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Non linear vibrations of stepped beam systems using 
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Abstract. In this study, the nonlinear vibrations of stepped beams having different boundary
conditions were investigated. The equations of motions were obtained by using Hamilton’s principle and
made non dimensional. The stretching effect induced non-linear terms to the equations. Natural
frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by
Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the
fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated
natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN)
program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm
produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower
for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural
frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is
drastically reduced compared with the conventional numerical techniques.

Keywords: stepped beam; nonlinear vibration; perturbation method; artificial neural networks.

1. Introduction

In real life, many engineering problems can be modeled as stepped beams. Examples of these
structures include bridges, rails, automotive industries and machine elements. The most important
aspect of vibration analysis is to estimate the natural frequencies. If the system is forced with a
frequency close to its natural frequencies, the system comes to resonance state and the amplitudes
increase dangerously. While computing the natural frequencies of the systems, assuming the systems
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linear makes the calculations easier but the results are usually not reliable. Because no system
moves linearly obtained linear results may deceive us. Therefore, nonlinear effects originated from
the stretching during the vibration of the beam should be included in the computations as well.

Many studies on beam vibrations, both linear and nonlinear, have previously been performed.
Particularly, the nonlinear behavior caused by the immobility of beam-ends has been analyzed by
various researchers (Hou and Yuan 1998, McDonald 1991, Pakdemirli and Nayfeh 1994, Öz et al.
1998). Qaisi (1997) obtained the nonlinear vibration of beams with simply and clamped supports by
using a power series approach and compared the results with existing solutions. Özkaya et al.

(1997) analyzed mass beam system for different boundary conditions. By considering the effects of
stretching, they solved the obtained problem with the method of multiple scales, a perturbation
technique. Özkaya (2002) considered a beam-mass system under simply supported end conditions.
Studies on stepped beam systems are usually linear. Balasubramanian et al. (1990) analyzed
vibrations for beams stepped in the middle and acquired natural frequencies for high mode
structures. Jang and Bert (1989), obtained the frequency equation for stepped beam under various
boundary conditions and computed the smallest natural frequencies for a circular cross-section
beam. They compared their results with the results of finite element analysis. In another study, Jang
and Bert (1989) obtained natural frequencies for high mode structures using the frequency equation
they acquired from their previous study. In a study performed by Naguleswaran (2002), motion
equations of three different Euler-Bernoulli stepped beams with all states of boundary conditions
were obtained and three natural frequencies were computed using equations of motion. The dynamic
stability of a stepped beam carrying mass was studied by Aldraihem and Baz (2002). The stepped
beam equations of motion developed a discrete parameter form and a finite element form. Aydogdu
and Taskin (2007) explored free vibration of simply supported FG beam and also they found the
equations by applying Hamilton’s principle. They used Navier type solution method in order to
obtain frequencies. Kwon and Park (2002), focused on the effect of the position of the stepped point
and thickness ratio on the dynamic characteristics of the system. The equation of motion and
boundary conditions were analytically obtained by using Hamilton principle. The exact solutions
were compared with the results obtained by FEM. The vibration of beams with up to three step
changes in cross section and in which the axial force in portion was contented in Naguleswaran
(2003). The frequency equation for classical boundary was expressed and the first three frequency
parameters for the three types of beams were displayed. The analysis of stepped beams using finite
difference method is studied by using of a single differential equations (Krishnan et al. 1998). 

At the first part of this study, nonlinear vibration analysis for stepped beams was performed and
the contributions of nonlinear terms on natural frequency were investigated. Natural frequencies are
calculated for different boundary conditions, stepped ratios and stepped locations by Newton-
Raphson Method. Second order non-linear terms of the perturbation series behave as corrections to
the linear problem. The corresponding nonlinear correction coefficients are also calculated for the
fundamental mode. 

