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Abstract. Excessive cable vibrations are detrimental to cable-stayed bridges. Increasing the system
damping of cables is a key solution to resolve this severe problem. Equations representing the dynamic
characteristics of an inclined cable with a Deck-Anchored Damper (DAD) or with a Clipped Tuned Mass
Dampers (CTMD) are reviewed. A theoretical comparison on the performance of cable vibration reduction
between the cable-DAD system and the cable-CTMD systems is thoroughly discussed. Optimal system
modal damping for the free vibration and transfer functions for the forced vibration for the two cable-
damper systems are addressed and compared in detail. Design examples for these two different dampers
are also provided.
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1. Introduction

As key load-carrying members of cable-stayed bridges, stay cables are of primary importance to

secure the safety of the entire structure. Since cables are generally flexible, relatively light, and low

energy-dissipative because of their low intrinsic damping, they are susceptible to external

disturbances such as vortex shedding, rain-wind induced vibration, vehicle-induced vibration, and

other excitations due to parametric disturbances caused by the motion of the bridge deck and/or

towers. 

To suppress the problematic cable vibrations, a common practice is to install mechanical dampers

at a distance typically 2-5% of the cable span length from the lower end of the cable, with one end

of the damper connected to the cable and the other end anchored to the bridge deck. This kind of

damper is called deck-anchored damper (DAD) hereafter in this study and its calculation model is

shown in Fig. 1(a) that will be discussed later. A lot of research effort has been exerted on DAD

system (Pacheco et al. 1993, Yu and Xu 1998, Xu and Yu 1998, Main and Jones 2002, Johnson et al.
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2003). As a device of semi-active control, Magnetorheological (MR) dampers have recently been

used as DAD for a few bridges in China because of their advantages over other traditional

mechanical dampers, such as the adjustable large damping force, mechanical simplicity, reliability,

and minimum power requirement (Chen et al. 2003). However, DADs might not be the most

effective ones (especially for long cables) because their positions are restricted to the cable end due

to the reasons of esthetics and installation issues (Pacheco et al. 1993, Cai et al. 2007). 

To reduce cable vibrations, Tuned Mass Dampers (TMD) was proposed in previous studies where

TMDs can be hung anywhere along the cables to overcome the shortcomings of position restriction

of the DAD (Tabatabai and Mehrabi 1999). It is well-known that the effectiveness of TMDs

depends on and is sensitive to the tuning of the TMD vibration frequency to the cable vibration

frequency. In a complicated system it is difficult to predict which mode will be active and what the

exact cable vibration frequency is because of the existence of various uncertainties. TMDs with self-

adjusting function on its own frequency, such as a TMD-MR damper (Wu and Cai 2006) or other

TMDs with variable stiffness will have a broader implementation potential than the traditional

TMDs (such as Stockbridge damper). Cai et al. (2007) have introduced a MR based TMD that can

be clipped anywhere along the cable and can be simplified as a TMD in the calculation model. This

clipped TMD is defined as CTMD hereafter in this study and its calculation model is shown in

Fig. 1(b) that will be discussed later. They conducted a parametric study on the modal damping of

the cable-CTMD system and discussed the influence of different parameters on the effectiveness of

the CTMD, represented by the system modal damping. 

A comprehensive comparison of the effectiveness of cable vibration reduction between the DAD

and CTMD systems is not available in the literature. The current study is to provide some

information on this point to aid a deeper understanding of the suitable application conditions for

these two types of dampers. Since the out-of-plane vibration of a cable with and without dampers

performs the same as a taut cable (Xu and Yu 1998), in this study a comparison in terms of transfer

functions and modal damping is focused on the performance of the planar in-plane vibration. 

2. Inclined cable with dampers

The present study concerns the planar vibration of an inclined cable with a DAD or CTMD, as

shown in Fig. 1. Derivations of both forced vibrations and free vibrations are briefly described

below. The former is used to derive the transfer function, while the latter is for the system modal

damping. 

