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Abstract. The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled
Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on
elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously
using the homogeneous form of the simultaneous ordinary differential equations. The present beam
formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-
curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semi-
tangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-
deformation relationships are derived from the energy principle and expressions for displacement
parameters are derived based on power series expansions of displacement components. Finally the element
stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and
validity of this study, the numerical solutions by the proposed method are presented and compared with
the finite element solutions using the classical isoparametric curved beam elements and other researchers’
analytical solutions.
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1. Introduction

It is well known that curved beam structures have been used in many civil, mechanical, and

aerospace engineering applications such as curved wire, curved girder bridges, turbomachinery

blade, tire dynamic, and stiffeners in aircraft structures. It can also be used as a simplified model for

a shell structure. The curved beam with thin-walled cross-sections, such as I-section, channel, and

angle, are appealing because they offer a high performance in terms of minimum weight for given

strength. However, such weight-optimized members having arbitrary cross-section are highly

susceptible to buckling and shows very complex behavior due to the coupling effect of axial,

flexural and torsional deformation. Therefore, the accurate prediction of their stability limit state is

of fundamental importance in the design of thin-walled curved beam structures.
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Up to the present, a large amount of work was devoted to the improvement of thin-walled curved

beam element and the investigation of the stability and vibration behaviors since the early works of

Vlasov (1961) and Timoshenko and Gere (1961). Vlasov (1961) formulated the stability equations

by substituting the curvature terms of the curved beam into the straight beam equilibrium equation

and Timoshenko and Gere (1961) derived the governing equations for buckling of curved beam

neglecting the effect of warping. Many researchers (Kim et al. 2005, Kim et al. 2000a, Wilson and

Lee, 1995, Wilson et al. 1994, Rajasekaran and Padmanabhan 1989, Papangelis and Trahair 1987,

Trahair and Papangelis 1987, Dabrowski 1968, Heins 1975) presented the analytical formulations

including closed-form solutions and discussing their results on stability or vibration of curved

beams. In the study by Kim et al. (2005), the elastic strain energy considering shear effects due to

the bending and the non-uniform torsion and the geometric potential energy due to an initial axial

force were derived and the closed-form solutions were evaluated for in-plane and out-of-plane

buckling loads of thin-walled curved beam. However, in their study, the extensibility of beam axis

in evaluation of in-plane buckling loads was neglected.

On the other hand, the finite element method has been widely used because of its versatility and

accordingly considerable research efforts have been made to obtain acceptable results for the

coupled behavior of curved structures. Choi and Hong (2001) performed the static analysis of

single- and multi-span curved box girder bridges using the modified finite strip method.

Chucheepsakul and Saetiew (2002) presented a finite element approach for determining the natural

frequencies for planar arches of various shapes vibrating in three- dimensional space. In their study,

displacement components were expressed by cubic polynomials in terms of the arc length

parameter. Chang et al. (1996) presented numerical solutions on spatial stability of the circular arch

using the thin-walled straight beam element based on cubic Hermitian polynomials. Usuki et al.

(1979) and Watanabe et al. (1982) developed the lateral-torsional buckling theory together with the

finite element formulation of thin-walled circular arch accounting for prebuckling deflections. In

spatial stability analysis of curved beam, the non-commutative nature of rotations about different

axes and deficiency of the equilibrium condition along the finite curved length when considering

internal moments as quasi-tangential moments render the analysis more complicated. In order to

resolve these problems, Kim et al. (2003), Kim et al. (2000b), Hu et al. (1999), and Saleeb and

Gendy (1991) introduced the improved displacement field adding the second-order terms of finite

rotations to the displacement field of curved beam and performed the stability analysis using the

finite element method.

The complicated problems for the analysis of curved beam on elastic foundation are frequently

encountered due to additional parameters related to the foundation effects. There exists a wide body

of literature on the analysis of beams resting on elastic foundation since the early works of Hetenyi

(1946) who developed the differential equation approach. Lee et al. (2002) derived the governing

differential equations for the out-of-plane free vibration of circular curved beams resting on

Winkler-type foundations and solved numerically using the Runge-Kutta method. Wang and

Brannen (1982) studied the effects of Winkler-Pasternak foundations upon natural frequencies of

circular curved beams out of their initial plane of curvature. Rodriquez (1961) derived the closed-

form solutions of differential equations of circular beam on elastic foundation. Also the finite

element formulations which are based on displacement types have been developed by Sengupta and

Dasgupta (1987) and Banan et al. (1989). Aköz and Kadio lu (1996) developed the mixed finite

element formulation for circular beams on Winkler foundation. Chakraborty and Sarkar (2000)

presented a stochastic finite element method for analysis of a curved beam on uncertain elastic

g
o
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foundation. In their study, the finite element solution was obtained utilizing the Neumann expansion

method within the framework of Monte Carlo simulation.

From the previously cited references, it can be noted that even though a significant amount of

research has been extensively conducted on development of a stability analysis of curved beam, to

the best of authors’ knowledge, there still has been no study reported in the literature on the

evaluation of the spatially coupled buckling loads of thin-walled Timoshenko curved beam with

non-symmetric cross-section resting on elastic foundation. It is well known that the stability

behavior of thin-walled curved beam with non-symmetric cross- section is very complex due to the

coupling effect of axial, flexural and torsional deformation and many researchers thought that it is

difficult to solve the spatially coupled stability problem of curved beam analytically.

