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Abstract. Recent interest in the use of wireless sensor networks for structural health monitoring (SHM)
is mainly due to their low implementation costs and potential to measure the responses of a structure at
unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing
must be developed in parallel with this technology to significantly reduce the power consumption and
communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection
system based on a distributed processing approach is proposed and experimentally validated using a
wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board
processing capabilities of the wireless sensor are exploited to significantly reduce the communication load
and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing
damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted
to the base station for decision-making. The results indicate that this distributed implementation can be
used to successfully detect and localize regions of damage in a structure. To further support the
experimental results obtained, the capabilities of the proposed system were tested through a series of
numerical simulations with an expanded set of damage scenarios.
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1. Introduction

Emerging interest in the use of wireless sensors for structural health monitoring (SHM) systems is

mainly due to the potential of this technology to provide a low cost solution to the damage

detection problem through the availability of unprecedented spatial granularity of the response data

(Liu and Tomizuka 2003, Spencer 2003, Lynch et al. 2002). Most existing SHM techniques require

a great deal of high-fidelity response data as well as significant computational power for real-world

implementation. Centralized processing of global structural response data has been the norm.
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However, a new paradigm is needed to successfully employ wireless sensor networks in this

application due to the severe resource and power constraints associated with these networks

(Spencer and Nagayama 2006). Properly implemented distributed processing algorithms will

significantly reduce the power consumption and bandwidth requirements. 

Battery powered smart sensor platforms, based on micro-electro-mechanical systems (MEMS), on-

board microprocessors and wireless communication attributes have become a new possibility for

developing SHM systems based on distributed processing and wireless sensor networks (WSN). In

addition to simply recording response data and transmitting it to a base station, more advanced

smart sensors offer powerful on-board processing capabilities that are critical for the distributed

computations needed. On-board microprocessors are used to accomplish data aggregation as well as

self-operative functions. Wireless communication enables the sensors to then transmit a reduced set

of processed information for additional analysis. Lynch provided a comprehensive overview of the

last decade of work to develop smart sensor platforms suitable for structural applications (Lynch

2004, Lynch and Loh 2006). Although a number of platforms have been developed in recent years,

the Intel iMote2 has emerged as the most appropriate for civil infrastructure monitoring under

intensive conditions due to the on-board processing capabilities (Adler et al. 2005, Nagayama et al.

2006, Nagayama 2007). Additionally, researchers have developed services for this platform that are

now publicly available (Rice et al. 2008, The Illinois SHM Services Toolkit 2008).

Despite these efforts, practical utilization of smart sensor platforms for SHM in a real-world

environment remains a challenge. Power limitations restrict their useful lifetime and performance.

Time synchronization is often needed to obtain useful data for SHM applications (Elson et al. 2002,

Ganeriwal et al. 2003, Lynch et al. 2005, Maroti et al. 2004, Mechitov et al. 2004), effective

communication protocols are needed for reliable data transmission (Mechitov et al. 2004). Thus,

middleware services are required to maximize the lifetime of these smart sensors networks and

ensure a reliable performance. (Spencer and Nagayama 2006, Nagayama et al. 2006, Nagayama

2007) identified a more comprehensive set of research gaps in the development of SHM systems

based on smart sensors. 

Robust damage detection algorithms, capable of functioning within the confines of a wireless

sensor network, continue to pose a significant research problem to the community. Several

techniques involving sophisticated and fault tolerant algorithms for damage detection are being

studied (Sohn et al. 2004, Lynch 2004). For instance, at Clarkson University researchers have

implemented a wireless sensor system for modal identification of a full-scale bridge structure in

New York (Gangone et al. 2007). Battery powered wireless sensor nodes equipped with

accelerometers and strain transducers are used having a high wireless data transmission rate. The

entire network is polled by a master computer that collects acceleration and strain data. Both modal

identification and quantification of static responses is performed using centralized network

architecture. 

In another real-world wireless sensor application, at the University of California, Berkeley (Kim

2005, Kim 2007, Kim et al. 2007, Pakzad et al. 2005) researchers have designed and deployed a

wireless sensor network on the Golden Gate Bridge. The purpose of this implementation was to

validate theoretical models and previous studies of the bridge. The deployment, considered the

largest smart sensor network for SHM purposes, involves 64 nodes carefully distributed over the

span and the tower measuring ambient vibrations synchronously at 1kHz in two directions. The

data, reliably transmitted by using a 46 hop network with a bandwidth of 441B/s at the 46th hop, is

collected using a base station (i.e., centralized network architecture) where frequency domain
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analysis is used to extract modal parameters. The total time required to transmit response data from

all nodes to the base station is 9 hours, resulting in a system lifetime of 10 weeks when four 6V

batteries are used as a power source.

