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Abstract. Three-scale homogenization procedure is proposed in this paper to provide estimates of the
effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of
fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two
step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves
evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is
introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids
and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor
into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes,
including non-uniform texture of the reinforcements, are taken into consideration through the histograms
of inclination angles measured along the fiber tow path together with a particular shape of the equivalent
ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement
of the numerical predictions with experimental measurements can be achieved.

Keywords: carbon-carbon composites; multi-scale analysis; Mori-Tanaka method; optimization; porous
materials.

1. Introduction

Since its introduction the Mori-Tanaka (MT) method (Mori and Tanaka 1973) has enjoyed a
considerable interest in a variety of engineering applications. These include classical fiber matrix
composites (Benvensite 1987, Dvorak and Sejnoha 1996), natural fiber systems (Hellmich and Ulm
2005), or even, although to a lesser extent, typical civil engineering materials such as asphalts
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(Lackner et al. 2005) or cement pastes (Šmilauer and Bittnar 2006). While generally applied to
modest geometries, it has also been demonstrated that the MT method may reliably assist the
engineer to meet the ever growing challenge associated with the analysis of new highly complicated
material systems such as textile reinforced composites (Gommers et al. 1998, Huysmans et al.

1998).
Recent studies addressing the behavior of imperfect carbon-carbon (C/C) textile composites

(Sko ek et al. 2008) further promote the use of the MT method as it allows for a direct introduction
of various types of imperfections, e.g., in the fiber tow path represented for example by histograms
of distribution of the fiber-tow orientation angles (Košková and Vopi ka 2001). Although carbon-
carbon plain weave composites reinforced by mutually interlaced systems of unidirectional carbon
fiber tows belong to a progressive material systems with many applications, a relevant
micromechanics model taking into account most of the geometrical details is still missing. Several
appealing routes have been already offered to satisfactorily reflect commonly observed
imperfections both in the woven path and through the laminate thickness developed during the
manufacturing process (Zeman and Šejnoha 2004, Sko ek et al. 2008). The reported works failed,
however, to include one of the most important features of C/C composites illustrated in Fig. 1 - the
porosity, which in real systems may exceed 30% of the overall volume.

A general awareness of the need for incorporating the porous phase in the predictions of overall
response of C/C composites has been manifested in several recent works. While all microstructural
details were properly identified, the actual analysis was limited to either unidirectional fiber
composites represented here by individual yarns (Tsukrov et al. 2005, Piat et al. 2007) or finite
element simulations of entire laminate performed in two-dimensional (2D) environment only
(Tomková et al. 2008). An extension of this topic taking into consideration the characteristic three-
dimensional (3D) structure of C/C textile composites is presented in this paper. The formulation
given here is in the spirit of multi-scale analysis discussed in (Tomková et al. 2008) combined with
the application of the MT method to the prediction of effective elastic properties of C/C composite
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Fig. 1 Grayscale images of a real composite system identifying individual scales
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presented in (Sko ek et al. 2008).
However, due to the constant importance of high-temperature systems with a particular role of C/C

composites as thermally resistant materials we consider in this paper the subject of effective thermal
conductivities. Such properties gain on importance in many applications including solid propulsion
or plasma-facing components in fusion reactors (Kanari et al. 1997). Fundamental understanding of
thermomechanical response (for mechanical part of this study see, e.g. (Zeman and Šejnoha 2004,
Sko ek et al. 2008)) of such material systems is therefore essential for their design, control and
safety. There is no dispute that modeling of complex interaction of individual components of C/C
composites, not mentioning their irregular structure, can hardly be achieved with available
macroscopic constitutive theories. Reliable prediction of macroscopic response of highly
heterogeneous materials from local phase constitutive equations is, on the other hand, a formidable
aspect of micromechanical modeling. This unambiguously supports the use of micromechanics in
the present context and if efficiency is on demand also the Mori-Tanaka averaging scheme.