At the second part, a different method which is artificial neural network is performed as an
alternative to the conventional techniques. Artificial neural network has already been applied at
many different studies. Çetinel et al. (2002), performed an artificial neural network model to
investigate mechanical properties and microstructure evolution in the Tempcore process. Karl k et

al. (1998), analyzed the vibration of beam-mass systems by using artificial neural networks.
Artificial neural networks are also used as examples to obtain natural frequencies of suspension
bridges (Çevik et al. 2002), to determine natural frequencies and stability regions of axially moving

i



Stepped beam, nonlinear vibration, perturbation method, artificial neural networks 17

beams (Özkaya and Öz 2002), and for the prediction of wear loss and surface roughness of AA
6351 aluminum alloy (Durmu  et al. 2006). In this work, the results of Newton-Raphson Method
are used for training an artificial neural network program. That new program is tested with real
values which are not used for training procedure. The results of this method are presented together
with the others. 

2. The system and equation of motion 

The considered system is a stepped beam with a single step located at x = xs, where x is the
spatial co-ordinate along the beam length. Six different cases of support at the ends of the beam are
treated, as shown in Fig. 1.

sç

Fig. 1 The support end conditions for six different cases
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Non-linear coupled integro-differential equations are obtained using Hamilton’s principle (Özkaya
and Tekin 2007)

(1)

 (2)

where w1 and w2 are dimensionless left and right transverse displacements, α is defined as the ratio
of the diameter of the second portion to the diameter of the first portion . The dot
denotes differentiations with respect to the non-dimensional time t and the prime denotes
differentiations with respect to spatial variable x. The equations are made dimensionless through the
definitions

(3)

where L is the length of the beam, R1,2 is the radius of gyration of the beam cross-section with
respect to the neutral axis, η is the non-dimensional position parameter (0 ≤ η ≤ 1), E is the Young’s
Modulus, A is the cross-sectional area and ρ is the density of the beam. I is the moment of inertia
of the beam cross section with respect to the neutral axis. 

The end boundary conditions are given in Fig. 1. The intermediate boundary conditions are

 (4)

3. Conventional analysis

In this section, we search for the approximate solutions of Eqs. (1) and (2) with the associated
boundary conditions. We apply the method of multiple scales (a perturbation technique) to the
partial differential system and boundary conditions directly. This direct treatment of partial
differential systems (the direct perturbation method) has some advantages over the more common
method of discrediting the partial differential system and then applying perturbation (the
discretization perturbation method). In our case, however, both methods may yield identical results,
since we are not considering a higher order perturbation scheme. Due to the absence of quadratic
non-linearities, we assume expansions of the forms

   (5)

(6)

where ε is a small book-keeping parameter artificially inserted into the equations. This parameter
can be taken as 1 at the end upon keeping in mind, however, that deflections are small. We
therefore investigate a weakly non-linear system. T0 = t and T2 = ε2t are the fast and slow time
scales 
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one obtains, to order ε,

(7)

 (8)

(9)

 (10)

and, to order ε3

 (11)

(12)

(13)

 (14)

Eqs. (10) and (14) are the boundary conditions corresponding to Case I. Boundary conditions for
other cases can be written similarly. 

The problem at order ε is linear. We assume a solution of the form

 (15)

where cc represents the complex conjugate of the preceding terms. Substituting Eq. (15) into
Eqs. (8)-(10), one will have

Y1 and Y2 are displacement functions of x.

 (16)

(17)

Solving Eqs. (15)-(17) exactly for different end conditions yields the mode shapes Yi and natural
frequencies ω. The transcendental equations were numerically solved for the first five modes. Using
the method of multiple scales by Eqs. (11)-(14), the nonlinear amplitude dependent frequencies are
calculated approximately as follows
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where a0 is the amplitude of vibration. To this order of approximation, then, the non-linear
frequencies have a parabolic relation with the maximum amplitude of vibration. λ can be defined as
the non-linear correction coefficient. It can be also said, λ is a measure of the effect of stretching.
The non-linearities are of hardening type.

(19)

where

, (20)

Note that the arbitrary coefficients C of the mode shapes are to be calculated from the following
normalization condition

, (21)

Obviously, the natural frequencies and correction coefficient λ can be obtained by deriving the
equations above. However, the conventional methods generally include long derivations and
complicated calculations. Furthermore, each frequency should be analyzed separately in
conventional methods. But intelligent calculating techniques give us opportunities to investigate all
the frequencies together in a very short time. 