Other smart sensor applications in infrastructure systems have been reported. At the University of

Oklahoma researchers have conducted and presented preliminary results for an experimental

investigation to detect road weather conditions using a smart sensor network (Pei et al. 2006, Ferzli

et al. 2006). In the implementation, a network of Mica2 motes, interfacing with three environmental

sensors, are deployed to monitor pavement temperature and moisture to detect icy road condition.

Sensed data, transmitted across the network and collected at a base station, is subsequently

processed to categorize pavement surface conditions. In the study, several experiments were also

performed to test communication interference due to traffic using a small-scale sensor network in a

pseudo-field environment. 

Clearly, with potentially hundreds of nodes sensing and streaming data at high sampling rates, the

energy consumption and power requirements of these centralized approaches do not match the

capabilities offered by wireless sensors, and therefore are not scalable for realistic SHM

applications. The development of distributed approaches that minimize data transmission, and thus

power consumption, is necessary. On-board processing capabilities using wireless sensors are

successfully being exploited to perform data aggregation, thus reducing the wireless communication

load (Lynch et al. 2004, Chintalapudi et al. 2006, Nagayama 2007, Hackmann et al. 2008,

Zimmerman et al. 2008).

A distributed approach, amenable for local processing in the motes, has been proposed by

Chintalapudi et al. (2006). In this study, two qualitatively different SHM applications for damage

detection and localization are tested using a small and medium-scale structures and NetSHM

prototype. The damage detection was accomplished by analyzing shifts in modal frequencies, while

damage localization based on mode shape changes. However, due to memory and processing

capacity constraints in the platform (MicaZ), the technique evaluation was performed without

involving any local processing on the smart sensors.

At the University of Michigan, Lynch et al. have developed a state-of the-art wireless sensing unit

configured with an autonomous execution of an embedded damage detection algorithm based on

statistical pattern recognition using AR and ARX time-series models (2004). The algorithm

performance is evaluated using wireless sensor units and experimental data previously acquired with

an accelerometer network deployed on a simple lumped-mass laboratory test structure. Final results

demonstrated that a fifty percent reduction in energy was reported by running the damage detection

scheme at the sensor nodes as compared to using a centralized approach. 

Zimmerman et al. have also implemented a distributed WSN for modal identification by

appropriate implementation of select output-only methods (peak-picking, frequency domain

decomposition, random decrement) (2008). Their implementation, tested on a theater balcony, uses a

parallel data processing and reduced communication scheme to ensure scalability and power

efficiency in the network. Three network topologies are proposed to yield a two-node data sharing

chain for global mode shape identification by combining partial identified mode shapes. However,

there is a potential for significant accumulation of errors with this strategy, if any of the sensor

nodes acquires unreliable data. 

Additionally, researchers at the University of Illinois at Urbana-Champaign have experimentally

validated a distributed SHM system employing a smart sensor network deployed on a scale three-

dimensional truss model (Spencer and Nagayama 2006, Nagayama 2007). Their approach includes
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implementation of the Distributed Computing Strategy (Gao 2005) in which data is processed on

iMote2 smart sensor communities under a hierarchical architecture. The algorithm includes the use

of the eigensystem realization algorithm (Juang and Pappa 1985) and the damage locating vector

method (Bernal 2002) to exploit the on-board processing capacity of the iMote2. Results

demonstrated that the adopted SHM system is effective for damage detection and localization, and

is scalable to a large number of smart sensors. However, significant communication is needed

when cross-correlation tasks are performed, resulting in considerable energy consumption in the

network.

The focus of this work is the development and experimental validation of a completely distributed

damage detection system that has minimal power requirements and will be effective for

identification of damage zones in a structure. The communication load and power requirements are

considerably reduced by exploiting the local processing capabilities offered by the wireless sensors.

Nearly all computation is performed on-board the sensor platforms, and a minimal amount of data

must be transmitted to a base station for decision-making. The system is based on the use of the

DLAC method, developed by Messina et al. (1996) and first proposed for wireless sensor networks

by Clayton et al. (2005). The implementation of this distributed processing algorithm on the smart

sensors is discussed. One additional advantage of this approach is that synchronized sensing is not

needed. The system is deployed and validated on two experimental structures of increasing

complexity using a WSN based on iMote2 platforms. With very little energy usage the system is

experimentally demonstrated to be capable of detecting the damage zone. 

2. Description of the distributed processing implementation 

The proposed damage detection system is implemented using a WSN. A two-level approach is

used where level one involves data aggregation performed on the sensors, and level two yields

damage localization results at the base station. The system is completely distributed (all sensors

operate independently of each other) and is based on correlation of the changes in the natural

frequencies of the experimental structure and an analytical model. In this approach minimal power

is expended at the sensor level because the information transmitted is reduced by several orders of

magnitude.

