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1. Introduction

Self-anchored suspension bridge provides an appealing architectural presence, and seems to

become a symbol of the cities. Similar to conventional suspension bridges, self-anchored suspension

bridges perform highly geometrically nonlinear behavior before attaining their equilibrium

configuration during their construction. 

One of the fundamental targets that engineers concern about in designing of a self-anchored

suspension bridge is to determine the configuration of main cables. Analytical method has been

utilized to search for the configuration of main cables of traditional earth-anchored suspension

bridges. However, as for the self-anchored suspension bridges, analytical method on simulating the

construction process is more complicated for the reason that the anchored points of the main cables

at the ends of the stiffening girder will move under the action of horizontal component of cable

force. 

At present, most of the methods, which are used to analyze suspension bridges, are the

discretization methods based on finite element theories or balance iteration method. Kim and Lee

proposed 3-D elastic catenary element, which also requires balance iteration procedure. Tan and

Zhang (2006) derived an analytical method for main cable configuration of two-tower, three-span

symmetrical self-anchored suspension bridges. Further investigating this method, if the bridge is a

two-span, single-tower unsymmetrical structure, the equations of the main span cable is different

and more complicated. This paper proposes two displacement compatible equations by considering

of the compressed deformation of the main girder and the tower, and then describes an analytical

method for cable configuration of self-anchored suspension bridges.

The proposed method does not need discretization as the F. E. method. Fewer design parameters,

such as spans, sags, properties of cables, characters of stiffening girders and towers are needed in

calculation. And then the results, such as unstressed cable length, saddle and anchor displacement,

can be calculated rapidly. This method is highly efficient, so that it takes only a few minutes from

data preparation to solving out of all the results.
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2. Analytical method for main cable configuration

2.1 Equations of the main cable

The equations of the main cables are based on the following assumptions: (1) The dead load is

uniform and is carried by the cable alone. Therefore, under dead load alone the cable assumes a

parabolic shape. (2) The cables are assumed to be perfectly flexible and not to undergo pressure and

bending. (3) Hooke’s law is applicable to the cable material. (4) The cross section of stiffening

girder is isometric. (5) The hangers are continuously distributed.

The configuration of the main cable depends on the dead load that the main cable undergoes. In

the final state, the equations of the main cables can be written as

  (1)

where l1 and l2 are the lengths of main span and side span respectively, f1 and f2 the sags of main

span cable and side span cable respectively, c the height of the tower. Suppose that the horizontal

component of the main span cable force equals that of the side span, we have . In the

following paper, i = 1, 2 indicates the main span and the side span conditions respectively except for

special statements.

In the initial state, the equations of main cables can be expressed as

 (2)

In these equations, H0 is the horizontal component of the cable force produced by self-weight, q

the weight per unit length of the cables.

2.2 The length of main cable

The length of main cable can be obtained by the arc length integral formula. The expression for

the cable length in the final state and under self-weight can be obtained respectively as
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(3)

(4)

2.3 The deformation compatible equations of main cable and the solution

Calculating the elastic deformation of the main cables that occurs during their erection, we have

(5)

(6)

Where w is the total dead load per unit length along spans which supported by the main cables in

the final state, H the horizontal component of the cable force produced by total dead loads; ∆s1 and

∆s2 are the elastic deformation of the main span cable and the side span cable respectively. E

represents the elastic modular and A represents the cross sectional area of the main cables. The ng
equals 0 or 1 represents the unstressed cable length or the cable length under self-weighted state.

Since the deformation of the main cable can be calculated by the cable length of final state minus

that of self-weighted state, the deformation compatible equation can be given as

(7)

The saddle displacement and the displacement of the anchored points for the main girder are

denoted by d1, d2 and d3 respectively. Relationships for them are as the follows 

, (8)

, (9)

(10)

Where, AB represents the cross sectional area and EB represents the elastic modular of the girder

respectively. c0 and c are the initial height and the design height of the tower respectively, ∆c the

deformation of the tower. Eqs. (7) to (10) are called the deformation compatible equations.

When solving these equations, at first, get the horizontal component of the cable force by Eq. (6).

Then calculate the vertical displacement of the tower and horizontal displacement of the anchorages

by Eqs. (10), and (9). The horizontal component of cable force H0, and d1, the pre-displacement of

saddles are independent variables. H0 and d1 can be obtained by Eq. (7) with putting other equations
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into them. Solve the initial cable length of the main span  and side span . Finally, Eqs. (1) and

(2) show the main cable configuration of final state and self-weighted state respectively. When H0

in Eq. (5) is 0, the unstressed length of the main cable can be obtained. 

3. Example

The LinFen Yingbin Bridge is a single-tower, two-span, asymmetrical concrete self-anchored

suspension bridge with its main span of 70 m and side span of 25 m. Table 1 shows the parameters

of this bridge. Table 2 shows the contrast of unstressed length obtained by the analytical method

and finite element method. 

The results of these two methods are closed, but the analytical method is much simpler and

efficient. 

In the analytical method, no F. E. model is needed. With predefining the essential parameters,

such as spans, sags, properties of cables, characters of stiffening girders and towers, the cable

configuration equations could be established, as well as the deformation compatible equations. The

initial and final configuration of the cable, the unstrained cable length, and saddle displacement

could be obtained rapidly by solving these equations. This method is highly efficient, so that it takes

only a few minutes from data preparation to solving out of all the results.
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Table 1 Structural parameters of the Yingbin Bridge

A (m2) I (m4) E (N/m2) w (kN/m)

Main cable 0. 092278 × 2 0 1.9 × 1011 9.346 × 2

Stiffening girder 17.75 12.60 3.5 × 1011 536.99

Hangers 0.002809 × 2 0 1.9 × 1011 0.776

Tower 6.3 × 2 4.725 × 2 3.5 × 1010 157.5 × 2

Table 2 Comparison between the analytical method and F. E. M.

S0 (m) S1
0 (m) Displacement of saddles (m)

Finite element method 67.124 31.585 0.067

Analytical method 67.189 31.584 0.070

Errors 0.065 −0.001 0.003