The paper is organized as follows. General description of the Mori-Tanaka method in the
framework of steady state heat conduction problem is outlined in Section 2. For an extensive list of
references in this subject the reader is referred to (Hatta and Taya 1986, Benveniste et al. 1990,
Jeong et al. 1998). Two particular issues are addressed solution of the problem of a solitary
ellipsoidal inclusion embedded into an orthotropic matrix, see e.g., (Chen and Yang 1995), and
evaluation of orientation-dependent average fields. The ordering of the remaining sections follows
the concept of the assumed uncoupled multi-scale homogenization approach in which the results
derived from the homogenization step on a lower scale are used as an input to the same analysis
performed on the upper scale. Following (Tomková et al. 2008) three particular scales are
examined. The level of fiber tow evident from Fig. 1(b) is treated in Section 3 while Section 4
examines various geometrical scenarios encountered at the level of textile ply, see Fig. 1(a). Section
5 then provides the estimates of the effective thermal conductivities of the laminate and compares
those with the available experimental measurements. Standard matrix notation is used throughout
the paper except for Eq. (33) where tensor notation is used for simplicity.

2. Mori-Tanaka method

As illustrated in Fig. 1 both micro- (fiber tow) and meso- (textile ply) scales call for treating at
minimum a three phase composite medium comprising a homogeneous matrix, a certain type of
reinforcement and voids. Combining all three phases in a single homogenization step appears,
however, rather inadequate owing to a considerable difference in both size and shape between the
reinforcements and voids. Therefore, a two step homogenization approach is adopted in this paper.
In particular, the effective properties of a composite aggregate are first found in the absence of
pores followed by the second homogenization step in which the porous phase is introduced into a
new homogenized matrix.

It is therefore sufficient to consider a two-phase composite medium with the heterogeneities
(reinforcements or voids) having in general a certain orientation distribution. Let this composite be
subjected on its outside boundary Γ to a homogeneous temperature boundary condition defined as
(Benveniste et al. 1990, Tomková et al. 2008)

on Γ (1)
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where H represents the macroscopically uniform temperature gradient vector and X are the
components of the assigned (fixed, global) Cartesian coordinate system, Fig. 2. The volume average
of the local constitutive equation written in the local x-coordinate system is then provided by

(2)

where qr is the volume average of the local heat flux in the phase r (r = 1, 2 with r = 1 reserved for
the matrix phase) and χr is the corresponding thermal conductivity matrix [Wm−1K−1]. Also note
that  for the matrix phase.

Next, in the context of the Mori-Tanaka method, consider a certain auxiliary transformation
problem where a single heterogeneity in an infinite matrix is replaced by an equivalent inclusion of
the same shape and orientation but having the material properties of the matrix phase. In the Mori-
Tanaka mean field theory the mutual interaction of individual heterogeneities is taken into account
by loading such a configuration at infinity by the average temperature gradient in the matrix h1, see
e.g., (Benvensite 1987, Benveniste et al. 1990) for further details. The local temperature gradient in
the inclusion is then expressed as

(3)

where h* represents a certain transformation temperature gradient introduced in the homogeneous,
generally anisotropic, matrix to give the same local fluxes as in the composite. Note that the second
order tensor S and the vector h* are analogous to the Eshelby tensor and transformation strain
known from the solution of the Eshelby equivalent inclusion problem in elasticity (Eshelby 1957)
(hereafter, we shall quote the “Eshelby problem” whenever referring to a general transformation
inclusion problem). Recall that in the MT scheme the S tensor is a function of the matrix material
parameters and the shape of the inclusion. Combining Eqs. (2) and (3) for the heterogeneity and
equivalent inclusion then gives

(4)

so that
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Fig. 2 Local coordinate system and definition of the Euler angles
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Next, substitute Eq. (5) into (3) to get

(6)

and finally

(7)

where I is the identity matrix and the matrix T2 is referred to as the partial concentration factor.
Suppose that the heterogeneity possess a certain orientation described by the orientation

distribution function g(φ, θ, β) with φ, θ and β being the Euler angles. A particular form of g for
plain weaved composites is given later in Section 4. In general, following (Jeong et al. 1998), the
overall average temperature gradient for a two-phase composite with an orientation-dependent
inclusion given in the global X-coordinate system then attains the form