A general flow chart of the entire implementation is provided in Fig. 1. The level one analysis

identifies the natural frequencies of the structure using the onboard processing abilities of the smart

sensor platform. A reduced set of parameters are then transmitted to the base station. At the base

station, the second level analysis is then performed to determine the correlations and localize

damage. A Java program has been developed as an interface to set experimental parameters and

govern which tasks are to be conducted within the experiment. 

The steps performed in the damage detection system include: i) data acquisition, ii) on-board data

processing, iii) data transmission and damage localization at the base station. These will be

described in the following sections. The user interface for controlling the experiment is also

described herein. 

2.1 Data acquisition 

Acceleration data acquisition is performed as a first step through the proposed damage detection
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system to be used to identify the natural frequencies of the structure. A basic sensor board (ITS400)

developed by Intel Research Lab and designed to interact with the iMote2 platform is used to

accomplish the acceleration measurement.

The basic sensor board has a digital accelerometer with additional temperature, humidity and light

sensors. Four A/D converters are available for the sensors. The digital accelerometer (ST Micro

LISL02DQ) with 3-axes of measurement has a resolution of 12-bits, or equivalently 0.97 mg of

resolution based on the ±2 g range. A limit of 3000 data points may be obtained on each axis. A

photo of the basic sensor board is shown in Fig. 2. 

Acceleration data is collected at a specific sampling frequency within frames each containing

2048 points. The raw data are then stored in the local memory of the iMote2. The program running

Fig. 1 Flow chart of implementation

Fig. 2 Top and bottom view of basic sensor board
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on each of the motes (implemented in the nesC programming language) is designed to process the

acceleration data to perform modal identification. Sampling frequencies and corresponding cut-off

frequencies are adjustable and are set using the digital filters and user-defined decimation factors

with values given in Table 1. Specifications available for the accelerometer explain that once the

decimation factor is defined, the sampling frequency and resultant cut-off frequency will have a

value within +/−10% of the value set by the user. 

For instance, if a decimation factor were defined as 64, the sensor would operate with an actual

sampling frequency between 504-616 Hz (i.e., not precisely at 560 Hz). Consequently, sampling

frequency values will vary from sensor to sensor. The actual values could be determined using an

oscilloscope prior to experimentation or by a self-calibration routine embedded in the smart sensors.

However, on a given sensor a consistent sensing frequency was observed (i.e., there was no

variation in the sampling frequency value with time).

2.2 Data processing 

Modal identification is performed on each smart sensor. A Fast Fourier Transform (FFT) is first

applied to the acceleration time histories on the sensor platforms. Power spectral density (PSD)

functions are then calculated as the squared magnitude of the complex FFT values. Assuming that

the unmeasured disturbances to the structural system are white noises and have flat PSDs, the PSD

of the response can be viewed as a transfer function. Even in the case when the input is not white,

this approximation has been found to be appropriate for determination of the frequencies of the

system using the method discussed subsequently. Data obtained with each sensor is processed

entirely at that particular sensor node and no transmission of the raw data is needed to implement

the algorithm.

A curve fitting technique is applied to the PSD function to determine the values of the

frequencies. A fit of the PSD data immediately surrounding each of the modes is performed to

identify each frequency. Levi’s approach is used to accomplish the curve fitting (Levy 1959). This

approach was proposed in prior related studies (Clayton et al. 2005, Clayton et al. 2006, Clayton,

2006). The approach identifies the natural frequencies by determining the parameters that result in a

least-squares fit of a fractional polynomial expression to the frequency domain data. The fractional

polynomial is defined as the ratio of two complex polynomials in terms of unknown coefficients ai,

bi, as in Eq. (1)

(1)

Because we are fitting the data in the region surrounding each peak, the denominator has a

polynomial order of two, i.e., equal to two times the number of frequencies to be captured. The

G iω( )
a0 a1 iω( ) a2 iω( )

2
+ +

b0 b1 iω( ) b2 iω( )
2

+ +

--------------------------------------------------=

Table 1 Accelerometer user specified sampling rates and cutoff frequencies

Decimation factor Cutoff frequency (Hz) Sampling rate (Hz)

128 70 280

64 140 560

32 280 1120

8 1120 4480
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curve fit procedure is repeated for each of the modes to be identified. The set of coefficients

defining the results of the curve fit are then transmitted wirelessly to the base station where natural

frequencies are calculated from the imaginary component of the roots of each denominator

polynomial, i.e., the poles of the system. 

The iMote2 (IPR2400), an advanced wireless sensor platform which offers adequate processing

power to accomplish the FFT, PSD and curve fitting tasks, is selected for this study. Its main board

has a low power 416MHz PXA271 XScale processor with 256 KB of integrated SRAM and 32 MB

of external SDRAM, embedded in a modular compact size of 48 × 36 × 7 mm. Power can be

provided by a battery board or via the integrated USB interface. Other important iMote2 main board

features can be observed in Table 2. This choice of smart sensor platform made it possible to

implement this completely distributed approach for structural damage detection. A photo of the unit

is shown in Fig. 3. 