The viscous DAD is modeled as a dashpot with a damping coefficient Cv anchored to the bridge

deck. The DAD is assumed perpendicular to the cable chord for the optimal placement (Xu and Yu

1998). The CTMD (specifically MR-based TMD here) is modeled as an equivalent system

consisting of a variable spring K, a dashpot with an adjustable damping coefficient C, and a mass M

(Wu and Cai 2006). The damping coefficient C represents the equivalent damping of the MR

damper that can be obtained by a linearization process (Li et al. 2000). Therefore, the TMD-MR

damper is simplified as TMD. Similarly, the CTMD is also perpendicular to the cable chord. As

shown in Fig. 1, the damper divides the cable into two segments, with the length indicated in the

figure. The notation without subscript will be used to represent either segment and applicable for

systems with different dampers. The notation of the cable-DAD system is similar to that of the

cable-CTMD damper system, with a subscription of ‘v’ to indicate the viscous DAD. The other
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notations are self-explaining. 

The detailed derivation for such a cable-CTMD configuration was given by Cai et al. (2006). The

derivation for a cable-DAD configuration can be found in Yu and Xu (1998). However, the

important equations and the derivation are summarized here for the convenience of readers. The

equation of motion for the cable segment can be expressed as 

(1)

where fy is the distributed cable force in the y direction; H is the constant horizontal component of

the cable tension force; θ is the inclined cable angle measured from the horizontal axis; v is the

cable dynamic displacement component in the y coordinate measured from the static equilibrium

position of the cable; m and c are the distributed cable mass and damping coefficient per unit

length, respectively; and t is the time. The notation  and  denotes the

derivative and partial derivative of “ ” with respect to “ ”, respectively. 

A parabolic static profile is chosen by neglecting higher orders of a small quantity ε where ε = 

cos(θ) << 1 is the ratio of the cable weight to the tension force. The compatibility equation can be

obtained, considering the additional deformation caused by the vibration-induced tension force

(2)

where E is the Young’s modulus of the cable; A is the area of the cable cross section; and h is
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Fig. 1 Calculation model: (a) Inclined cable with a DAD, (b) Inclined cable with a CTMD 
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defined as the component of the dynamic tension force along the x ordinate.

The cable equation can be analytically solved for some specific loadings such as ,

leading to the following solution

, (3)

where vd is the cable displacement where the damper is located and β is defined as

.  indicates the cable segment number shown in Fig. 1. The complex

variable s can be viewed similar to an angular frequency, which represents the vibration

characteristics. Terms with a tilde represent that they are functions of the position only.

The damper provides a damping force to the cable, which can be expressed in Eqs. (4) and (5) for

a DAD and a CTMD, respectively,

(4)

(5)

The equilibrium of the CTMD itself should also be counted in, as 

(6)

With further derivation from the previous simultaneous equations, the eigenvalue equation

governing the free vibration problem of the cable-DAD system can be obtained from Eqs. (2)-(4)

with  as 

(7)

where , , and .  is the

fundamental angular frequency for a taut cable, and λ2 is proportional to the ratio of the cable axial

stiffness to the cable geometry stiffness and thus called the cable geometry-elasticity parameter

hereafter 

(8)

Similarly, the governing equation for the free vibration problem of the cable-CTMD system can
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 (9)

where mr = M/ml is the mass ratio between the CTMD, η is the damper damping ratio, and the

cable and ρ is the frequency ratio of the CTMD and the taut cable, and simply called frequency

ratio hereafter.

The simultaneous equations for the cable-DAD system on the forced vibration problem with an

evenly distributed force in the form of  are listed below, which can be obtained from

Eqs. (2)-(4). 

(10-a)

 (10-b)

Similarly, the equations for the forced vibration of the cable-CTMD system can be found in Cai

et al. (2006), or simply by changing the term 2πξ in Eq. (10-a) to the corresponding term for the

CTMD damper. 