The aim of this study is to present, the stiffness matrices for the spatially coupled buckling, in-

plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric,

double-, and mono-symmetric cross-sections resting on two-types of elastic foundation using the

power series method. The important points of the present study are summarized as follows:

1. The equilibrium equations and the force-deformation relations of the curved beam on two-

types of elastic foundation considering the shear effects are derived from the total potential

energy.

2. Based on the power series expansions of displacement components, the stiffness matrix for

coupled stability analysis of beam with non-symmetric cross-section on elastic foundation is

evaluated.

3. As special cases, the stiffness matrices for in-plane bucking analysis of curved beam allowing

the extension along the beam axis in potential energy and for lateral buckling analysis of beam

with double- and mono-symmetric cross-sections are evaluated.

4. To demonstrate the accuracy and the validity of this study, the numerical solutions by the

present approach are presented and compared with the finite element solutions using the

classical isoparametric curved beam elements and other researchers’ solutions.

5. The coupling and crossover phenomena of symmetric and anti-symmetric buckling modes with

changes in curvature and subtended angle are investigated.

2. Stability theory of thin-walled Timoshenko curved beam

Fig. 1 shows the global curvilinear coordinate system (x1, x2, x3) of the curved beam in which the

x1 axis coincides with a centroid axis having the radius of curvature R but x2, x3 are not necessarily

principal inertia axes. The displacement parameters and the stress resultants of the thin-walled

curved beams defined at the non-symmetric cross-section are presented in Figs. 2(a) and 2(b),

respectively, in which Ux, Uy, Uz, and ω1, ω2, ω3 are the rigid body translations and the rotations of

beam with respect to x1, x2, and x3 axes, respectively; f is the displacement parameter measuring

warping deformations. Also F1, F2, and F3 are the axial and shear forces, respectively, acting at the

centroid; M1 is the total twisting moment with respect to the centroid axis; M2 and M3 are the

bending moments with respect to x2 and x3 axes, respectively; Mφ is the bimoment;  and 

mean principal axes defined at the centroid in which θ is the angle between  and x2 axes in the

counterclockwise direction. Assuming that the cross-section is rigid in its own plane, the total

displacement field can be written as follows:

x 2

p
x 3

p

x 2

p
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(1a)

(1b)

(1c)

where φ is the normalized warping function defined at the centroid and the following relationship

between φ and φ s defined at the shear center is obtained.

(2)

In Eq. (2), (e2, e3) denotes the position vector of the shear center. The stress resultants with

respect to the centroid are as follows

(3a-i)

U1 Ux x2ω3– x3ω2 fφ+ +=

U2 Uy x3ω1–=

U3 Uz x2ω1+=

φ φ
s

e2x3 e3x2–+=

F1 τ11 A, F2 τ12 Ad
A
∫= , F3 τ13 Ad

A
∫= , M1d

A
∫ τ13x2 τ12x3–( ) Ad

A
∫= =

M2 τ11x3 Ad
A
∫= , M3 τ11x2 Ad

A
∫–= , Mφ τ11φ Ad

A
∫= , MP τ11 x2

2
x3

2
+( ) Ad

A
∫=

MR τ12φ,2 τ13 φ,3

φ

R x3+

-------------–⎝ ⎠
⎛ ⎞

+
R x3+

R
------------- Ad

A
∫=

Fig. 1 Curvilinear coordinate system of a thin-walled curved beam

Fig. 2 Notation for displacement parameters and stress resultants
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In Eqs. (3h, i), MP and MR are the stress resultant known as the Wagner effect and the restrained

torsional moment, respectively; The ‘, 2’ and ‘, 3’ denote differentiation with respect to the x2 and

x3, respectively. The St. Venant torsional moment is expressed as

(4)

where G and J are the shear modulus and the torsional constant, respectively and the prime denotes

differentiation with respect to the position x1. For later use, the sectional properties are defined by

(5a-o)

where , and Iφ are the second moment of inertia about x2 and x3 axes, the product moment

of inertia, and the warping moment of inertia, respectively;  and  are the

product moments of inertia due to the normalized warping;  are the third

moments of inertia. 

From the study of Kim et al. (2005), the elastic strain energy of the thin-walled curved beam

considering the non-symmetric cross-section, the shear effects due to bending and non-uniform

warping, and the thickness- curvature effect which makes larger difference in the prediction of

buckling loads in the curved beam with large subtended angle and small radius, is given as

(6)

where

(7a-f)

Mst M1 MR– M1 Mφ′– GJ ω1′
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R
------+⎝ ⎠

⎛ ⎞
= = =

I2 x3

2
Ad

A
∫= , I3 x2

2
Ad

A
∫ , I23 x2x3 A, Iφ φ

2
Ad

A
∫= , Iφ2 φx3 Ad

A
∫=d

A
∫==

Iφ3 φx2 A, I222 x3

3
A, I223 x2x3

2
A, I233 x2

2
x3 Ad

A
∫=d

A
∫=d

A
∫=d

A
∫=

I333 x2

3
A, Iφ22 φx3

2
A, Iφ23 φx2x3 Ad , Iφ33 φx2

2
Ad

A
∫=

A
∫=d

A
∫=d

A
∫=

Iφφ2 φ
2
x3 Ad

A
∫= , Iφφ3 φ

2
x2 Ad

A
∫=

I2 I3 I23, ,
Iφ2 =I2e2( ) Ιφ3 = Ι– 3e3( )

Iijk i j k, , φ 2 3, ,=( )

ΠE
1

2
--- EA Ux

′ Uz

R
-----+⎝ ⎠

⎛ ⎞
2

EÎ2 ω2
′ Ux

′

R
------–

Uz

R
2

-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2
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In Eq. (5), E and A are the Young’s modulus and the cross-sectional area, respectively. The

effective shear areas defined between the centroid and the shear center are as follows:

       

         (8a-f)

where

(9a-c)

And

(10a-f)

where Q2 and Q3 are the statical moments of area about x2 and x3 axes, respectively; Qr is the

statical warping moment; t and s are the wall thickness and the coordinate along the contour of the

cross-section, respectively.