2.3 Data transmission

The set of parameters associated with the model fitted to the PSD and calculated on the sensor

platforms and then transmitted back to the base station. These values are transmitted from the

iMote2 to a PC base station wirelessly through a gateway mote. 

A gateway mote, receives the data packets from the sensors using an 802.15.4-compliant 2.4 GHz

radio (Chipcon CC2420) integrated with a built-in antenna, and relays the data to the PC over a

USB cable. The PC base station completes the DLAC computations and provides the results to the

user with a Java application. 

At this point the communication, latency, and energy consumption advantages presented by the

distributed damage detection strategy, implemented in this study, should be highlighted. The

evaluation is performed by analyzing the execution time for the computational tasks performed on-

Fig. 3 Top and bottom view of iMote2 main board

Table 2 iMote2 main board properties 

Microprocessor XcalePXA271

Active power (mW) 44 @ 13 MHz, 570 @ 416 MHz

Clock speed (MHz) 13 - 416

RAM (bytes) 256 K + 32 M external

Program flash (bytes) 32 M

802.15.4 radio (Chipcon 2420)
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board and the wireless transmission from the sensor to the base station. The corresponding times are

measured using the iMote2 onboard microsecond timer. Additionally, the time incurred to transmit

the data from the sensor to a base station under a centralized approach is also measured for

comparison purposes. Under a common centralized approach without exploiting the on-board

processing capacity offered by the smart sensors, 2048 integer sensor readings would have to be

transmitted back to the base station. However, under the proposed distributed approach only partial

results consisting of 5n floating-point curve fitting parameters (where n is the number of modes to

be captured) are transmitted back to the base station for final natural frequencies calculation. For

instance, if n = 5 then a 98.8% of data reduction is accomplished because only 25 floating-point

parameters are transmitted to the base station against the 2048 integer sensor readings. Furthermore,

latency analysis demonstrated that the distributed approach only takes 4723 ms among acceleration

data collection, processing and aggregation data at sensor level and final wireless transmission tasks.

The centralized procedure requires 13410 ms to collect all the raw data and transmit the entire set to

the base station. Consequently, the proposed distributed approach is able to achieve latencies 64.8%

lower than those of a centralized approach.

Additionally, energy consumption is analyzed using the previous latency analysis results in

conjunction with the current consumption data for radio, sensor and CPU provided by the

manufacturers (STMicroelectronics 2005, Crossbow Technologies 2007). The results indicate that

the presented distributed processing approach reduced the energy usage to 0.067 mAh in contrast to

the 0.222 mAh that a centralized approach would require. Therefore, the proposed distributed

approach yields an energy reduction of almost 70% of that of the centralized approach. This

reduction is mostly attributed to the fact that no raw data is sent to the base station. The distributed

approach only requires 0.006 mAh for the on-board computation instead of the 0.160 mAh that it

would be needed to transmit the entire raw dataset to the base station under a centralized approach.

Therefore, low latency and minimal energy use are demonstrated based on the proposed distributed

approach.

Although the purpose of this study is to validate a distributed implementation, raw data is also

available to be transmitted to the base station for debugging and comparison analysis. Therefore, a

reliable transport layer is implemented to achieve accurate data transmission from wireless sensors

to the base station. This reliable transport layer is tailored for the specific features of the TinyOS

1.1.15. operating system. The transport layer divides sensor data into packets small enough for the

radio protocol stack to handle, transmits all the data packets to the base station, and reassembles

them upon arrival. Additionally, an Automatic Repeat Request procedure (ARQ) is implemented to

detect and retransmit lost packets during communication. After a sender sends a data packet to the

base station, it waits for an acknowledgment from the receiver. If an acknowledgment is not

received within 0.5 sec it will retransmit the data packet. This process is repeated until an

acknowledgment is received, at which time the sender mote proceeds to the next data packet. To

detect duplicate data packets, each data packet has a sequence number differentiating it from the

other packets. Therefore, the base station accurately reassembles the original block of data after all

of the packets are received. The communication protocol was verified experimentally using seven

wireless sensors, located 16 feet from the base station. Obstacles such as metal bookcases were

placed between the base station and the wireless sensor deployment to observe performance. To

detect communication failures, a pattern of bytes was written into the block data before sending it to

the base station which is configured to verify if the pattern of bytes still exists after transmission is

concluded. The pattern of bytes used was a counter that repeatedly goes from 0x00 to 0xFF.
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Through the test, each of the seven iMote2 wireless sensor sent their block data to the base station

sequentially. All of the data from the network arrived successfully, which confirmed the

communication protocol is reliable.