(8)

where cr is the volume fraction of the phase r, < > stands for the volumetric averaging and the
double brackets << >> denote averaging over all possible orientations. The vector h2 in Eq. (8)
follows from standard transformation of coordinates so that

(9)

A specific form of the transformation matrix Q consistent with Fig. 21 reads

Next, suppose that the local temperature gradient h2 is expressed in terms of the prescribed
macroscopically uniform temperature gradient H = <h> as

(10)

where the matrix A2 is termed the concentration factor (Benveniste et al. 1990, Jeong et al. 1998)
for the heterogeneity. Clearly, the orientation average of h2 then follows from

(11)

which, together with Eqs. (7)-(9) gives

(12)

Combining Eqs. (8) and (11) further gives
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1Note that so-called “x2 convention” is used; i.e., a conversion into a new coordinates system follows three
consecutive steps. First, the rotation of angle φ around the original X3 axis is done. Then, the rotation of angle
θ around the new x2 axis is followed by the rotation of angle β around the new x3 axis to finish the conver-
sion.



434 Jan Vorel and Michal Šejnoha

In analogy to Eq. (8), the volume average of the overall heat flux is provided by

(14)

Next, define an overall conductivity matrix χ in the fixed coordinate system X and write Eq. (14)
as

(15)

Introducing Eqs. (10) and (13) into Eq. (15) finally provides

(16)

Particular forms of the homogenized matrix χ will be now given for individual micromechanics
problems.

3. Micro-scale

In the first step of the proposed multi-scale homogenization scheme we consider a single filament
(fiber tow) of a plain weave carbon fabric Hexcel 1/1 bonded to a carbon matrix, Fig. 3(a). Each
filamen contains about 6000 carbon fibers T800H and significant amount of transverse cracks and
voids resulting in a porosity of more than 10% (Tomková and Košková 2004, Tomková et al.

2008). While the matrix phase, which essentially corresponds to a glassy carbon, is assumed
isotropic the carbon fiber possess a transverse isotropy with the value of longitudinal thermal
conductivity considerably exceeding the one in the transverse direction. The phase thermal
conductivities are listed in Table 1. Considerable difference in the size of the two types of

<q> c1q1 c2<<q2>>+=

χH c1χ1h1 c2<<χ2h2>>+=

χ χ1 c2 <<χ2A2>> χ1<<A2>>–[ ]+=

Fig. 3 Homogenization on micro-scale: (a) porous tow composite, (b) fiber-matrix composite

Table 1 Material parameters of individual phases (TORAYCA, Ohlhorst 1997)

Material Thermal conductivity (Wm-1K-1)

Carbon fibers  (0.35, 0.35, 35)
Carbon matrix  6.3

Voids filled with air 0.02
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heterogeneities (fibers and pores) readily suggests a two step homogenization procedure to predict
the effective properties of the fiber tow as discussed next.

3.1 Effective conductivities of fiber matrix composites

Fig. 3(b) shows a representative section of the fiber matrix composite taken from the fiber tow in
Fig. 3(a). Based on our previous studies (Zeman and Šejnoha 2001, Šejnoha and Zeman 2002,
Šejnoha et al. 2004, to cite a few) such a composite can be quantified as ergodic, statistically
homogeneous with a random distribution of fibers having the volume fraction of approximately
50%. In the MT scheme the effective properties follow from the solution of an auxiliary problem
where an infinite cylinder of a circular cross-section with semi-axes  (the x1 axis
assumed in the fiber direction) is embedded into an infinite isotropic matrix. In this particular case
the effective thermal conductivity matrix given by Eq. (16) simplifies as

(17)

where

(18)

An explicit form of S for this particular case of aligned circular fibers in an isotropic matrix is
available in (Hatta and Taya 1986).