3. Comparison on achievable system modal damping

The first five modal damping is compared between the cable-DAD system and the cable-CTMD

system. Note that since the installation of the CTMD damper adds one more degree of freedom to

the cable-CTMD system (i.e., one mode splits into two modes), only the cable related mode is

compared. The cable related mode is defined as the one with a smaller ratio of the CTMD modal

amplitude and the cable modal amplitude at the damper location. The other mode is defined as the

damper related mode or the zero-th mode since it is an extra mode due to the addition of the

CTMD. Both modes have equal importance for the cable-CTMD system (Wu and Cai 2006). 

Irvine (1981) predicted that the nth frequency crossover occurs when the cable geometry-elasticity

parameter
 

λ2 reaches (2πn)2 for a horizontal cable. Triantafyllou (1984) held the opinion that a

frequency-avoidance replaces the frequency crossover when the geometry-elasticity parameter λ2 is

equal to (2πn)2 for an inclined cable. Cables with different λ2 values are considered in this study by

varying the cable forces to investigate the damper performance with different λ2. These considered

λ2 values are: 0.012, 6.19, 39.88, and 49.54 that corresponds to far less than, less than, close to, and

larger than the first frequency crossover point (2π)2 = 39.48. 

Though a DAD can perform better when its location moves toward the mid-span, a damper
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position more than 5% of the cable length away from the cable end is deemed impractical.

Therefore, only two damper locations, 0.02l and 0.05l from the lower cable end, are considered to

reveal the variation trends of the system damping due to the change of the geometry-elasticity

parameter λ2, the damper location r1v, and the damping ratio ξ. The mass ratio mr for the cable-

CTMD system is chosen as 0.02, as commonly used in practice for TMD type of device. The

tuning of the CTMD frequency to that of the cable is chosen as , where the ωd and ωc1

are the CTMD frequency and the cable fundamental frequency, respectively.

Fig. 2 displays the relationship between the normalized damper damping ratio and the system

modal damping for the cable-DAD systems with four different λ2 values discussed earlier. The

damper is placed at 0.02l from the lower cable end. Figs. 2(a) and 2(b) are similar to Pacheco’s

results (Pacheco et al. 1993). Fig. 2(a) shows the so-called universal modal damping curves. It can

be seen that for a cable with a small λ2 value (corresponding to a very large tension force in the

cable), when the system modal damping is plotted against ξir1v, i.e., the multiplication of the

damper damping ratio ξ, the mode number i, and the damper location parameter r1v, the curves for

the first five modes are very close. Fig. 2(b) shows that when the λ2 value increases due to the

decrease of the cable force, the curve for the first modal damping moves down. However, the other

four modal damping curves almost do not change. 

With a further increase of the λ2 value to 39.88 that is slightly larger than the first frequency

crossover point (39.48), several modal damping curves are considerably affected as shown in

ωd/ωc1 1=

Fig. 2 Variations of system modal damping with DAD damping (r1=0.02): (a) λ2 = 0.012, (b) λ2 = 6.19, (c)
λ2 = 39.88, (d) λ2 = 49.54.
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Fig. 2(c). The first modal damping curve ascends back to the same level as in Fig. 2(a) with the

optimal damping ratio shifting towards the left in the x-axis. The second modal damping curve

becomes close to zero, and the third modal damping curve drops down. With a further increase of

the λ2 value to 49.54 in Fig. 2(d), the second modal damping curve begins to rise a little bit, the

third modal damping curve lowers down more, and the other curves remain without noticeable

change. 