In this study, we consider the thin-walled cross-section resting on elastic foundation, as shown in

Fig. 3, throughout its length, in which a more realistic and generalized representation of the elastic

foundation can be accomplished by the way of a two-types of foundation model. In Fig. 3, ky and kz

are the Winkler foundation moduli indicating the first type of foundation parameters for the

transverse translations at the point ; kω is the rotational parameter for rotation of the cross-

section; gy and gz denote the second type of foundation parameters (i.e., Vlasov, Pasternak and

Filonenko-Borodich foundation modulus) at the point . The strain energy considering the

foundation effects are deduced from the study by Dube and Dumir (1996) as follow 
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Fig. 3 Cross-section of beam on two-types of elastic foundation
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For the stability analysis of curved beam, the potential energy due to the initial axial force 

and bending moment  including the second-order terms of semi-tangential rotation and the

Wagner effect is extracted from the study by Kim et al. (2005) as follows

(12)

where the coefficients β1 and β2 can be obtained from 

(13)

Consequently, the total potential energy functional of a thin-walled Timoshenko curved beam

resting on elastic foundation is expressed as follows

(14)

where  is the potential energy due to the element nodal forces.

By taking the variation of Eq. (14) with respect to seven displacement parameters, Ux, Uy, Uz, ω1,

ω2, ω3, and f, the coupled equilibrium equations and force-deformation relations for the curved

beam are derived as follows
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(15d)

(15e)

(15f)

(15g)

And force-deformation relations are

(16a)

(16b)

(16c)
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(16d)

(16e)

(16f)

(16g)

3. Element stiffness matrices of curved beam

3.1 Stiffness matrix for spatially coupled buckling of curved beam

In this subsection, for the spatially coupled stability analysis of thin-walled Timoshenko curved

beam resting on elastic foundation, the element stiffness matrix is evaluated rigorously from the

equilibrium equations and the force-deformation relations derived in previous section.

3.1.1 Evaluation of displacement functions 

For the evaluation of displacement functions of the curved beam, the following displacement state

vector consisting of 14 displacement parameters is considered.

(17)

The solutions of seven displacement parameters are taken as the following infinite power series.

(18a-g)

Substituting Eqs. (18a-g) into Eqs. (15a-g), the equilibrium equations can be expressed as

 

 

 

 

d <Ux Ux′ Uy Uy′ Uz Uz′ ω1 ω1
′ ω2 ω2

′ ω3 ω3
′, f f ′, , , , , , , , , , , , >

T
=
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(19a)

(19b)

 

(19c)
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(19d)

(19e)

(19g)

By shifting the index of power of xn in Eqs. 19(a-g) and rearranging equations, the following

equations can be obtained.

 

 

 (19f)
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(20a)

(20b)

(20c)
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(20e)

(20f)

   

(20g)

Eqs. (20a-g) can be compactly expressed in a matrix form as follows

 

(20d)
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 (21)

where the detailed expressions for matrices An and Bn are given in Appendix A. Eq. (21) can be

rewritten as

 (22)

where

 (23)

In case of n = 0, 1, and i ( ), we can obtain the following relations from Eq. (22).

For n = 0;

(24)

For n = 1;

 (25)

For n = i ( );

(26)

where the matrices N1 and Ni are presented in Appendix B and a denotes the initial integration

constant vector defined by 

(27)

By substituting the integration constant vector obtained by Eq. (26) into Eq. (18) and rearranging

Eq. (17), the displacement state vector composed of 14 displacement parameters in Eq. (17) is

expressed with respect to the initial integration constant vector a as follows

(28)

An an 2+
bn 2+

cn 2+
dn 2+

en 2+
fn 2+

gn 2+
, , , , , ,{ }T

n 0=

∞

∑

Bn an a, n 1+
bn bn 1+
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∞

∑=
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=
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, , , , , ,{ }
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, , , , , , , , , , , , ,{ }T⋅=

Li 2+ a=

a a0 a1 b0 b1 c0 c1 d0 d1 e0 e1 f0 f1 g0 g1, , , , , , , , , , , , ,{ }T
=
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In each of these 14 solution sets, the calculation of the coefficients by the recursive relations in

Eq. (24) through Eq. (26) is continued until the contribution of the next coefficient is less than an

arbitrarily chosen small number. In this study, above symbolic calculations are performed with the

help of the technical computer software Methematica (Wolfram 2005). 

Next, the initial integration constant vector a can be expressed with respect to 14 nodal

displacement components. For this, we consider the nodal displacement vector at p and q which

mean the two ends of the curved member  is defined by

(29)

where

(30a)

(30b)

Substituting coordinates of the ends of member  into Eq. (28), the nodal displacement

vector Ue is expressed as follows

(31)

Elimination of a from Eq. (28) using Eq. (31) yields the displacement state vector consisting of

14 displacement components.