3.2 Effective conductivities of homogenized porous matrix

Having derived the effective properties of the fiber matrix composite we proceed with the second
homogenization step to account for the porous phase. As evident in Fig. 3(a), several distinct shapes
of voids can be identified. It is certainly out of the question to treat each void separately. Therefore,
in the present study, they are all combined into a single equivalent inclusion resembling an elliptic
cylinder. Here, the cylinder is embedded into a transversely isotropic matrix. However, since the S11

component of S is equal to zero, the solution of an elliptic cylinder in an isotropic matrix
summarized in (Hatta and Taya 1986) is again applicable. This results in the same form of estimate
of the effective conductivity matrix χ as given by Eq. (17).

Nevertheless, there is still one open problem associated with the shape of the elliptical cross-
section. Clearly, since the equivalent inclusion represents all possible shapes of voids, it can hardly
be determined directly from the images of real composites such as the one in Fig. 3(a). Instead, to
solve this particular problem, we exploited the results available from the finite element (FE)
simulations carried out in (Tomková et al. 2008). In particular, the optimal aspect ratio ξ2/ξ3

( ) of the elliptical cross-section was found by matching the effective material properties
derived from both the MT method and FE solutions. Because axial direction is not affected by the
change of ξ2/ξ3 ratio, only in-plane thermal conductivities were considered in the formulation of
objective function

plotted in Fig. 4 for illustration.
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The resulting effective thermal conductivities provided by the proposed two-step homogenization
scheme are stored in Table 2 (Note that the fiber volume fraction cfiber was estimated from Fig. 3(b),
while the volume raction of voids cvoid = Vvoid /Vtow stands for the total volume of voids in the fiber
tow in Fig. 3(a)). Furthermore, both direct comparison with FE element predictions and the values
of relative error , also stored in Table 2, clearly show a significance in properly choosing
the shape of the cross-section of the equivalent elliptic cylinder. Thereby, to make the analysis more
robust, an empirical relation between the observed porosity and representative equivalent inclusion
is needed. This particular topic enjoys our current research interest.

4. Meso-scale

While unidirectional fiber matrix composites reviewed in the previous section have been of a
general interest since some fifty years ago, composite systems with a formidable textile texture have
received more attention from both academic and industrial communities only recently.

This section examines, at least from the geometrical point of view, the most simple representative
- a plain weave textile composite. One of the earliest known computational models focusing on
actual geometry of the textile ply is developed in (Kuhn and Charalambides 1999). A three-
dimensional view with a typical cross-section are plotted in Fig. 5(a),(b). The idealized geometry of

E ξ2 ξ3,( )

Table 2 Effective thermal conductivities of the fiber tow

Material
Equivalent inclusion Thermal conductivity  

[Wm-1K-1]  E(ξ2, ξ3)
fiber (cf = 0.55) void (cv = 0.12)

Fiber-matrix  ∞, 1, 1 22.09, 2.14, 2.14

Porous tow
 (optimal) 

∞, 1, 1 19.44, 1.54, 1.54  0.479

∞, 1, 10 19.44, 1.02, 1.63 0.172

→ ∞, 1.6, 10 19.44, 1.12, 1.85 0.080

3D FEM 19.01, 1.12, 1.77

Fig. 4 Evolution of the objective function as a function of the aspect ratio



Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites 437

this model assumes the centerlines of the warp and fill systems of tows to be described by a simple
trigonometric form

(19)

Although tempting, a direct application of this model is precluded by a number of imperfections
and irregularities present in real systems as illustrated in Fig. 1. These include a non-uniform
waviness, mutual shift of individual yarns from layer to layer and most importantly a non-negligible
porosity. Unlike finite element simulations which enable incorporating most of these imperfections
directly through the formulation of a certain statistically equivalent periodic unit cell (Zeman and
Šejnoha 2003, 2007), the MT method has only limited means which are, nevertheless, still sufficient
when quick estimates of the effective “bulk” response is needed. These are discussed next in the
framework of the two-step homogenization procedure examined already in the previous section.