2.4 Damage localization

Once the parameters from the curve fit arrive to the base station, the java code at the base station

is used to compute the frequencies and calculate correlations to provide to the user. Messina

proposed the Damage Location Assurance Criterion (DLAC) (Messina et al. 1996, Messina et al.

1998) as an adaptation of the Modal Assurance Criterion (MAC) (Contursi et al. 1998) technique

for damage detection. The DLAC approach can identify damage by evaluating the linear correlation

between the frequency change vectors obtained by experimental measurements and an analytical

model. Consequently, DLAC requires the selection of an assumed damage detection pattern to

produce frequency change vectors for the numerical model. Therefore, the jth DLAC coefficient

represents the correlation of the frequency change vectors between the experimental natural

frequencies and numerical natural frequencies which are produced when the damage detection

pattern is imposed on the jth element of the numerical model. Damage is inherently nonlinear, but

because the structure experiences ambient vibration before and after the damage, linear models are

used to represent the structural behavior before and after damage. The experimental natural

frequencies are calculated as the imaginary component of the poles of each fractional polynomial as

explained in the data processing section. The linear correlation between frequency change vectors is

computed using the DLAC equation given by Eq. (2).

(2)

where

(3)

 

(4)

ω : Vector of natural frequencies obtained with experimental measurements

ω
a : Vector of natural frequencies obtained with the analytical model

j : DLAC index associated to the jth element location in the analytical model

Frequency change vectors for experimental and numerical models are denoted by  and ,

respectively. These vectors are normalized with respect to the healthy natural frequencies using

Eqs. (3) and (4) to equally weight all vectors and reduce any bias induced by higher modes. Note

that the result of this is restricted to positive values between 0 and 1. A concentration of relatively

high DLAC values indicates strong correlation and therefore a potential damage location. 

Although the DLAC values are dependent on both the level and location of the assumed damage,

the DLAC’s ability to detect damage is robust, because frequency change vectors are normalized

and their magnitude is unnecessary for the calculation. However, some uncertainties present during

an actual implementation of the DLAC have been found to affect its reliability (Clayton 2006).

Clayton performed an assessment of the DLAC accuracy in previous numerical studies using a

DLACj

ω∆{ }
T
δω j{ }

2

ω∆{ }
T

ω∆{ }( ) δω j{ }
T
δω j{ }( )

------------------------------------------------------------------------=

ω∆ ωhealthy ωdamage–( )/ωhealthy=

δω j ωhealthy

a
ω j

a
–( )/ωhealthy

a
=

ω∆ δω j



796 Nestor E. Castaneda, Shirley Dyke, Chenyang Lu, Fei Sun and Greg Hackmann

cantilever beam model. In his study it was concluded that the reliability of the DLAC to detect

damage is dependent on having a sufficiently refined analytical model. The success of the method is

also dependent on the noise distribution present in the output signals. These effects are later

considered in a numerical simulation using an analytical model of a truss. 

Because the DLAC approach is only used to detect individual damage events, extensions of this

technique could be implemented to detect multiple damage locations (Koh and Dyke 2007) or to

detect damage in perfectly symmetric structures. Also, a sufficient number of modes must be

employed. If the number of modes is not sufficient, the frequency change vector can result in strong

correlation with more than one damage pattern, limiting the usefulness of this approach for real

structural damage localization. 

2.5 Description of user interface

A Java application was also developed as a user-interface to monitor and control the entire

network and define the sensing parameters. Fig. 4 shows the user-interface developed for this

implementation. The proposed interface enable users to set sampling frequencies for sensor boards,

select curve fitting intervals in the frequency domain, initialize the application and save results for

post-processing. Additionally, raw and corresponding power spectrum data may be requested and

recorded for debugging purposes. 

3. Experimental deployment and validation

Experimental deployment and validation of this SHM system is conducted using two experimental

structures of increasing complexity. The first structure considered is a simple cantilevered beam.

The second deployment focuses on a more complex truss structure. Details on the deployment and

experimental validation on these test structures are discussed in this section. 

3.1 Cantilivered beam experiment 

A steel cantilever beam, located at the Structural Control and Earthquake Engineering Lab at

Washington University in St. Louis, is first considered (Clayton et al. 2005, Clayton 2006). The

beam is 274.3 cm long, 7.6 cm wide and 0.6 cm thick. Seven iMote2s platforms are attached to the

beam to measure acceleration responses in a direction parallel to the weak axis, placed at constant

Fig. 4 User-interface
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intervals of 38.1 cm measured from the base. Sensors are configured to have a sampling frequency

of 280 Hz. corresponding to a cutoff frequency of 70 Hz. 

A numerical model is developed to yield healthy and damaged analytical natural frequencies for

later correlation calculations needed for the DLAC technique.

The model employs 2D Bernoulli beam elements with transverse and rotational degrees of

freedom (DOF), producing a consistent mass matrix finite element model with 20 elements and 42

global degrees of freedom (see Fig. 5).