(32)

3.1.2 Calculation of stiffness matrix

In order to calculate the element stiffness matrix of curved beam based on the displacement

function derived in this study, we consider the nodal force vector at two ends p and q defined by

(33)

where

, (34)

The force-deformation relations in Eqs. (16a-g) can be expressed in a matrix form as follows

(35)

where each components of 7×14 matrix S is given in Appendix A. 

Substitution of the displacement function in Eq. (32) into Eq. (35) leads to

(36)

And nodal forces at ends of the curved element are evaluated as

(37a)

(37b)

Consequently the element stiffness matrix of thin-walled Timoshenko curved beam with non-

symmetric cross-section resting on elastic foundation is evaluated as

(38)

x1 0 l,=( )

Ue <U
p
, U

q
>
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where 

(39)

The buckling loads and moments are the values that cause the stiffness matrix for the element to

become singular. In this study, the Regular-Falsi method (Wendroff 1966) is applied to ensure that

none of buckling loads and moments is missed. It can be noted that the stiffness matrix in Eq. (39)

is formed by the shape functions which are solutions of the equilibrium equations. Therefore, the

accurate curved beam element based on the stiffness matrix developed by this study eliminates

discretization errors and is free from the shear locking. In addition, the buckling mode shapes can

be calculated from Eq. (18) and Eqs. (24) to (26).

3.2 Stiffness matrix for in-plane buckling of curved beam subjected to uniform compres-
sion

As a special case, we present the element stiffness matrix for in-plane buckling analysis of curved

beam with double- and mono-symmetric cross-sections subjected to uniform compression . It is

known that the in-plane and out-of-plane buckling modes of this curved beam are decoupled

because the section is symmetric in the plane of beam curvature. Therefore, the total potential

energy corresponding to in-plane bucking mode is given from Eq. (14) as follows 

(40)

From the stationary condition, the equilibrium equations and force-deformation relations are

obtained as follows
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(41c)

K
SXn 0( )H 1–
–

SXn l( )H 1–
=

F
o

1

Πin
1

2
--- EA Ux′

Uz

R
-----+⎝ ⎠

⎛ ⎞
2
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The force-deformation relations corresponding to the in-plane buckling mode are

(42a)

(42b)

(42c)

By substituting the displacement parameters Ux, Uz, and ω2 as the infinite power series forms in

Eqs. (18a), (18c), and (18e) into the equilibrium equations in Eqs. (41a-c), the following polynomial

expansions of those equations are obtained.

(43a)

(43b)

(43c)

These equations may be expressed in a matrix form as 
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presented in Appendix C. Then, the displacement function matrix is derived using the relations

between the nodal displacement vector  and the initial constant vector ain. Finally, the element

stiffness matrix of the curved beam for in-plane buckling analysis can be derived from the relations

between the nodal forces and the nodal displacements at two ends of the beam as follows:

(46)

where

 (47)

3.3 Stiffness matrix for out-of-plane buckling of curved beam subjected to uniform com-

pression and pure bending

We consider lateral-torsional buckling of the double- and mono-symmetric thin-walled curved

beam subjected to uniform compression  and pure bending . The total potential energy

corresponding to out-of-plane buckling mode is given as follows 

(48)

The equilibrium equations and force-deformation relations corresponding to out-of-plane

deformation mode are derived from the stationary condition as follows 
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(49c)

(49d)

Substitution of the Eqs. (18b), (18d), (18f), and (18g) into Eqs. (49a-d) leads to the following

polynomial expansions of the equilibrium equations.

(50a)

(50b)

 (50c)

(50d)

Eqs. (50a-d) can also be compactly expressed as follows:
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where

(52)

The expressions for matrices  and  corresponding to out-of-plane buckling mode are

presented in Appendix D and the evaluated element stiffness matrix of the curved beam for the

lateral-torsional buckling analysis is as follows 

(53)

4. Finite element formulation

For comparison, the finite element formulation based on the classical isoparametric curved beam

elements having the thin-walled cross-section and the shear deformations is presented. In this study,

the 3-noded isoparametric curved beam element with 7 DOF per node is introduced to interpolate

displacement parameters that are defined at centroid. The coordinate and all the displacement

parameters of the beam element can be interpolated with respect to the nodal coordinates and

displacements, respectively, as follows

(54a)

(54b)

(54c)

(54d)

where , and  are the translational and rotational displacements in the xi direction and

warping parameter at node η, respectively; Rη is the Lagrangian interpolation function whose

detailed expression is presented in Bathe (1996); r is a natural coordinate that varies from −1 to +1.

The element displacement vector Ufe and force vector Ffe for the isoparametric curved beam

element are defined as

(55a)

, (55b)

(55c)

(55d)

where  and  are the nodal point displacement and force vectors, respectively.
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Substituting the shape functions and cross-sectional properties into Eqs. (6), (11), (12) and

integrating along the element length, the total potential energy of the thin-walled finite curved beam

element is obtained in a matrix form as

(56)

where  and  are the element elastic stiffness matrix and the stiffness matrix considering the

foundation effects, respectively, in local coordinate;  is the geometric stiffness matrix. Stiffness

matrices are evaluated using a reduced Gauss numerical integration scheme and the assembly of

element stiffness matrix for the entire structure based on the coordinate transformation leads to the

equilibrium matrix equation in a global coordinate system. Here it should be noted that the element

displacement and force vectors of an isoparametric curved beam are identical to those of the present

curved beam but interpolation functions are different.