4.1 Effective conductivities of plain weave textile composite ply

Consider a simple plain weave fabric ply in the absence of porous phase. At this level, the carbon
fiber tow is treated as a homogeneous phase with known material properties bonded again to an

c x( ) b

2
---sin πx

a
------⎝ ⎠
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=

Fig. 5 Ideal periodic unit cell: (a) cross-section, (b) three-dimensional view, (c) approximate distribution of
inclination angles, (d) example of a real distribution of inclination angles
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isotropic carbon matrix. In order to address the influence of various geometrical flaws, the approach
proposed in (Sko ek et al. 2008) is adopted. This involves 

(1) determination of an ideal geometrical model to asses the volume fraction of the fiber tow 
(2) determination of the optimal shape of an equivalent ellipsoidal inclusion substituting the fiber

tow in the solution of the Eshelby problem
(3) proper evaluation of orientation dependent quantities from Eq. (16) to account for a non-

uniform waviness along the fiber tow path

4.1.1 Ideal geometrical model - Fig. 5(b)

The three-dimensional geometrical model adopted in the present work (Kuhn and Charalambides
1999) is characterized by four parameters the tow wavelength 2a, the tow height b, tow spacing g

and the layer thickness h. To formulate one particular “ideal” representative, a tedious image
analysis of a number of sections of a real textile ply such as the one in Fig. 1(a1) was carried out.
The averages of the basic geometrical parameters presented in Table 3 were used to construct the
required geometrical model.

4.1.2 Optimal shape of the equivalent ellipsoidal inclusion

An extensive numerical study was performed in (Sko ek et al. 2008) to conceive how the Mori-
Tanaka predictions are influenced by a “random” deviation of basic geometrical parameters of real
systems from their ideal representative introduced in the previous section. The results revealed a
certain correlation between the model parameters and “optimal” shape of an equivalent ellipsoidal
inclusion characterized by three semi-axes ξ1, ξ2, ξ3. When setting ξ1 = 1 (recall that the Eshelby
solution depends only on the mutual ratio of the ellipsoid semi-axes), it was concluded that the ξ2

parameter is strongly correlated with g/a ratio, while it is almost independent of b/a value. An
analogous trend could be observed between ξ3 and b/a parameter. This led to the following semi-
empirical formulas employed also in this study

(20)

where the necessary parameters a, b, g are available from Table 3.
Remind, however, that these relations were originally derived to match effective elastic properties.

To either confirm or displace their validity in the solution of heat conduction problem we further
assumed an equivalent inclusion in the form of an infinite elliptic cylinder with elliptical cross-
section estimated directly from actual cross-section of tows in the representative model giving

(21)
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Table 3 Quantification of PUC1 parameters (Tomková 2004)

Statistics [µm] a h b g

Average 2250 300 150  400

Standard deviation 155 50 20 105
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4.1.3 Orientation averaging
There are three distinct routes available in this study to reflect the variation of the inclination

angle along the fiber tow path. If we consider directly the simplified geometrical model in Fig. 5(b),
the joint probability density function g(φ, θ, β) results from the harmonic shape of the centerline as
described by Eq. (19). Applying the change of variable formula (Rektorys 1994, Section 33.9), we
obtain after some algebra the expression of the probability density in the form

where

Assuming simply a uniform distribution of inclination angles the joint probability density function
attains the form

Both functions are plotted in Fig. 5(c) for comparison. In this study, the latter function was
adopted for simplicity. Next, let D represents an orientation dependent quantity in Eq. (16)

(22)

written, for the warp system, as

(23)

and similarly for the fill system we get

(24)

Finally, following (Sko ek et al. 2008), the resulting homogenized stiffness matrix given by Eq.
(16) then becomes

(25)

One may also suggest to model the plain weave fabric as a three-phase composite with warp and
fill systems of yarns being considered as two distinct phases. The homogenized conductivity matrix
then attains a slightly different form
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where

(27)

(28)

However, the differences in predictions provided by Eqs. (25) and (26) are, as seen in Table 4,
negligible.