Boundary conditions assume a perfect cantilever support. Using the numerical model, 20

analytical damage scenarios are generated. Analytical damage is produced in the model by

increasing the density in the damaged element to represent a mass increase. The amount of mass

added at each element is only 67% (1.00 kg) of the true experimental value of the added mass

(1.50 kg). The eigen-problem is solved to obtain the healthy natural frequencies and a sensitivity

matrix containing information about the first five bending natural frequencies for each of the 20

damage locations on the beam model. Analytical natural frequency results (in Hz) for healthy and

damaged natural frequencies are given in Table 3. Three damage scenarios are independently

examined using impact testing. Rather than damaging the structure, mass is added in specified

locations to change the dynamics of the structure. Thus, each damage scenario is simulated by

attaching a steel bar with an equivalent weight of 1.50 kg placed at distances from the base of: 66.0

cm (D1), 134.6 cm (D2), and 189.5 cm (D3), respectively. See Fig. 6 for a diagram of the

 Fig. 5 Cantilever beam finite element model Fig. 6 Diagram of cantilever beam test structure

 
Table 3 Analytical natural frequencies 

Mode Healthy D1 D2 D3

1 0.6564 0.6555 0.6443 0.6200

2 4.1133 4.0105 3.7649 4.0026

3 11.5180 10.6192 11.4581 10.7937

4 22.5710 20.8768 21.0991 22.3574

5 37.3160 36.1469 36.8913 36.1677
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experimental setup. In the experiments the mass is associated with elements 5 (case D1), 10 (case

D2) and 14 (case D3) in the model. Therefore, the highest DLAC values are expected to be

concentrated around these positions. 

The first experimental test is performed to identify the healthy natural frequencies of the beam. A

hammer strike is applied along the weaker bending axis of the beam to approximate an impulse

response and to ensure a sufficiently broadband excitation. The first five healthy natural frequencies

(in Hz), shown in Table 4, were determined by averaging the results obtained from each of the

smart sensors. These values are incorporated into the java tools that perform the DLAC

computations.

The damage scenario experiments are then performed to test the distributed SHM system. Mass is

attached to the beam and impact testing is used to excite the structure for each of the damage

scenarios. The results reported by the smart sensor network are provided in Figs. 7, 8 and 9 and the

corresponding identified natural frequencies (in Hz) and DLAC measurements are presented for

each damage scenario. Recall that the experimental damage cases D1, D2 and D3 are associated

with elements 5, 10 and 14, respectively. From these results it is clear that the highest DLAC values

correspond directly to the damage location for this simple beam structure. 

Fig. 7 DLAC results for element position # 5

Table 4 Experimental healthy natural frequencies

Mode 1 2 3 4 5

Wn 0.5381 4.0240 11.4705 22.5506 37.4316
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Fig. 8 DLAC results for element position # 10

Fig. 9 DLAC results for element position # 14
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Despite the accuracy of this approach in localizing damage here, some of the sensors do report

similar DLAC values in the final damage scenario (D3). This outcome is a possibility in this

approach due to the fact that pattern in the frequency change may be similar for two damage

scenarios. Using more frequencies in the DLAC method would likely correct this error, but at this

time are outside of the bandwidth of the sensors. However, this method is found to be robust to the

level of damage assumed for DLAC determination, requires only a few modes for implementation,

and has not been found to result in false negatives; locations indicating high levels of correlation do

include the damage location.

3.2 Truss experiment 

A steel truss structure is selected as a second, more complex experimental model for validation of

the proposed SHM system (Clayton 2002, Gao 2005, Nagayama 2007). This model is housed in the

Smart Structure Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign

(see Fig. 10) and has been the subject of several SHM studies in the past. The specimen, with 5.6 m

long, has 14 bays each 0.4 m in length and depth, and rests on four rigid supports. Two of these

supports, located at one end of the truss, are pinned and are able to rotate freely with all three

translations constrained. The other two supports, located at the other end of the truss, have rollers

and are able to translate only in the longitudinal direction of the truss. Each of the truss members

has a tubular cross section with an inner diameter of 1.09 cm and outer diameter of 1.71 cm and

Fig. 10 3D truss test structure

 Fig. 11 Truss experiment set up
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can be removed or replaced for simulating damage without disassembling the entire structure. 

In our implementation a network of eleven iMote2 wireless sensor platforms is deployed on the front

panel of the truss as indicated in Fig. 11. Sensor boards are configured to measure vertical acceleration

data with a sampling frequency of 560 Hz which corresponds to a cutoff frequency of 140 Hz. Sensors

are oriented in the vertical direction to focus on measuring bending modes of the structure. 