5. Numerical examples

To demonstrate accuracy and validity of the proposed stiffness matrices of curved beam, the

present stability analyses of curved beams resting on elastic foundation subjected to uniform

compression and pure bending are performed and compared with the finite element solutions using

the classical isoparametric curved beam elements and other researchers’ analytical solutions. Also

for the stability analysis of curved beam neglecting the shear deformation effect, the Hermitian

curved beam element developed by Kim et al. (2000b) which defines all seven displacement

parameters at centroid is used. In their study, the third order Hermitian polynomials are adopted to

interpolate all displacement parameters. The analytical expressions by other researchers for in-plane

buckling loads of curved beam subjected to uniform compression and for lateral buckling loads of

beam subjected to pure bending, which restrict to the case neglecting the shear deformation and the

second-order terms of semi-tangential rotations, are presented in the study by Kim et al. (2000a).

5.1 In-plane and lateral buckling of curved beam with doubly symmetric cross-section

Fig. 4 shows the doubly symmetric cross-section and its material and sectional properties of

curved beam on elastic foundation subjected to uniform compression and pure bending. The beam is

supported simply at two ends and the length is 1.0 m. First, for the curved beam without elastic

foundation, the in-plane buckling loads of the curved beam subjected to uniform compression with

various subtended angle is evaluated by keeping the length of curved beam constant. In Table 1, the

in-plane antisymmetric buckling loads obtained from this study are presented and compared with

other analytical solutions. It can be found from Table 1 that the in-plane bucking loads evaluated by

present stiffness matrix method (SMM) using a single element coincide with the results from 30

isoparametric curved beam elements for whole ranges of subtended angles considered. Due to the

shear effects, the buckling loads are shown to decrease about 25% and the present solutions without

shear effects deviates somewhat from the previously published analytical results for larger angle due

to the different formulation of stability equations. It is noted that the results obtained from this

curved beam model with shear effects have been compared with results obtained from shell

elements in the paper by Kim et al. (2005) and very good agreement between two solutions is
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Fig. 4 Doubly symmetric cross-section and its material, sectional properties

Table 1 In-plane antisymmetric buckling loads F1cr for the SS doubly symmetric I-beam subjected to uniform
compression (N)

ψ (o)

This study Rajasekaran and 
Padmanabhan 

(1989)SMM
30 Isoparametric 
beam elements

Without shear

30 36554.0 36554.0 45607.0 45311.0

60 36466.0 36466.0 45488.0 44328.0

90 36165.0 36166.0 45100.0 42601.0

180 29801.0 29801.0 37171.0 31590.0

270 8371.8 8371.9 10443.0 11585.0

360 0.0 0.0 0.0 0.0

Table 2 In-plane buckling loads F1cr for the SS doubly symmetric I-beam subjected to uniform compression
(N), (l = 1.0 m, ψ = 90o)

Mode
Isoparametric beam elements

SMM
4 6 8 10 20 30

1 36600.0 36256.4 36194.9 36177.6 36166.2 36165.5 36165.4

2 68083.6 65853.1 65437.3 65317.6 65236.6 65232.1 65231.0

3 100415.0 93467.2 92132.7 91738.3 91464.8 91449.3 91445.4

4 129980.0 115826.0 113014.0 112163.0 111557.0 111521.0 111513.0

5 151837.0 134368.0 129605.0 128126.0 127045.0 126980.0 126964.0
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observed. For simply supported (SS) and simply-clamped (SC) curved beams with subtended angle

ψ = 90o, the lowest five in-plane buckling loads by SMM and by finite element solutions using

various numbers of isoparametric curved beam elements are presented in Tables 2 and 3,

respectively. It is shown from Tables 2 and 3 that the results using as many as 30 isoparametric

beam elements are in excellent agreement with the solutions from SMM. It should be noted that the

present numerical method gives the accurate results for the higher buckling modes as well as the

lower ones because the displacement state vector satisfies the homogeneous form of the equilibrium

equations. It is observed that a large number of isoparametric beam elements need to be used to

obtain sufficiently accurate results especially for the higher buckling modes. Fig. 5 shows the mode

Table 3 In-plane buckling loads F1cr for the SC doubly symmetric I-beam subjected to uniform compression
(N), (l = 1.0 m, ψ = 90o)

Mode
Isoparametric beam elements

SMM
4 6 8 10 20 30

1 47874.5 47134.3 46999.1 46960.8 46935.3 46933.9 46933.5

2 75088.9 72193.2 71645.3 71486.4 71378.3 71372.2 71370.8

3 107499.0 99720.5 98163.8 97697.6 97371.2 97352.5 97347.8

4 131384.0 117981.0 115180.0 114321.0 113704.0 113668.0 113659.0

5 156317.0 135832.0 131249.0 129798.0 128726.0 128661.0 128644.0

Fig. 5 Mode shapes corresponding to the in-plane buckling loads of SS beam: (solid line), U
z
 (circle symbol),

and ω2 (dashed line)
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shapes corresponding to the first three in-plane buckling loads of SS beam. It can be observed from

Fig. 5 that the relative magnitude of the axial displacement component (solid line) to the flexural

one in the x3-direction (dashed line) is the largest for the 1st mode but its value of the rotational

angle (dashed line) to the flexural one is the largest for the 3rd mode. 