Improvements when compared to the assumed ideal geometry are contained in the third route
which allows us to introduce the non-uniform waviness and to some extent also the mutual shift of
individual layers by utilizing histograms of inclination angles shown in Fig. 5(d). These are derived
from centerlines of individual fiber tows described in detail in (Vopi ka 2004). Representing the
joint probability density function by these histograms, the contribution to the effective conductivity
matrix, e.g. from the warp direction Eq. (23), reads

(29)

where m denotes the number of sampling values. The discrete angles θi and probabilities pi follow
directly from the image analysis data.

Eleven such histograms associated with several sections measured along individual plies were
considered. The resulting averages together with the estimates provided by the simplified
distribution functions are summarized in Table 4. For the solution of the Eshelby problem of an
ellipsoidal inclusion in an isotropic matrix we refer the interested reader to (Hatta and Taya 1986,
Jeong et al. 1998).

A word of caution, however, is appropriate when dealing with 2D images only. While the shape
of the equivalent inclusion acquired directly from 2D images may play a minor role in final
predictions of the effective properties, compare Eqs. (20) and (21), the volume fraction of a relevant
heterogeneity also estimated from 2D images may prove much more important. This is also well
documented in Table 4. Note that the volume fraction 0.53 corresponds to a representative 3D
meso-structure in Fig. 5(b), whereas the value of 0.78 follows from the corresponding 2D image in
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Table 4 Effective thermal conductivities of a plain weave fabric without porosity in [Wm-1K-1]

Method
Fiber tow 
volume 
fraction

Thermal conductivity

Eqs. (25) & (23) Eq. (26) Eqs. (25) & (29)

warp/fill  trans.  warp/fill trans. warp/fill trans.

MT 
Eq. (20)

0.53 8.18 3.08 7.93 3.07 8.14 3.16

0.78 9.23 2.37 8.68 2.34 9.18 2.48

MT 
Eq. (21) 

0.53 8.35 2.94 8.26 2.92 8.31 3.02
0.78 9.35 2.30 9.15 2.27 9.29 2.42

3D FEM  0.53  8.13 3.18  -

2D FEM
(Tomková et al. 2008) 0.78 9.46 2.27 -
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Fig.  6(b). It is interesting to point out a reasonably good agreement of the MT results with relevant
2D, see (Tomková et al. 2008), and 3D FEM simulations. This objective will become even more
important when introducing the porous phase into the new homogenized mesoscopic matrix as
discussed in the next section.

4.2 Effective conductivities of homogenized porous matrix

When carefully observing Fig. 1(a4) we identify three more or less periodically repeating
geometries further displayed in Fig. 6. These segments readily confirm the need for the proposed
two step homogenization procedure as the ideal representative plotted in Figs. 6(a), (b) (already
analyzed in the previous section) cannot be used to represent the entire composite. Instead, the
second homogenization step is required to account for the presence of large vacuoles evident from
Figs. 6(c)-(f).

Owing to the orthogonal arrangement of tows in the ideal (representative) model the new
homogenized matrix employed in the second homogenization step is no longer isotropic. Thereby,
the Eshelby solutions used so far are not directly applicable. Instead, the S tensor is found by
imagining an equivalent ellipsoidal inclusion in an infinite matrix being orthotropic. The
corresponding Laplace equation governing the steady state heat conduction problem is provided by

(30)

Introducing the following substitutions

(31)

allows us to convert Eq. (30) into

(32)
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Fig. 6 Homogenization on meso-scale: (a)-(b) PUC1 representing carbon tow-carbon matrix composite, (c)-(d)
PUC2 with vacuoles aligned with delamination cracks due to slip of textile plies, (e)-(f) PUC3 with
extensive vacuoles representing the parts with textile reinforcement reduction due to bridging effect in
the middle ply
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which eventually leads to

(33)

where

(34)

These equations then formally resemble those derived for the case of an isotropic matrix. The
solution of Eq. (33) given in the form of elliptic integrals is available in (Jeong et al. 1998).

