-05; 

 .3204E-05;  .1743E-18;  -.9612E-19;  -.9612E-19; 



498 H.R. Dhananjaya, P.C. Pandey and J. Nagabhushanam

4. Conclusions 

 

The new 8 node quadrilateral plate bending element (MQP8) has been presented for the analysis

of thin and moderately thick plate problems using the Integrated Force Method. The element

considers three degrees of freedom namely a transverse displacement ‘w’ and two rotations θx, θy at

each node. The Mindlin-Reissner theory has been employed in the formulation which accounts for

the shear deformation. The proposed element MQP8 is free from spurious/zero energy modes. 

The proposed element (MQP8) is also free from shear locking. Therefore the same element can be

used to analyze thin as well as moderately thick plate bending problems. Many standard benchmark

plate bending problems have been analyzed using the proposed element MQP8 via the Integrated

Force Method. In all the plate bending problems considered, the proposed element MQP8 has

produced, in general, excellent results. Therefore the proposed element MQP8 can be used as an

alternative element to similar displacement-based 8-node quadrilateral plate bending elements

considered for the analysis thin or moderately thick plate bending problems. 
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Notations

 
[A] : matrix relating nodal degrees of freedom and coefficients of the polynomial 
[B] : global equilibrium matrix (m × n) 
[Be] : element equilibrium matrix (me × ne) 
[C] : compatibility matrix (r × n) 
[Dop] : differential operator matrix 
E : Young’s modulus 
{F} : vector of internal forces of the structure (n × 1) 
{Fe} : vector of internal forces of the discrete element (ne × 1) 
[G] : global flexibility matrix (n × n) 
[Ge] : element flexibility matrix (ne × ne) 
[H] : matrix relating the curvatures to stress resultants 
[J] : deformation coefficient matrix (m × n) 
L, B : Length and breadth of the plate 
Mc : central moment of the plate 
{M} : vector of stress resultants 
 P : point load at the center or tip of the plate 
{P} : vector of external loads (m × 1) 
q : uniform load over the plate 
[S] : IFM governing matrix (n × n) 
Wc : central deflection of the plate 
{X} : vector of displacements of the structure (m × 1) 
{Xe} : vector of displacements of the discrete element (me × 1) 
{k} : vector of curvatures 
n, m : force and displacement degrees of freedom of the structures respectively 
ne, me : element force and displacement degrees of freedom respectively 
t : thickness of the plate 
{α} : generalized coordinates of the polynomial in the displacement field. 
{β} : vector of elastic deformations 
{βo} : vector of initial deformations 
ν : Poisson’s ratio 
[φ1] : matrix of polynomial terms for displacement fields 
[ψ] : matrix of polynomial terms for stress-resultants fields 
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Appendix A: Basic theory of IFM 
 
In the Integrated Force Method of analysis, a structure idealized by finite elements is designated as “struc-

ture(n, m)”. Where (n, m) are force and displacement degrees of freedom of the discrete model, respectively.
The structure (n, m) has m equilibrium Equations and r = (n – m) compatibility conditions. Equilibrium equa-
tions (EE) represent the vectorial summation of the internal forces {F} to the external loads {P} at the nodes
of the finite element descritization. It can be written in symbolized matrix notation as 

 
Equilibrium Equations[EE] : (A.1)

 
Where [B] = global equilibrium matrix 

   {F} = vector of internal forces of the structure 
   {P} = vector of external loads on the structure 

 
The Compatibility Conditions (CC) are constraints on strains, and for finite element models they are also

constraints on member deformations. 
In IFM, St. Venant’s approach has been extended for discrete mechanics to develop the compatibility condi-

tions. Development of CC is briefly explained below: 
The Deformation-Displacement Relationship(DDR) for discrete mechanics is equivalent to the strain-dis-

placement relationship in elasticity. The DDR for discrete analysis was obtained during the development of
the variational energy formulation for the IFM (Krishnam Raju and Nagabhushanam 2000)

According to work energy conservation theorem, the internal energy stored in the body in the structure is
equal to the work done by the external load, that is

 
(A.2)

where {X} represents nodal displacements. Eq. (A.2) can be rewritten by eliminating the load {P} in favor of
forces {F}, by using the Eq. (A.1) to obtain the following relation

 
(A.3)

Eq. (A.3) can be simplified as 
 

(A.4)
 
Since {F} is not a null vector, its coefficient must be equal to zero, which yields the DDR as 

 
 (A.5)

 
Where {β} are member deformations. 

This equation represents the Deformation Displacement Relations (DDR) for the discrete structure. The
elimination of m displacements from n deformations displacement relations given by the above equation
yields r = (n – m) compatibility conditions and the associated matrix [C]. 

Here while obtaining the matrix [C], no reference is made to redundant forces. Thus the concept of redun-
dant force selection is eliminated in IFM. 

It can be symbolized in matrix notations as 

 
 (A.6)

 
Substituting Eq. (5) into the Eq. (A.6), we obtain 

 

 
Since the displacement vector {X} is not a null vector, we have 

B[ ] F{ } P{ }=

1

2
--- F{ }T

β{ } 1

2
--- P{ }T

X{ }=

1

2
--- F{ }T

B[ ]T X{ } 1

2
--- F{ }T

β{ }=

1

2
--- F{ }T

B[ ]T X{ } β{ }–[ ] 0=

β{ } B[ ]T X{ }=

C[ ] β{ } 0=

C[ ] β{ } C[ ] B[ ]T X{ } 0==

X{ }T

B[ ] C[ ]T( ) 0{ }=
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  (A.7)

where [C] is the (r x n) compatibility matrix. It is a kinematics relationship, and it is independent of design
parameters, material properties and external loads. This matrix is rectangular and banded. The deformation
{β} in the compatibility conditions (CC) given by the Eq. (6) represents the total deformation consisting of an
elastic component {βe} and the initial component {βo} as 

 
 (A.8)

 
The CC in terms of elastic deformation can be written as 

 
 (A.9)

 
 

 
Where (A.10)

 
Using the flexibility characteristics, Eq. (A.6) with initial deformations can be rewritten as 

 
 (A.11)

 
Combining Eqs. (A.1) and (A.11), we lead to the IFM governing equation as 
 

 

(A.12)

B[ ] C[ ]T 0=

β{ } βe{ } β0{ }+=

C[ ] β{ } C[ ] βe{ } C[ ] β0{ } 0=+=

C[ ] βe{ } δR{ }=

δR{ } C[ ] β0{ }–=

C[ ] G[ ] F{ } δR{ }=

B[ ]

C[ ] G[ ]( )
F{ }

P

δR⎩ ⎭
⎨ ⎬
⎧ ⎫

=

S[ ] F{ } P
*{ }=