To investigate the variation of buckling loads, the fundamental in-plane symmetric and

antisymmetric buckling loads of the simply supported (SS) and clamped (CC) beams with respect to

the subtended angles under the assumptions of extensional and inextensional conditions are depicted

in Fig. 6. For the inextensional condition, the constraint of  is imposed on the elastic

strain and geometric potential energies in Eqs. (6) and (12). It can be observed from Fig. 6 that

there exists a crossover of subtended angle at which the buckling mode changes from symmetric to

antisymmetric. For SS beam under extensional condition, the lowest buckling mode is symmetric

for ψ < 37.5° but changes to antisymmetric mode for ψ > 37.5o. A similar crossover phenomenon is

also seen for CC beam under the extensional condition at ψ = 53.6o. Fig. 7 shows the relative

difference of the fundamental in-plane buckling loads due to shear effects with the increase of

subtended angles. It is interesting to note that effect of shear deformation increases sharply around

the crossover angle. In range with smaller subtended angle, the effect of shear is relatively small

because the fundamental buckling mode corresponds to the symmetric mode with one half-wave.

With the subtended angle larger than the crossover angle, however, the fundamental mode changes

into the antisymmetric one with two half-waves, where the shear effect becomes greater. The

detailed explanation of this buckling mode transformation phenomenon is described in the study by

Kim et al. (2005). It can also be found from Fig. 6 that as the subtended angle increases, the

symmetric buckling load under the extensional condition approaches that under the inextensional

condition at subtended angles of around 64° and 171o for SS and CC beams, respectively. Two

buckling loads become identical with the further increase of the subtended angle.

Ux′ Uz/R+ 0≈

Fig. 6 In-plane bucking load of curved I-beam
subjected to uniform compression under the
assumption of extensional and inextensional
conditions (l = 1.0 m)

Fig. 7 Variation of shear deformation effect on the
fundamental in-plane bucking load of curved
I-beam
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Figs. 8 and 9 show the in-plane buckling load curves of SS and CC beams, respectively, for

beams with the length of 2.0 m and 3.0 m. It is observed from Fig. 8 that the crossover from

symmetric mode to antisymmetric one occurs at subtended angles of 18° and 12° for 2 m and 3 m

long beams, respectively. Also the symmetric buckling load under the extensional condition and that

under the inextensional condition become identical around 46° for 3.0 m long beam and 29° for 3.0

m long beam. For CC beam, as can be seen in Fig. 9, the crossover of buckling modes occurs at

30° and 22° and the buckling loads under the extensional and inextensional conditions put together

after 135° for 2.0 m beam and 69° for 3.0 m beam. In Fig. 10, the variation of the crossover angle

is shown with respect to the length of beam. Consequently, as the length of beam increases, the

values of crossover angle from symmetric to antisymmetric buckling modes decrease and the values

of merging points for buckling load under the extensional condition and that under the inextensional

one decrease with an increase of beam length.

The influence of foundation parameters on the in-plane buckling behavior of curved beam is

investigated. In-plane symmetric and antisymmetric buckling loads, which are not presented due to

space limitation, increase as the Winkler type of foundation parameter kz and the second type of

foundation parameter gz increase. Therefore kz and gz make the curved beam stiffer. In Figs. 11 and

12, the variation of crossover angle of in-plane buckling loads is shown with respect to kz and gz,

respectively. From Fig. 11, it can be seen that the crossover angle decreases with increase of kz for

both boundary conditions. However, variation of crossover angle for curved beams considering gz,

as is shown in Fig. 12, is contrary to that considering kz.

Next, for SS beam subjected to pure bending, the lateral buckling moments M2cr by SMM are

presented with the results from 30 isoparametric beam elements and the solutions neglecting shear

effects in Table 4. Also given in Table 4 are analytical solutions by other researchers who did not

consider the shear effects and the second-order terms of semi-tangential rotations. It can be found

Fig. 8 In-plane bucking load of the SS curved I-
beam subjected to uniform compression under
the assumption of extensional and inextensional
conditions (l = 2.0 m and 3.0 m)

Fig. 9 In-plane bucking load of the CC curved I-
beam subjected to uniform compression under
the assumption of extensional and inextensional
conditions (l = 2.0 m and 3.0 m)
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from Table 4 that the results by SMM using only a single element are in excellent agreement with

the finite element results using 30 beam elements. It is also found that because of the effects of

shear deformations, the buckling moment for antisymmetric mode with subtended angle of 270°

increases 17.10%. 

Fig. 10 Crossover angle of curved I-beam with respect to the length of beam

Fig. 11 Crossover angle of curved I-beam with
respect to the Winker foundation parameter
k
z

Fig. 12 Crossover angle of curved I-beam with
respect to the second-type of foundation
parameter g

z
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5.2 Lateral buckling of curved beam with mono-symmetric cross-section

In this example, the SS curved beam with mono-symmetric cross-section, as shown in Fig. 13, is

Table 4 Lateral symmetric and antisymmetric buckling moments M2cr for the SS double symmetric I-beam
subjected to pure bending (Nm)

Mode ψ (o)

This study Rajasekaran and
Padmanabhan 

(1989)SMM
30 Isoparametric 
beam elements

Without shear

Symm.

30 33.063 33.063 33.497 33.600

60 23.936 23.936 24.484 24.610

90 16.423 16.423 16.936 17.036

180 0.0 0.0 0.0 0.0

270 12.007 12.007 12.762 12.556

360 22.412 22.414 24.159 23.174

Antisymm.