Fig. 3 shows the change of the modal damping curves affected by the geometry-elasticity

parameter for each mode. In Fig. 3(a) the first modal damping curve decreases when the λ2 value

increases from 0.012 (a taut cable) to 6.19. After it reaches 39.88 that is beyond the first frequency

crossover point (39.48), the modal damping comes back almost to the same optimal modal damping

level of a taut cable, and remains unchanged afterwards for a further increase of λ2 to 49.54. In

Fig. 3(b) the second modal damping curve stays unvaried before the λ2 value reaches the first

frequency crossover point (λ2 changes from 0.012 to 6.19), becomes zero at the crossover point. In

Fig. 3(c) the third modal damping curve continues to decrease when the λ2 value increases while in

Fig. 3(d) the fourth modal damping curve does not vary much, when the λ2 value changes in the

considered range. 

These observations can be explained with the mode exchange rule occurred at the frequency

crossover point. Irvine (1981) pointed out that at the first frequency crossover point, the first and

second modes exchange. As Xu and Yu (1998) discussed, before the frequency crossover occurs the

Fig. 3 Variations of system modal damping with DAD damping (r1 = 0.02): (a) first mode, (b) second mode,
(c) third mode, (d) fourth mode 
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modal shape ordinate close to the cable end of the first symmetric mode entails for the cable a very

small motion over there, thus causing a small first modal damping. However, after the frequency

crossover occurs, the first and second mode exchange occurs and all the mode-related properties

exchange accordingly. Therefore, the descending first modal damping curve rises back to the

original height (the first mode becomes the second one), and the unmoved second modal damping

curve drops dramatically at that point (the second mode becomes the first one). Since the λ2 value

considered is far below the second frequency crossover point, there is no mode exchange between

the modes 3 and 4 and the fourth modal damping curve is not influenced by the considered λ2

values. 

Presented in Fig. 4 is the variation of the system modal damping versus the DAD damping ratio

when the damper is located at the 0.05l from the cable end, while the λ2 value (0.012) is the same

as in Fig. 2(a). The maximum modal damping in Fig. 4 increases from 0.01 in Fig. 2(a) to around

0.025-0.03 in this figure, which is not proportional to the damper location as observed in the

universal curve (Pacheco 1993). The five curves separate and the higher modes attain larger optimal

system modal damping while in Fig. 2(a), they overlap each other and have the same universal

damping curve. Therefore, the universal modal damping curve is only eligible for the design of

DADs located very close to the cable end to mitigate cable vibration with a small λ2 value. In other

words, the curves may not be universal any more once the damper moves more towards the mid-

span. The comparison results for the damper located at 0.02l and 0.05l for cables with other λ2

values are similar and therefore, are not shown here. 

Fig. 5 shows the relationship between the system modal damping and the CTMD damping ratio

for the cable-CTMD system for four different λ2 values discussed earlier with a damper location

parameter r1 = 0.25, i.e., at quarter span (There is no position restriction for CTMD). The modal

damping curve of the damper related mode is not plotted because it cannot fit nicely in the figure

due to its too large value compared with the others. All five curves separate from each other in

Fig. 5(a), unlike Fig. 2(a). With the CTMD frequency turned to the first mode, the peak modal

damping for the first mode achieved by the CTMD is almost 5 times of that achieved by the DAD,

as shown in Fig. 2(a). Actually, over a large range of damper damping ratio η, the cable-CTMD

system has achieved a higher system modal damping than the cable-DAD system located at either

0.02l or 0.05l from the cable end. Even the modal damping of the second mode for the cable-

CTMD system is larger than the maximum modal damping of the cable-DAD system shown in

Fig. 4 The modal damping for a DAD at r1 = 0.05 with λ2 = 0.012 
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Fig. 2(a) for a considerable range.

However, the peak modal damping for the cable-DAD system is less sensitive in terms of the

damper coefficient compared to the cable-CTMD system. The half-value bandwidth of the damper

coefficient is defined for this comparison. If Ca and Cb (or their proportional counterparts) are the

damper coefficients that correspond to the two points where the amplitude of the modal damping ζ

is half of the peak modal damping, then the magnitude of the term  is defined as the half-

value bandwidth of the damper coefficient. This concept can be used to check the sensitivity of the

optimal damper damping coefficient. The half-value bandwidth calculated from the first modal

damping curve for the DAD is about 11288 N.s/m, while it is 2.26 N.s/m for the CTMD damper.