4. Artificial neural networks

Nowadays, scientists and especially engineers are trying to develop intelligent machines. Artificial
neural systems are present-day examples of such machines that have great potential to further
improve the quality of our life. In this work, Artificial Neural Network Method is presented as an
alternative to the conventional techniques. 

It is well known that people and animals are much better and faster at recognizing images than
most advanced computers. Although computers outperform both biological and artificial neural
systems for tasks based on precise and fast arithmetic operations, artificial neural systems represent
the promising new generation of information processing networks. Advances have been made in
applying such systems for problems found intractable or difficult for traditional computation. Neural
networks can supplement the enormous processing power of digital computers with the ability to
make sensible decisions and to learn by ordinary experience, as humans do. 

Network computation is performed by a dense mesh of computing nodes and connections. They
operate collectively and simultaneously on most or all data and inputs. The basic processing elements
of neural networks are called artificial neurons, or simply neurons. Often they are simply called
nodes. Neurons perform as summing and non-linear mapping junctions. In some cases, they can be
considered as threshold units that fire when their total input exceeds certain bias levels. Neurons
usually operate in parallel and are configured in regular architectures. They are often organised in
layers, and feedback connections both within the layer and toward adjacent layers are allowed.
Connection strength is expressed by a numerical value called weight, which can be modified. 

λ 3/16( ) Λb
2
/ω( )=

b Y1
′2 xd

0

η

∫ α
2

Y2
′2

η

1

∫+= Λ
1

η 1 η–( )/α
2

+[ ]
--------------------------------------=

Y1

2
xd

0

η

∫ α
4

Y2

2
xd

η

1

∫+ 1= f F1Y1 xd

0

η

∫ α1

4
F2Y2 xd

η

1

∫+=



Stepped beam, nonlinear vibration, perturbation method, artificial neural networks 21

Among the artificial neural networks, the elementary multilayer perceptrons (MLP) with
sigmoidal transfer function have been successfully applied to solve some difficult and diverse
problems as non-linear discriminant function classifiers. The feedforward network learns from the
input data by the supervision of the output data creating single linear discriminant functions by each
sigmoid hidden unit and combines them. Thus, this piecewise linear discriminant function works as
a non-linear discriminator. 

Training the network in a supervised manner with a highly popular algorithm known as the error
back-propagation (BP) has become very popular. BP is an optimization technique for implementing
gradient descent in weight space for multilayer feed forward networks. 

The basic idea of the technique is to efficiently compute partial derivatives of an approximating
function F(w;x) realised by the network with respect to all the elements of the adjustable weight
vector w for a given value of input vector x and output vector y. The weights are adjusted to fit
linear piecewise discriminant functions to feature space for the best class separability. The difference
between the network output and the supervisor output is minimized according to a predefined error
function (performance criterion) such as mean square error (MSE) etc. The neural network system
has been applied with multilayer perceptron and BP algorithm by supervised training (Çetinel et al.

2002).
In this part of the work, artificial neural network method is used to determine the natural

frequencies and the contribution of the non-linear terms to the fundamental frequency at different
end conditions of stepped beam systems. The results will be compared with those of the Newton
Raphson Method. 

4.1 Architecture 

The multilayer perceptron architecture used in this study is shown at Fig. 2. Two different
computer programs are used for calculations. One of them is a special C based software and the
other is MATLAB-NNTOOLBOX. 

Fig. 2 The network architecture 
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As it is shown in Fig. 2, two input nodes for input variables and four output nodes for output
variables are used in this work. The input variables are α, η and the output variables are ω1, ω2, ω3

and λ, as well. 