30 95.420 95.420 98.236 98.745

60 82.595 82.596 86.500 87.348

90 70.871 70.872 75.491 76.525

180 41.437 41.438 46.344 47.250

270 18.562 18.562 21.736 22.064

360 0.0 0.0 0.0 0.0

Fig. 13 Mono-symmetric cross-section and its material, sectional properties
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considered. The beam is under pure bending and the length is 1.0 m. In Table 5, the lateral buckling

moments obtained from this study with and without shear effects are presented for various

subtended angles and compared with analytical solutions by Trahair and Papangelis (1987) and

Vlasov (1961) in which the shear and thickness-curvature effects, the second terms of semi-

tangential rotations, and the Wagner effect in evaluation of potential energy are neglected. These

complicated effects on the buckling moments are more significant for the curved beam with larger

subtended angle and smaller radius. It is observed from Table 5 that an excellent agreement between

results from SMM using a single element and those from the finite element analysis using 30

isoparametric beam elements is evident. In this case, the maximum difference of buckling moments

due to shear effect is 7.57% at angle of 30° for antisymmetric mode.

5.3 Spatially coupled buckling of curved beam with non-symmetric cross-section

The purpose of our final example is to evaluate the axially-flexurally-torsionally coupled buckling

loads of curved beam with non-symmetric cross-section subjected to uniform compression and to

investigate the influence of various foundation parameters on the coupled buckling behavior. The

configuration of non- symmetric cross-section resting on elastic foundation and its material,

sectional properties are shown in Fig. 14. The length of beam is 1.2 m and the boundary conditions

are simply supported (SS) and simply-clamped (SC) at two ends. For SS and SC beams, the lowest

three spatially coupled buckling loads by SMM neglecting foundation effects are presented and

compared with the results from various numbers of isoparametric curved beam elements under

extensional condition in Tables 6 and 7, respectively. It can be observed from Tables 6 and 7 that a

large number of isoparametric beam elements are required to obtain sufficiently accurate buckling

loads for the higher buckling modes and large subtended angles. In this case, the finite element

solutions using at least 30 beam elements yield the reasonably good results in the higher buckling

modes when compared with the results by SMM. In addition, the convergence study has been

conducted for the coupled buckling loads of SS and SC beams with angle of 10° with respect to the

increase of the number of terms in power series expansion and the buckling loads with various

numbers of terms are presented in Tables 8 and 9, respectively. It is observed from Tables 8 and 9

that the coupled buckling loads gradually approach the solutions as the number n increases and the

Table 5 Lateral symmetric and antisymmetric buckling moments M2cr for the SS mono-symmetric I-beam
subjected to pure bending (Nm)

Mode ψ (o)

This study Trahair and 
Papangelis 

(1987)

Vlasov 
(1961)SMM

30 Isoparametric 
beam elements

Without 
shear

Symm.

30 159.400 159.400 161.690 164.440 168.190

60 79.355 79.355 80.066 76.481 84.863

90 41.304 41.304 41.585 33.156 43.694

180 0.0 0.0 0.0 0.0 0.0

Antisymm.

30 850.320 850.320 914.710 947.160 955.020

60 689.580 689.590 736.110 787.300 804.410

90 546.620 546.620 579.040 634.360 662.210

180 242.420 242.420 252.530 251.680 313.570
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Fig. 14 Non-symmetric cross-section and its material, sectional properties

Table 6 Spatially coupled buckling loads F1cr for the SS beam with non-symmetric cross-section subjected to
uniform compression (N) (l = 1.2 m)

ψ (o) Mode
Isoparametric beam elements

SMM
Without 

shear4 6 10 20 30

10
1
2
3

254.54
863.89
1605.9

254.34
856.24
1547.1

254.29
854.48
1533.2

254.29
854.23
1531.0

254.29
854.21
1530.9

254.29
854.21
1530.9

255.62
868.20
1577.5

30
1
2
3

139.32
663.61
1409.0

139.17
656.25
1348.9

139.13
654.56
1334.7

139.13
654.31
1332.5

139.13
654.30
1332.4

139.13
654.30
1332.4

139.67
663.19
1371.0

60
1
2
3

57.328
446.78
1154.5

57.237
440.33
1095.2

57.217
438.85
1081.2

57.215
438.63
1079.1

57.215
438.62
1079.0

57.214
438.62
1079.0

57.437
443.23
1107.6

90
1
2
3

23.322
301.30
942.39

23.274
295.98
885.92

23.263
294.77
872.62

23.262
294.59
870.61

23.262
294.58
870.50

23.262
294.58
870.48

23.359
297.00
891.49

180
1
2
3

0.000014
87.366
495.48

0.0
84.913
452.99

0.0
84.355
443.12

0.0
84.274
441.64

0.0
84.269
441.55

0.0
84.268
441.53

0.0
84.620
449.23
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Table 7 Spatially coupled buckling loads F1cr for the SC beam with non-symmetric cross-section subjected to
uniform compression (N) (l = 1.2 m)