This indicates that though the CTMD damper can provide better performance and save material, it

needs a more accurate design since it has a narrower half-value bandwidth.

As shown in Fig. 5, when the λ2 value increases, the maximum first modal damping of the cable-

CTMD system increases, indicating that CTMD can provide more damping for flexible cables,

which is opposite to that of the cable-DAD system, as shown in Fig. 3(a). The half-value bandwidth

of the first modal damping curve increases from 2.26 to 4.37 N.s/m for the cable-CTMD system

when the λ2 value increases from 0.012 to 39.88, as shown in Fig. 5(c). However, the half-value

bandwidth for the cable-DAD system decreases from 11288 N.s/m to 5855 N.s/m, as shown in

Fig. 3(a). 

Cb Ca–

Fig. 5 Variations of modal damping with the damping ratio of a CTMD for four cables: (a) λ2 = 0.012,
(b) λ2 = 6.19, (c) λ2 = 39.88, (d) λ2 = 49.54 
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Fig. 5(c) also shows the effect of the mode exchange on the system modal damping. When the

CTMD damping ratio reaches a certain value (0.1 in this case), mode exchange occurs between the

second and zero-th modes. After the mode exchange, the second modal damping becomes zero,

while the zero-th modal damping continues the track for the second mode (not shown since it

cannot be fit nicely in this figure). 

Actually, at the vicinity of the frequency crossover point, there is a complex interaction between

the first two cable frequencies and the damper frequency tuned to the first cable mode. Near the

frequency crossover point, the three frequencies are so close that either two of them may exchange.

A more complicated mode exchange phenomenon occurs in Fig. 5(d). Therefore, cables with λ2

value close to the frequency crossover point are not recommended because of the uncertainty and

unpredictability. In this range, neither the DAD nor the CTMD damper can guarantee a good

performance in a predictable way. In practice, 90% of the stay cables have a λ2 value in the range

of 0.008-1.08 based on the database of stay cables established by Tabatabai et al. (1998), which are

far less than the frequency crossover point (λ2 = 39.48). 

The third modal damping curve increases slowly when the λ2 value increases and is much lower

compared to the first two modal damping curves. The fourth system modal damping curve is always

zero since the quarter-span length point where the CTMD is located is a node for the fourth mode. 

4. Comparison on transfer function

To evaluate the performance of the dampers, in addition to the system modal damping based on

free vibrations, the reduction of the cable resonant response to forced vibrations is also investigated.

In the current study, mitigation of the first modal vibration is considered. Since cables with

geometry-elasticity parameters close to and larger than the frequency crossover point are not

recommended as discussed earlier, the cable with only two λ2 values (0.012 and 6.19) less than the

first frequency crossover point are considered in this section. A small distributed damping c of

0.493 N.s/m2 for the cable is chosen for the pure cable without dampers to avoid the divergent

resonant response. 

Pacheco et al. (193) and Xu and Yu (1998) pointed out that a viscous DAD provides more

achievable damping for the cable-damper system for the first five modes when the damper location

moves toward the mid-span (This is also observed by comparing Fig. 2(a) and Fig. 4 in this paper).

The damper location considered in their study is up to 0.10l from the lower cable end, which is

beyond the implementation restriction and more of theoretical interest. Therefore, the optimal

location in the current study for a viscous DAD is selected as a practical 0.05l, perhaps the furthest

practically possible location in applications. The viscous DAD that can provide maximum modal

damping for a free vibration may not be exactly the same one to achieve the best forced vibration

reduction, but they should be close. Therefore, the optimal viscous DAD for the free vibration is

taken as the initial guess and may be updated if a better one is found using a search step of 0.01 of

the damper damping ratio in its vicinity. 