4.2 Training and testing

Training phase is the main stage of the neural network applications (Çetinel et al. 2002, Karl k et

al. 1998, Özkaya and Pakdemirli 1999). Some input and corresponding output values are needed to
carry out this procedure. In this work, the programs are trained by using the input and output values
which are obtained from the conventional method, Newton Raphson. 85% of N.R. values are used
for training while 15% of them are left for testing. A lot of training iterations are made by trial end
error and finally minimum errors are obtained in the architectures of end conditions as shown in
Table 1. Learning rate and momentum value are taken 0.9 and 0.7 respectively in all applications.
Finally, the A.N.N. programs are tested by the real values which are not used for training (Çevik
et al. 2002).  

5. Numerical results

In this section, numerical results are presented for all cases used in this work. In Table 2, the
comparison between N.R. and A.N.N. learning values are presented. As seen in the table, the
learning values give little errors in most cases which means the A.N.N. programs work fine. After
all, the final procedure is now to test the programs with N.R. values which are not used for training.
In Table 3, the A.N.N. test results are presented by using the testing phase of the algorithms shown
at Table 1. λ values in Tables 2 and 3 are the non-linear correction coefficients for fundamental
frequencies. The results are good enough to decide that, these artificial neural network programs can
be used for calculations of nonlinear stepped beam frequencies.

Fig. 3 and Fig. 4 are graphical displays of N.R. and A.N.N. test results of pinned-pinned end
condition. In Fig. 5, the scatter diagram between N.R. ve A.N.N. results of ω1 is shown. Similar
comparisons are made for the other cases. Figs. 6, 7, 8 are the test results of “clamped-pinned” end
conditions while Figs. 9, 10, 11 are of “pinned-sliding”. 

If the results of conventional numerical methods and artificial neural networks are compared, it is
clearly seen that the ω1-ω2-ω3-λ values can be easily obtained without using any numerical
calculating method. Artificial neural network method gives fast and good results with low errors for

i

Table 1 Best architectures of six different end conditions 

End Conditions
Input 

Variables
Output 

Variables
Hidden
Layer

Node Number of 
Hidden Layers

Iteration
Number

The Program 
Used

pinned-pinned

α

η

ω1 

ω2

ω3

λ

2 15-15 20000 C
clamped-pinned 2 15-15 20000 C

clamped-clamped 2 14-14 20000 C
pinned-sliding 2 20-20 400 Matlab

clamped-sliding 2 19-19 300 Matlab
sliding-sliding 2 17-17 400 Matlab
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Table 2 The comparison of the N.R. and A.N.N. learning results for different end conditions 

Cases α η
ω1

(N.R.)
ω1 

(A.N.N)
ω2

(N.R.)
ω2 

(A.N.N)
ω3

(N.R.)
ω3

(A.N.N)
λ

λ
(A.N.N)

pinned-
pinned

0.5

0.1 4.9049 4.799275 19.3844 19.4404 43.3230 42.710724 15.2674 15.306901
0.5 4.6769 4.659126 29.5223 29.6536 59.8612 59.570136 7.2454 7.251928
0.9 9.4535 9.366956 34.5078 34.3543 74.4401 74.921956 1.6180 1.587802

0.9

0.1 8.8859 8.886823 35.5846 35.7368 80.2162 80.698914 2.5791 2.599078
0.5 9.2635 9.200878 37.6235 37.1706 83.8807 84.445147 2.2121 2.226920
0.9 9.8592 9.802246 39.3275 39.0904 88.1718 89.006242 1.8148 1.779893

2

0.1 18.9070 18.90865 69.0156 68.9720 148.8800 149.052043 0.2022 0.163558
0.5 9.3538 9.328313 59.0446 61.0179 119.7220 113.702509 0.9056 1.006909
0.9 9.8097 9.780810 38.7689 38.5465 86.6459 86.962662 1.9408 2.000266

clamped-
pinned

0.5

0.1 9.3276 9.220178 30.0416 30.1718 62.1994 62.110469 16.6018 16.587237
0.5 11.9969 12.04917 33.6891 33.8794 75.7010 74.596501 7.2862 7.200019
0.9 14.5190 14.71221 42.8347 42.3436 87.5893 87.324596 1.7264 1.734991