A numerical model is developed to produce the necessary frequency change vectors for the

DLAC computations. 3D Bernoulli beam elements are used with transverse, rotational, torsion and

axial degrees of freedom to produce a consistent mass matrix finite element model with 160

elements and 336 global degrees of freedom (see Fig. 12). Boundary conditions are modeled in

agreement with the actual boundary conditions of the truss. Three translational and three rotational

degrees of freedom are defined for each structural node and an additional mass of 1 kg is lumped at

every translational DOF to account for inertial effects introduced by the steel joints. An effective

experimental damage scenario is performed by replacing four members of the third central bay on

both the front and rear truss panels as shown in Figs. 11 and 12. Diagonal members are replaced

with members having a reduced area of 52.7% or the original and bottom chord elements are

replaced with members having a reduced area of 63.7 % of the original.

Damage patterns corresponding to a reduction in the area of the diagonal and bottom elements in

each of the 12 central bays are then reproduced in the analytical model. Here the actual

experimental damage is applied by modeling the same section reduction. Therefore, for the

experiments a damage hypothesis identical to the actual damage is used to produce a damage

detection pattern for correlation comparisons. However, modeling errors are included in the analysis

as the analytical model of the truss has not been updated to reflect the healthy condition of the

structure. Analytical natural frequency results (in Hz) for healthy and damage cases are depicted in

Table 5. A frequency change vector that includes the first five bending natural frequencies over

each of the 12 damage scenarios is calculated. Note that according to the true damage patterns, the

highest DLAC values are expected to be concentrated around to the third bay due to the presence of

damage. 

Fig. 12 Truss finite element model

 
Table 5 Analytical natural frequencies

Mode 1 2 3 4 5

Healthy 19.88 38.31 66.26 67.17 92.25

Damaged 19.19 38.35 63.58 66.30 90.96
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An initial off-line modal identification is performed to accurately capture the dominant

longitudinal bending modes of the healthy system i.e., the system with no damage. The eigensystem

realization algorithm (ERA) (Juang and Pappa 1985) is used here to perform the modal

identification analysis using forced response data. An electromagnetic shaker that can generate a

maximum force of 20 lb and having a bandwidth of 5-9000 Hz is used to vertically excite the

structure. A command input characterized by a band-limited white noise up to 256 Hz is applied to

this shaker. Output data is acquired using six wired accelerometers mounted on the front panel, each

measuring vertical response data with a sampling frequency of 512 Hz. Additionally, input signal

measurement is obtained using a force transducer, located between the shaker and the structure. This

test is performed with the full set of eleven wireless sensors attached to the truss to ensure that the

mass distribution is identical before and after damage is applied to the system. System transfer

functions are obtained and converted to impulse response functions. The ERA is applied to the

impulse response functions to detect the first five dominant frequencies. The natural frequencies (in

Hz) associated with the first five dominant bending modes of the healthy structure are given in

Table 6. These values are to be used in the java tool that computes the final DLAC values. Note

that these healthy natural frequencies are not obtained using the wireless sensors, and thus some

additional experimental errors are introduced, demonstrating the robustness of the technique. 

Damage is then introduced in the experimental truss by exchanging the indicated members to

validate the proposed distributed SHM system. Impact testing, represented as  in Fig. 11, is

employed to perform the validation by disconnecting the electromagnetic shaker and applying a

hammer strike perpendicular to the longitudinal axis of the truss. Due to malfunctions in the drivers

of the accelerometer, only 6 of the 11 sensors reported acquisition of raw data. The results obtained

by the SHM system are provided in Table 7 and Fig. 13. The results indicate that the highest DLAC

values at the damaged positions. Here it is demonstrated that the approach is able to localize

damage correctly even though modeling errors are present in the frequency change vectors. 

Additional off-line analysis is conducted using the experimental data. Various assumed damage

patterns are used in these off-line studies to evaluate the robustness of the approach. Here,

additional assumed damage levels are considered and the experimentally obtained values for the

healthy and damaged natural frequencies are used for DLAC correlation. Here each analytical

damage scenario is simulated by replacing the set of 6 members in each bay with elements having a

reduced area (see Fig 14). To generate the frequency vectors associated with the damage

δ t( )

Table 6 Experimental healthy natural frequencies

Mode 1 2 3 4 5

Wn 20.65 41.49 64.59 69.41 95.51

Table 7 Identified natural frequencies (Hz)

Mode WS #32 WS #45 WS #67 WS #28 WS #35 WS #75

1 20.2718 20.2795 20.1952 20.1685 20.3122 20.2254

2 41.3708 41.4002 41.2871 41.2315 41.2998 41.2947

3 63.0427 63.1657 63.0138 63.0467 63.1021 63.0198

4 67.7883 67.8858 67.6658 67.6792 67.7284 67.6820

5 94.8858 95.0803 94.8184 94.7336 94.8865 94.8080
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hypotheses, the analytical model is modified by using elements with 25% and 50% reductions in the

elemental cross-sectional areas of damaged members. Because the damage in the experimental

structure is in the third bay, the highest correlation results are expected to be concentrated around to

that position. The DLAC results of this off-line study are shown in Figs. 15 and 16. 