For the CTMD damper, the optimal tuning frequency is obtained by a trial-and-error process with

a 0.01 step length of the tuning ratio (the CTMD frequency to the fundamental cable frequency

) and the same step size for the damper damping ratio η. The mass ratio of the CTMD

damper to the cable is chosen as 0.02. Two different CTMD damper locations, i.e., at the mid-span

and quarter-span cable length, are chosen to achieve a best first modal reduction and an overall

ωd/ωc1
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reduction for all modes, separately. 

Fig. 6(a) shows the transfer function for the pure cable and the cable with dampers for the case of

λ2 = 0.012. There is no peak response associated with the second cable mode in this figure (near

Ws /Wcl = 2) since it cannot be excited by the evenly distributed force. The optimal damper damping

ratio for the DAD is  and a reduction ratio of  that is defined as the ratio of

the maximum displacement at the middle point of the cable with the damper to that without the

damper. The optimal reduction ratio for the cable-CTMD damper system is achieved as

 with a tuning ratio of  and a damper damping ratio of . In

this case the two supposed peaks for the cable-CTMD damper system are close, and thus appear

like one with a broader range (near Ws /Wcl = 1). Therefore, the optimal vibration by installing the

CTMD damper is another 58.1% less than that by using the DAD. For the third mode, (near Ws /

Wcl = 3) the DAD provides a much better reduction than the CTMD damper since only the first

mode is targeted in the CTMD tuning design. Since the vibration of the third mode is already very

small, it is not important to reduce this vibration. The comparison for the CTMD damper at the

quarter-span of the cable length and the DAD is similar and is shown in Fig. 5(b). Data for both

cases are summarized in Table 1. The comparison results for the cable with a λ2 value of 6.19 are

similar to that with a λ2 value of 0.012, which are also summarized in Table 1.

ξ 1.05= rred 0.185=

rred 0.0776= ωd/ωc1 0.96= η 0.15=

Fig. 6 Transfer function comparison: (a) CTMD damper at mid-span, (b) CTMD damper at quarter-span cable
length

Table 1 Comparison of cable vibration reduction between DAD and CTMD for the first mode 

Cable
CTMD 
location

CTMD DAD r1 = 0.05

Damping ratio 
(η)

Tuning
 frequency 
(ωd /ωc1)

Optimal 
reduction

 (rred)

Damping 
ratio
 (ξ)

Optimal 
reduction

 (rred)

λ2 = 0.012
Mid-span 0.15 0.96 0.0776

1.05 0.185
Quarter-span 0.15 1.00 0.1495

λ2 = 6.19
Mid-span 0.17 0.96 0.0677

0.85 0.2936
Quarter-span 0.15 1.01 0.1259
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5. Comparison of damper design

The design of viscous DAD for a taut cable using a universal damping curve was proposed by

Pacheco et al. (1993). A similar approach of a CTMD damper design for cables can be found in

Wu and Cai (2006). A brief summary and comparison between the designs of these two dampers

for a taut cable are introduced here for demonstration purposes, based on the example used by Wu

and Cai (2006). Assuming that the intrinsic cable damping is conservatively ignored and additional

damping is needed to suppress the so-called rain-wind induced cable vibrations that have become

serious for many cable-stayed bridges. Other cable properties are listed in Table 2. Damper designs

for cables with larger λ2 values need more information and effort, but they can follow the same

procedure.

Irwin (1997) proposed the following criterion to control the rain-wind induced cable vibrations

 (11)

where Sc is the Scruton number; ρ is the mass density of air; D is the outside diameter of the cable;

and α is the limiting value for Scruton number. The above relationship can be rewritten as

(12)

where the mass parameter µ is defined as . Therefore, to meet the above stated

criterion, the damping ratio of the cable needs to meet the requirement of Eq. (12). Based on

available test results, Irwin proposed a minimum α value of 10.