0.9

0.1 14.6177 14.61933 46.7747 46.5274 96.5512 96.470267 2.3014 2.257310
0.5 14.7321 14.68430 47.7120 47.4153 98.2320 97.629965 2.1469 2.200421
0.9 15.3964 15.42029 49.7297 49.3804 103.3875 102.456796 1.5881 1.616960

2

0.1 22.6597 22.69916 83.4091 82.9746 175.7170 174.619557 0.1697 0.170596
0.5 14.6995 14.80557 77.7005 76.6113 133.5500 131.461840 0.5161 0.571863
0.9 15.2629 15.28217 48.9488 49.0272 101.6930 101.029334 1.6614 1.541801

clamped-
clamped

0.5

0.1 13.5175 13.80214 37.0158 38.4802 71.9733 75.055378 12.9252 12.896000
0.5 14.6697 14.95998 44.4760 43.9640 83.2323 86.869998 4.4488 4.542408
0.9 17.2833 17.57773 51.8736 53.0546 99.9791 100.565566 1.1458 1.050207

0.9

0.1 21.1471 21.18938 57.5678 58.4598 111.7192 112.046948 1.7829 1.797976
0.5 21.1232 21.10266 58.7287 60.1365 114.2058 114.856648 1.5231 1.652412
0.9 21.2421 21.62837 59.6741 61.2885 118.2298 120.106549 1.2576 1.230474

2

0.1 34.5665 34.74141 103.7470 103.70716 203.4260 202.654460 0.1432 0.035793
0.5 29.3393 29.41209 88.9519 89.975156 166.4651 168.609824 0.5561 0.607948
0.9 27.0350 27.20769 74.0317 74.945418 143.9460 143.737976 1.6156 1.636695

pinned-
sliding 

0.5

0.1 1.2317 1.231668 10.9700 10.969980 59.0180 59.018010 3.9692 3.969211
0.5 1.1171 1.136483 13.8031 13.971591 46.9627 47.098066 3.1046 3.036862
0.9 1.3660 1.366098 19.0304 19.030372 58.5800 58.579835 1.1308 1.130882

0.9

0.1 2.2209 2.220861 20.0028 20.002799 55.6488 55.648872 0.6463 0.646348
0.5 2.2481 2.248094 21.2715 21.271501 58.1381 58.138153 0.6413 0.641331
0.9 2.3952 2.395192 21.7081 21.708104 60.6400 60.640096 0.5053 0.505288

2

0.1 4.8788 4.878804 40.6631 40.663104 104.4240 104.424037 0.0454 0.045380
0.5 2.8559 2.855899 34.0779 34.077926 76.4774 76.477394 0.0876 0.087550
0.9 2.1934 2.193402 22.0876 22.087589 64.6080 64.608065 0.2355 0.235500

clamped-
sliding

0.5

0.1 3.3931 3.393125 18.2323 18.232286 44.7156 44.715684 3.2897 3.289707
0.5 6.7728 6.749638 18.6831 18.699849 55.7544 57.180761 2.8059 2.631543
0.9 4.6592 4.659159 26.7071 26.707084 71.8354 71.835351 0.7555 0.755501

0.9

0.1 5.3406 5.340547 28.4698 28.469813 69.4804 69.480317 0.4575 0.457452
0.5 5.6652 5.665223 28.8143 28.814324 70.6385 70.638453 0.4328 0.432759
0.9 5.5395 5.539488 29.5684 29.568367 73.4666 73.466632 0.3586 0.358642

2

0.1 6.5284 6.528404 48.6283 48.628308 125.9639 125.963950 0.0383 0.038300
0.5 5.4699 5.547954 41.2870 37.129768 98.3819 100.016254 0.0393 0.039222
0.9 4.6792 4.679200 30.6594 30.659384 78.8433 78.843276 0.1397 0.139700

sliding-
sliding

0.5

0.1 4.7074 4.707426 20.2310 20.230987 47.2719 47.272027 9.2642 9.264162
0.5 8.7794 8.779345 24.5332 24.533172 61.9125 61.912449 0.8925 0.892503
0.9 7.5372 7.537184 36.0812 36.081160 86.3529 86.352954 0.2229 0.222900