A simple example of an isotropic void (ellipsoidal inclusion with ξ = (1, 1.5, 2), χv = 0.2)
surrounded by an orthotropic matrix ( ) was considered to acknowledge
correctness of Eq. (33). Fig. 7 compares the MT predictions with the finite element results found for
a hexagonal arrangement of voids under periodic boundary conditions (Tomková et al. 2008).

With these encouraging results at hand we proceeded with the analysis of real systems. Unlike the
micro-scale, the method of observation and measuring tools provided by the LUCIA G software
(LUCIA) were utilized here to approximate the shape of individual vacuoles in Figs. 6(c)-(f). Since
only two-dimensional (2D) images were supplied, the voids were assumed to be well approximated
by an oblate spheroid defined in Table 5 for both types of representative periodic unit cells in
Figs. 6(d), (f). To estimate the mesoscopic effective properties the voids were introduced into the
homogenized matrix derived in the 1st homogenization step by combining Eqs. (25) and (29) (the
last two columns in Table 4).

The mesoscopic effective conductivities derived for individual geometries in Fig. 6 are
summarized in Table 5 for both volume fractions of the fiber tow. Note that the results
corresponding to a representative model denoted as PUC1 are essentially those stored in Table 4
which of course served as a point of departure for the 2nd homogenization step performed for
models PUC2 and PUC3.

Because no 3D FEM simulations for porous textile C/C composites are currently available, we
present only the 2D results, which not only confirm our previous observations regarding the
estimates of volume fraction of fiber-tow but also suggest a similar impediment for reliable
estimates of volume fraction of pores derived solely from 2D images - the source of noticeable
difference between the MT and FEM predictions particularly in transverse direction. This issue is

S
ii

ξ1ξ2ξ3

2 χ1χ2χ3

----------------------- 1

ξi( )2/χi s+( ) s∆
------------------------------------ds

0

∞

∫=

s∆ ξ1( )2/χ1 s+[ ] ξ2( )2/χ2 s+[ ] ξ3( )2/χ3 s+[ ]=

χ11

m 20= χ22

m 1= χ33

m, , 2=

Fig. 7 Case study: effective conductivities in [Wm-1K-1] as a function of the volume fraction of the porous
phase
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currently investigated with the help of X-ray microtomography and will be reported elsewhere.

5. Macro-scale

The final, clearly the most simple, step requires construction of the homogeneous laminated plate.
The stacking sequence of individual periodic unit cells complies with that observed for the actual
composite sample (Tomková 2008, Fig. 2), see also Fig. 1(a4) identifying the PUC1/PUC2/PUC3/
PUC1 stacking sequence. While in-plane conductivities (warp/fill directions) were found from a
simple aritmetic rule of mixture, the out-of-plane (transverse) conductivity followed from the
inverse (geometric) rule of mixture. The resulting effective thermal conductivities are available in
Table 6 comparing the MT predictions and experimental measurements presented in Kubicar (2002).
Note that the highlighted (bolt font) values of thermal conductivities stored in Tables 2-6 follow
from what we would call an optimal or the most appropriate approach.

Table 5 Effective thermal conductivities of the porous textile plies and laminates in [Wm-1K-1]

Fiber tow in 1st step Void  Thermal conductivity

vol. frac. shape  PUC shape vol. frac. warp/fill transverse

(histograms)
 0.53 

PUC2  3; 3; 1 0.07 7.40 2.75

Eq. (20) PUC3 1:6; 1:6; 1 0.15 6.44 2.51

PUC2 3; 3; 1 0.07 7.55 2.63
Eq. (21) PUC3 1:6; 1:6; 1 0.15 6.57 2.40

(histograms) 
0.78

PUC2 3; 3; 1 0.07 8.32 2.18
Eq. (20) PUC3 1:6; 1:6; 1 0.15 7.21 1.99

PUC2  3; 3; 1 0.07 8.42 2.13
Eq. (21) PUC3 1:6; 1:6; 1 0.15 7.29 1.95

2D FEM 
(Tomková et al. 2008)