Since the mass parameter µ can be calculated as , the demanded system

modal damping is determined from Eq. (12) as

(13)

5.1 Design of viscous DAD

To design a viscous DAD located at 0.02l, the damper coefficient of the viscous DAD can be

designed using Fig. 2(a). Based on this figure, values of ξir1v from 0.032 to 0.32 (from that the

corresponding ξ can be calculated) will satisfy Eq. (13) and the corresponding damper coefficient is

calculated as 

 = 240388 to 2403885 N.s/m (14)

The optimal DAD damping coefficient that corresponds to the maximum system modal damping

ratio is obtained as 901457 N.s/m that falls in the feasible range 240388 to 2403885 N.s/m.

Sc
mζ

ρD
2

--------- α≥=

ζ
αρD

2

m
-------------≥ α

µ
---=

µ m/ ρD
2( )=

µ m/ ρD
2( ) 1747= =

ζ1 α/µ≥ 10/1747 0.0057 0.57%= = =

Cv 2mlw0ξ 2 114.09× 93× 7.08× ξ×= =

Table 2 Properties of the example cable 

m (kg·m-1) l (m) T (N) p (kg/m3) D (m) ωc1 (sec-1)

114.09 93 5.017*106 1.29 0.225 7.08
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5.2 Design of CTMD

Suppose the CTMD is placed at the quarter-span cable length. The mass ratio of the CTMD

chosen as 2% as in common practice, from which the mass of the damper is determined as

 (15)

The frequency tuning ratio is then chosen approximately as  for simplicity, though a

optimal tuning may achieve a little bit higher system modal damping. The stiffness of the CTMD

damper can thus be determined as

(16)

where  is the fundamental frequency for a taut cable. Then Fig. 5(a) can be referred

to and η = 0.012 to 0.83 can be chosen to satisfy Eq. (13) with an optimal damping ratio at 0.14,

which corresponds to a damper coefficient of 420.7 N.s/m. 

From the procedure stated above, the design effort is similar for these two dampers. The damping

required for the cable-CTMD system is less than that for the cable-DAD system. Therefore, to

achieve the same system modal damping for the fist mode, the damper required for the CTMD

system is smaller than that for the DAD system. However, as discussed earlier, the DAD can cover

wide frequency range.

6. Conclusions 

A comparative study between the characteristics of the cable-DAD system and the cable-CTMD

system is presented through an analytical approach. From this study, the following conclusions can

be drawn:

1. The system modal damping depends on the cable geometry-elasticity parameter λ2 for both the

cable-DAD system and the cable-CTMD damper system. For both systems, modal exchange

occurs at the frequency crossover point and the modal performance becomes sensitive and

unpredictable. However, actual cables of cable-stayed bridges are far away from the condition

of frequency crossover; thus frequency crossover is not a concern for cable-stayed bridges.

2. For the comparison between an optimal viscous DAD located at 0.05l from the cable end and

an optimal CTMD damper located at quarter-span cable length or mid-span with a 0.02 mass

ratio, the CTMD damper can provide better vibration reduction to the targeted first mode and

needs a smaller damper. However, it needs a more accurate design since its reduction effect is

more sensitive to the damper’s damping ratio. 

3. The viscous DAD is effective for more modes at the same time, while the CTMD damper is

more focused to the targeted mode. It may need multiple CTMD dampers to reduce vibrations

for several modes. 

4. The design procedure to mitigate the rain-wind induced cable vibration with a viscous DAD

and a CTMD damper are similar. All the damper parameters can be obtained according to the

demanded system modal damping calculated based on the Scruton number requirement. 

M 2% l× m× 0.02 93× 114.09× 212.2 kg= = =

ωd/ωc1 1.0=

K M
π

l
---

T

m
----⎝ ⎠

⎛ ⎞
2

212.2
3.14159

93
-------------------

5.017 10
6×

114.09
--------------------------⎝ ⎠

⎛ ⎞
2

10648.2 N/m=×= =

ωc1 π/l T/m=
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