0.9

0.1 9.0167 9.016717 36.1233 36.123333 81.2516 81.251681 2.3766 2.376627
0.5 9.4501 9.450060 37.2304 37.230382 84.5397 84.539828 0.0201 0.020124
0.9 9.6174 9.617369 38.7063 38.706321 87.5284 87.528311 0.1621 0.162140

2

0.1 15.0743 15.07430 72.1624 72.162447 172.7058 172.705907 0.4001 0.400099
0.5 17.5587 17.55869 49.0663 49.066343 123.8250 123.824899 0.0583 0.058300
0.9 9.4148 9.414788 40.4620 40.461975 94.5438 94.543762 0.0339 0.033900



24 S. M. Ba datli, E. Özkaya, H.A. Özyi it and A. Tekin go go

Table 3 The comparison of the N.R. and A.N.N. test results for different end conditions 

Cases α η
ω1

(N.R.)
ω1 

(A.N.N)
ω2

(N.R.)
ω2 

(A.N.N)
ω3

(N.R.)
ω3

(A.N.N)
λ

λ
(A.N.N)

pinned-
pinned

0.3 0.7 2.6497 2.674393 29.7208 28.893938 53.4021 55.039697 9.5891 9.145854
0.4 0.7 4.3843 4.278635 29.7737 29.803662 68.0416 67.318730 6.8705 6.860221
0.5 0.4 4.5199 4.459633 23.9542 24.000733 62.4896 60.651755 9.1012 8.951545
0.6 0.6 6.6270 6.678246 33.5778 33.910694 69.1784 69.263667 4.1553 4.117201
0.7 0.5 7.3431 7.419132 34.4100 34.607218 71.4214 71.705283 3.7663 3.750467
0.8 0.3 7.9807 7.925639 33.3166 33.265706 76.9485 76.421883 3.5252 3.504584
0.9 0.3 8.9744 8.901823 36.6632 36.899408 82.9488 82.601080 2.5096 2.432027
2 0.5 9.3538 9.328313 59.0446 61.017910 119.7220 113.702509 0.9056 1.006909
3 0.8 8.7401 8.852147 33.9454 35.898761 85.8298 88.747890 1.4010 1.499750

clamped-
pinned

0.3 0.7 7.6644 7.653704 39.197554 40.3986 56.6249 64.508018 7.2697 7.266599
0.4 0.8 9.4995 9.367896 35.453305 35.4895 90.9798 92.475576 7.6675 7.341685
0.5 0.6 10.5991 10.714077 40.523716 41.1604 70.1527 70.258254 6.3422 6.455244
0.6 0.4 13.5598 13.656601 34.431333 34.6424 78.8078 76.577062 6.7625 6.608462
0.7 0.3 14.2120 14.340521 39.163129 38.9081 80.2940 79.039651 5.0723 5.180102
0.8 0.3 14.5037 14.679575 42.935922 42.7614 89.3354 88.016428 3.2670 3.367610
0.9 0.4 14.7772 14.635280 46.982523 47.0983 97.9224 99.398885 2.2302 2.164292
2 0.8 14.6087 14.619028 49.884031 48.5432 108.0390 109.458782 1.4031 1.356997
3 0.8 12.9824 12.768877 45.096617 44.1506 103.6590 105.346338 1.0062 1.219294

clamped-
clamped

0.3 0.8 9.8698 11.500045 35.8462 40.856709 94.6421 95.011813 5.4128 4.538698
0.4 0.6 11.5791 11.804513 47.9022 46.920379 70.1226 71.158748 4.5260 4.362970
0.5 0.3 18.2284 17.838703 37.5075 39.501483 69.3587 65.836949 11.705 13.760195
0.6 0.4 17.6339 17.752749 43.6361 43.847382 91.8607 92.512218 4.2429 4.414219
0.7 0.3 19.6060 19.313728 47.2998 49.479541 93.9033 93.043961 3.4871 3.670403
0.8 0.5 19.6133 19.713209 56.0103 57.065118 106.2870 106.020223 1.9545 1.967197
0.9 0.4 21.1252 20.923606 58.2570 58.772726 113.2033 119.643580 1.6679 1.793535
2 0.7 36.4569 38.681812 75.0150 76.553842 138.7171 150.420236 1.4630 1.522726
3 0.7 43.4287 49.559113 99.4166 96.514367 141.8880 174.692818 2.8022 2.719522