ψ (o) Mode
Isoparametric beam elements

SMM
Without 

shear4 6 10 20 30

10
1
2
3

505.05
1188.8
2041.5

503.48
1166.9
1917.4

503.13
1161.8
1887.6

503.08
1161.0
1883.0

503.08
1161.0
1882.8

503.08
1161.0
1882.7

508.94
1187.9
1957.4

30
1
2
3

381.22
1018.7
1882.2

379.46
995.04
1749.2

379.06
989.49
1717.7

379.01
988.66
1712.9

379.00
988.62
1712.6

379.00
988.61
1712.5

383.25
1010.3
1779.9

60
1
2
3

271.73
852.29
1695.5

269.60
824.98
1552.9

269.12
818.54
1519.0

269.05
817.58
1513.8

269.05
817.53
1513.5

269.05
817.51
1513.4

272.27
835.45
1571.7

90
1
2
3

195.07
734.24
1562.1

192.79
702.70
1406.3

192.27
695.25
1369.1

192.20
694.13
1363.3

192.19
694.07
1363.0

192.19
694.06
1362.9

194.72
710.71
1416.5

180
1
2
3

64.104
436.76
1234.4

62.569
402.61
1036.8

62.221
394.66
990.75

62.171
393.47
983.62

62.168
393.41
983.21

62.167
393.39
983.11

63.090
404.05
1026.7

Table 8 Convergence of the coupled buckling loads for the SS non-symmetric beam with the increase of n
(ψ = 10°)

Mode
Number of terms in power series expansion, n

8 10 15 20 25 27 28 30

1 244.41 255.22 254.28 254.29 254.29 254.29 254.29 254.29

2 - - - 854.42 854.21 854.21 854.21 854.21

3 - - - - - 1534.9 1530.5 1530.9

Table 9 Convergence of the coupled buckling loads for the SC non-symmetric beam with the increase of n
(ψ = 10o)

Mode
Number of terms in power series expansion, n

8 10 15 20 25 28 30 35

1 - 429.0 501.9 503.08 503.08 503.08 503.08 503.08

2 - - - - 1161.1 1161.0 1161.0 1161.0

3 - - - - - - 1172.3 1182.7

convergence speed of SS beam is faster than that of SC beam.

Finally, the influence of foundation parameters on the coupled buckling behavior of non-

symmetric beam is investigated. In evaluation of the foundation parameters, the analytical method

studied by Vallabhan and Das (1991) based on the modified 2-D Vlasov model is applied. This

method uses experimentally determined values for the soil modulus of elasticity Es and the Poisson

ratio ν. If the soil is loose sand with Es = 0.175 N/m2 and ν = 0.28, the application of the
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Vallabhan-Das method produces the coefficient of sub-grade reaction Ks = 994610 N/m3 and gy = gz

= 14918520 N. For a beam width bB = 40 mm and height hB = 80 mm, the Winkler foundation

modulus are ky = KshB = 79570 N/m2 and kz = KsbB = 39780 N/m2, respectively. For SS beam with

the subtended angle of 10°, the spatially coupled buckling loads with various cases of foundation

parameters are presented in Fig. 15. As shown in Fig. 15, the Winkler type of foundation

parameters, ky, kz and the second type of ones, gy, gz increase the stiffness of curved beam and the

effect of gy is seen to be the most significant.

6. Conclusions

The series solutions for the axially, flexurally, and torsionally coupled buckling analysis of the

thin-walled Timoshenko curved beam with non-symmetric cross-section on elastic foundation are

presented based on the power series expansion of displacement components. As a special case, for

beams with mono-symmetric and doubly symmetric cross-sections, these coupled series solutions

are simplified to the solutions for in-plane buckling of curved beam subjected to uniform

compression allowing the extension of centroid and the lateral buckling of beam subjected to pure

bending. Through the numerical examples, it is demonstrated that results from this stiffness matrix

method using only a single element have shown to be in excellent agreement with the solutions

using a large number of isoparametric curved beam elements. Additionally, the coupling of

symmetric and anti-symmetric modes at the in-plane buckling load crossover with change in

curvature of beam is investigated. Through numerical examples considered, following conclusions

may be drawn.

(1) As the length of curved beam increases, the value of crossover subtended angle from

symmetric mode to antisymmetric buckling mode decreases. Also the value of merging point

for buckling load under the extensional condition and that under the inextensional one

Fig. 15 Coupled buckling load of non-symmetric SS beam with various foundation parameters
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decreases with increase of beam length.

(2) The in-plane symmetric and antisymmetric buckling loads increase as the values of kz and gz

increase. 

(3) The value of crossover angle decreases with increase of kz and increases with increase of gz.

(4) The shear effect on lateral buckling moment, for beam with doubly symmetric cross-section,

increases as the subtended angle increases. However, it decreases with the increase of

subtended angle for mono-symmetric cross-section.

It is believed that proposed curved beam element based on the stiffness matrix is free from the

shear locking since the displacement functions employed herein satisfy the homogenous form of the

equilibrium equations. Furthermore, the current curved beam element eliminates discretization errors

and is capable of predicting an infinite number of buckling loads of curved beams by means of a

finite number of coordinates. Also this procedure is general enough to provide a systematic tool for

exact solutions of simultaneous ordinary differential equations of the higher order with variable

coefficients. 
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Appendix A. Detailed components of An, Bn, and S

(A-3)

(A-1)

(A-2)
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(A-4)

(A-5)

(A-6)
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Appendix B. Expressions of N1 and Ni

(A-7)

(A-8)
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Appendix C. Detailed components of  and An

in
Bn

in

(A-9)

(A-10)

(A-11)

(A-12)
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Appendix D. Detailed components of  and An

out
Bn

out

(A-13)

(A-14)

(A-15)

(A-16)