The highest correlation values are concentrated between the first and third bay. Thus, even though

the hypotheses are very different than the actual damage, the damage zone is determined with only

five natural frequencies. The results for the case considering a 25% reduction (Fig. 15) show a

symmetric pattern in the DLAC values corresponding to the three first and three last bays. This

tendency can be explained by the nearly perfect symmetry of the structure. Therefore, DLAC

approach is shown to be capable of detecting the most likely damage zones. Perhaps, if additional

information is needed, this low power approach would be used for detecting damage zones, and a

secondary level of analysis that requires more resources would be used to follow up. 

Fig. 13 DLAC results for truss bay # 3

Fig. 14 Truss finite element model
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Additional analytical studies are performed in this section to validate the robustness of the DLAC

method under different damage locations. A simulation, using the analytical model, is implemented

in MATLAB (MathWorks 2006) to independently analyze two alternate damage positions with

assumed damage levels corresponding to 25% and 50% reductions in the cross-sectional area. An

equally spaced deployment of sensors is assumed in this study where the network of eleven sensor

platforms is positioned along the frontal panel of the truss. The description of the cases considered

is shown in Fig. 17. 

Fig. 15 DLAC results for truss bay # 3 under 25% of area section reduction

Fig. 16 DLAC results for truss bay # 3 under 50% of area section reduction
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The conditions used in the actual experiments are simulated in these numerical studies. Therefore,

a sampling frequency of 560 Hz and corresponding cutoff frequency of 140 Hz are defined for each

sensor to measure vertical acceleration data. Thus, to produce accurate results, the simulation time

step is set to 1/5600sec and resampling is applied to the output to generate raw data sensed at the

appropriate sampling frequency. The input is generated by the use of an impulse function,

represented as  in Fig. 17, to approximate the effect of an impact testing. Physical uncertainties

in the experimental model and data measurement errors involved in a true experiment are also

simulated to produce experimental natural frequencies under more real conditions (Clayton 2006).

Sensor noise is considered, defined as a bandlimited white noise with a magnitude of 10% of the

standard deviation of the output signal. A non-homogeneous distribution of elemental densities and

elastic moduli among the truss members are included to represent modeling errors. The same data

processing is used as in the experimental implementation, involving the curve fitting technique, is

performed over the raw data. Consequently, numerical values for the experimental healthy and

damaged natural frequencies are obtained in a range of 8-10% of the analytical natural frequencies.

A typical acceleration time history and corresponding power spectrum reported by one of the

δ t( )

 Fig. 17 Numerical simulation set up

Fig. 18 Typical acceleration time history and corresponding power spectrum
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sensors is depicted in Fig. 18. Damage is induced under the same conditions and configuration as

the true damage imposed on the truss. Each damage scenario, D1 and D2, is associated with truss

bays # 6 and # 11 respectively, as shown in Fig. 17. Therefore, the highest correlation values are

expected to be concentrated around the sixth and eleventh bay because damage is located at these

positions. 

Results depicted in Fig. 19 and Fig. 20 show the calculated DLAC values. Due to space

limitations, four representative sensor outputs are shown for each damage case (25% damage

assumption- left plot and 50% damage assumption - right plot shown in each figure). The results of

the first case (D1) indicate that structural damage is concentrated between the fourth and sixth bays.

In the second case (D2) the results indicate that structural damage is concentrated between the

Fig. 19 DLAC results for truss bay #6 under 25% and 50 % of area section reduction

Fig. 20 DLAC results for truss bay #11 under 25% and 50% of area section reduction
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eleventh and twelfth bays. Therefore, both results are considered successful because the most likely

damage zones have been detected with very different hypotheses than the actual damage and using

only five natural frequencies. Thus, the results of the numerical studies are consistent with the

experimental studies in detecting damage at different positions. 

4. Conclusions

Damage detection systems based on distributed processing using minimal communication between

smart sensor nodes are necessary to fully exploit the on-board processing capacity offered by smart

sensors. In this study a distributed damage detection system is successfully deployed and

experimentally validated using a smart sensor network. Two experimental structures of different

complexities are tested. Experimental results and off-line analytical studies considering various

damage level hypotheses demonstrated the potential of this system to identify likely damage zones.

A 98.8% reduction in the amount of data transmitted, along with a 64.8% and 70.0% reduction in

latency and energy usage, respectively, is achieved, resulting in a power efficient system. In some

cases where damage localization is all that is needed, this system may operate alone. In other

applications where damage quantification is needed, this system would be implemented as part of a

multi-step procedure where it is followed by a secondary analysis that may require significantly

more power for communication needs. Although it is not a focus of this study, the effects of

temperature should also be considered in future examinations of this algorithm. 
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