pinned-
sliding

0.3 0.8 0.4654 0.458339 22.1092 21.581094 43.8381 41.938412 2.9124 2.918261
0.4 0.5 0.8073 0.869536 10.7697 11.359392 43.4957 44.713823 4.7422 4.414106
0.5 0.5 1.1171 1.136483 13.8031 13.971591 46.9627 47.098066 3.1046 3.036862
0.6 0.4 1.4402 1.451543 14.3960 14.468685 47.2523 46.711449 2.2398 2.208662
0.7 0.6 1.7377 1.740536 20.2570 20.259903 51.0193 51.260167 1.2234 1.219515
0.8 0.4 1.9833 1.963999 19.1062 18.941525 54.7841 55.020910 0.9552 0.981091
0.9 0.3 2.2263 2.261956 20.4161 20.723005 57.6069 57.375657 0.6588 0.633501
2 0.6 2.5050 2.065824 34.3304 38.845741 74.0340 74.111252 0.1024 0.108488
3 0.7 1.6797 1.656700 31.6503 28.034565 97.4706 86.224467 0.0477 0.041019

clamped-
sliding

0.3 0.8 5.2577 5.406993 30.2836 29.339633 46.9338 48.481632 0.6916 0.709386
0.5 0.5 6.7728 6.749638 18.6831 18.699849 55.7544 57.180761 2.8059 2.631543
0.6 0.6 6.1514 6.166496 24.3495 24.619875 58.8908 58.592515 1.0269 1.030703
0.7 0.4 6.0597 6.062006 24.1190 24.147876 60.7130 61.617817 0.9882 0.996718
0.8 0.6 5.6908 5.723901 28.1165 27.918902 66.8598 65.998263 0.5788 0.557021
0.9 0.6 5.6125 5.680783 29.2438 29.097054 71.0209 67.837302 0.4289 0.387607
2 0.5 5.4699 5.547954 41.2870 37.129768 98.3819 100.016254 0.0393 0.039222

sliding-
sliding

0.3 0.8 8.3118 7.558375 37.4137 36.588600 53.2760 58.418514 0.1148 0.122031
0.4 0.8 8.1731 7.917926 39.0242 38.652114 65.5805 66.437544 0.1363 0.133230
0.5 0.3 6.1190 5.995633 27.2267 28.132444 54.1841 54.596032 9.8268 9.187962
0.6 0.5 8.9907 8.911563 27.7182 27.669883 70.2824 69.751113 0.1171 0.104241
0.7 0.8 8.6535 8.633113 37.8676 37.933345 84.5838 84.746673 0.1305 0.128524
0.8 0.4 9.0454 8.937551 33.8685 33.953643 77.4082 76.882164 0.7560 0.752103
0.9 0.3 9.3296 9.329608 36.6407 36.640718 81.9840 81.984095 1.6493 1.649252
2 0.2 16.3348 13.800480 77.2033 91.799678 152.0331 171.160318 0.4328 0.376037
3 0.4 28.5641 28.564090 54.2447 54.244640 182.0946 182.094497 0.1229 0.122900
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Fig. 3 The comparison between N.R. and A.N.N. test results of ω1-ω2-ω3 for different α-η values (pinned-
pinned) 

Fig. 4 Test results of λ for different α-η values: Obtained from conventional method and artificial neural
networks (pinned-pinned)

Fig. 5 Scatter Diagrams of ω1 test values (R2 : coefficient of determination ) (pinned-pinned)
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Fig. 6 The comparison between N.R. and A.N.N. test results of ω1-ω2-ω3 for different α-η values (clamped-
pinned)