 0.78

PUC2 0.07 9.03 1.47

PUC3 0.15 7.29 1.53

Table 6 Effective thermal conductivities of the laminate [Wm-1K-1]

Method 
Fiber tow in 1st step  Thermal conductivity

shape volume fraction warp/fill transverse

MT
(histograms)

0.53 7.26 2.76

Eq. (20) 0.78 8.15 2.18

MT 
(histograms) 

0.53 7.40 2.64
Eq. (21) 0.78 8.25 2.13

2D FEM (Tomková et al. 2008) - - 8.67 1.66

Measured (Kubi ár et al. 2002)  -  - 10 1.6c

ê
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6. Conclusions 

In order to realistically model complex plain weave textile laminates with three-dimensional,
generally non-uniform texture of the reinforcements and significant amount of porosity we advocate
to consider at least three levels of hierarchy - the level of fiber tow, the level of yarns and the level
of laminate. On each level different resolutions of microstructural details are considered on
individual scales for the formulation of an adequate representative model. The desired macroscopic
effective properties of the laminate are then estimated with regard to two basic objectives 

• to reflect the three-dimensional character of the composite at all scales,
• to predict the effective conductivities as efficiently as possible.

Unlike computationally tedious and extensive 3D finite element simulations the Mori-Tanaka
averaging scheme appears as a reasonable candidate to comply with both objectives. Not only the
fully explicit format of this method but a simple extension of the Eshelby problem, at least in the
case of the solution of heat conduction problem, to generally orthotropic reference medium
(homogenized composite free of pores in our particular case) favors this technique.

In this study, the hierarchical character of the analysis is presented in a totally uncoupled format.
Therefore, each level is treated entirely independently purely upscaling the results from a lower to
higher scale for subsequent calculations. An “optimal” procedure, which attempts to accommodate
various sources of imperfections observed in real systems is accompanied by several modifications
involving mainly the meso-scale.

Based on our previous study of effective elastic properties (Zeman and Šejnoha  2004, Sko ek
2008) it was expected that at this level the “best” estimates of the effective conductivities would
follow from the application of Eq. (20) to determine the shape of an equivalent inclusion for the
fiber tow representation and histograms of fiber inclination angle to proceed with the orientation
averaging step. Comparing various modifications (different type of inclusion, ideal path of the fiber
tow) suggests, perhaps even intuitively, almost negligible sensitivity of the solution of the heat
conduction problem to mutual interlacing of individual tows in comparison with the solution of the
elasticity problem. This is mainly attributed to a relative flatness of the reinforcing yarns in
individual plies of the laminate. In view of this, one may even offer the possibility of estimating the
effective mesoscopic conductivities by simply assuming two systems of perpendicular fiber tows
with no interlacing, thereby completely avoiding the orientation averaging step. But bear in mind
that such a “drastic” simplification can hardly be generalized and is certainly not acceptable in the
case of elasticity. To discriminate between various approaches is therefore difficult.

Comparison with experimental measurements is in principle twofold but also inconclusive. On the
one hand it clearly supports the use of the proposed uncoupled multi-scale approach and the two-
step homogenization scheme on individual scales to arrive at the predictions of the effective
macroscopic thermal conductivities. Furthermore, at least quantitatively, the Mori-Tanaka method
proved its applicability in the solution of complicated textile composites. These remarks have
already been put forward in Sko ek et al. (2008) with regard to the problem of effective elastic
properties. To judge, on the other hand, the pertinence and reliability of the MT method solely by
comparing the predicted and measured values, which may deny it, is certainly insufficient. While all
deficiencies of the presented homogenization strategy were openly discussed, errors associated with
experimental measurements were not mentioned and are not available.

c
ê

c
ê
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In summary, focusing only on the quantitative perspective, the Mori-Tanaka method combined
with popular multi-scale homogenization approach is viable and presents a suitable and efficient
alternative to periodic homogenization typically based on finite element analysis.
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