Fig. 7 Test results of λ for different α-η values: Obtained from conventional method and artificial neural
networks (clamped-pinned)

Fig. 8 Scatter Diagrams of ω2 test values (R2: coefficient of determination) (clamped-pinned)
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Fig. 9 The comparison between N.R. and A.N.N. test results of ω1-ω2-ω3 for different α-η values (pinned-
sliding)

Fig. 10 Test results of λ for different α-η values: Obtained from conventional method and artificial neural
networks (pinned-sliding)

Fig. 11 Scatter Diagrams of λ test values (R2: coefficient of determination) (pinned-sliding)
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almost all cases. Only the errors at clamped-clamped end condition are found a little high. In Table
4 and 5, %error and correlation values of learning and testing are shown, respectively.

6. Conclusions

In this work, the vibrations of a stepped beam under six different supporting conditions were
treated. The non-linear equations of motion including stretching due to immovable end conditions
were derived. Linear and non-linear analyses were investigated. Approximate solutions can be
searched by applying the method of multiple scales directly to the partial differential equations. The
first term lead to the linear problem. The natural frequencies were calculated for different stepped

 

Table 4 % error and correlation values of learning for all cases

 End Condition ω1 ω2 ω3 λ

pinned-pinned
% Error 0,69% 0,59% 0,56% 2,23%

R2 0,999 0,999 0,999 0,999

clamped-pinned 
% Error 0,58% 0,64% 0,77% 5,72%

R2 0,999 0,999 0,999 0,999

clamped-clamped
% Error 1,30% 2,06% 2,50% 10,12%

R2 0,999 0,998 0,999 0,999

pinned-sliding
% Error 0,00% 0,00% 0,00% 0,00%

R2 1,000 1,000 1,000 1,000

clamped-sliding
% Error 0,00% 0,00% 0,00% 0,00%

R2 1,000 1,000 1,000 1,000

sliding-sliding
% Error 0,00% 0,00% 0,00% 0,00%

R2 1,000 1,000 1,000 1,000

Table 5 % error and correlation values of testing for all cases

 End Condition ω1 ω2 ω3 λ

pinned-pinned
% Error 1,06% 1,61% 1,90% 3,30%

R2 0,999 0,995 0,988 0,999

clamped-pinned 
% Error 0,90% 1,27% 2,89% 4,55%

R2 0,997 0,983 0,968 0,996

clamped-clamped
% Error 4,94% 3,51% 5,12% 6,87%

R2 0,989 0,992 0,965 0,978

pinned-sliding 
% Error 3,71% 4,06% 2,39% 4,17%

R2 0,955 0,940 0,977 0,998

clamped-sliding
% Error 0,96% 2,24% 2,18% 3,37%

R2 0,997 0,985 0,988 0,998

sliding-sliding
% Error 3,56% 2,89% 2,88% 4,58%

R2 0,986 0,982 0,985 0,999
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ratios, step location and end conditions. The second terms provide the non-linear corrections to the
linear problem. The exact values of linear frequencies were calculated using the Newton-Raphson
method. The correction coefficients to the linear frequencies in the case of nonlinearities were also
calculated from the formulas given in a previous paper (Özkaya and Tekin 2007). For each end
condition, step location, step ratio and frequency, numerical analysis should be repeated, a lengthy
process which requires the convergence of iterations. When the initial guesses are not close enough,
the algorithm may diverge also. Some key values obtained using the conventional analyses were
then used in training an ANN algorithm. After half an hour of training for the linear and non- linear
cases, the frequencies become available almost instantly. The results of the algorithm produce errors
less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most
cases except clamped-clamped end condition. By employing the ANN algorithm, computational
time is drastically reduced compared with the conventional numerical techniques (Özkaya and Öz
2002, Durmu  et al. 2006). These errors are considerably low. ANN algorithms cannot, of course,
replace totally the conventional numerical techniques, since they need some key values for training.
However, for involved problems in structural vibrations where excessive iterations are needed for
convergence, they can be implemented as an efficient supplementary tool, reducing drastically the
computational cost.
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