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Abstract. As it is known, laminated composite materials are increasingly used in many technological
applications, and in some instance, cutouts must be made into laminated panels for practical reasons,
changing the stress distribution. The present study deals with the determination of the stress concentration
factor that holes of square shape cause in an orthotropic plate subjected to distributed in – plane loading.
Square holes of rounded corners in a rectangular plate are considered, and the effect of different
combinations of axial and tangential forces applied to its middle plane at the external edges, is studied.
The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many
different directions referred to the sides of the plate. Numerical experiments by means of a finite element
code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate
and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable
behavior. 

Keywords: stress concentration; S.C.F.; orthotropic plates; plane stress; finite element method.

1. Introduction

Scientific and technological requirements have incremented the need of use of new materials and

in some cases rather “unbelievable” constitutive parameters are attained1.

Orthotropic materials constitute a rather simple but common situation in modern technology

where composite materials are increasingly used. Moreover metals as steel, aluminium, etc., can

acquire orthotropic characteristics due to the manufacturing procedures.

In some cases, different cutout shapes in thin panels are performed to provide access to other

parts of the structure, passage of ducts or electrical cables, etc.

It is known that the presence of a cutout in a stressed member creates highly localized stresses

around the hole, the ratio of the maximum stress at the hole edge to the nominal stress of the solid

1This is the case, for instance, of auxetic materials (used in bioengineering applications) where Poisson’s ratio
is negative.
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plate is called stress concentration factor (S.C.F.).

A paradigmatic case in the field was solved by Kirsch (1898) over one hundred years ago, for

isotropic plates.

Design engineers can find a great amount of information in the open literature on stress

concentration factor in isotropic plates (Pilkey 1997), but there is a rather limited amount in the case

of orthotropic plates with holes, and in general mainly referred to infinite plates.

Lekhnitskii (1968) has developed an analytic approach for the subject matter and obtained a

limited amount of data.

Additional analytical studies have been developed later on.

Among them one can mention the following papers:

Hufenbach et al. (1990) obtained an analytical solution for stress and displacement field around

an elliptical hole in an anisotropic plate. Ukadgaonker and Awasare (1994) used the superposition

principle to obtain explicit mathematical solutions for various regular shapes of holes.

Wu and Mu (2003) investigated the SCF for orthotropic cylindrical shells with circular cutout.

As it is an important subject in Mining Engineering, it is worthwhile of mentioned the papers of

Park and Kim (2006) and Sharan (2007).

In general, numerical (Hüsnü and Alaattin 2000, Rezaeepazhand and Jafari 2005, Susca et al

2006, Shrestha and Ohga 2006) or experimental techniques (Amer and Schadler 1997, Toubal et al.

2005) must be used in order to determine SCF in composite plates. 

In this paper a general approach is used to analyze a rectangular plate made of an orthotropic

material with a small square hole with rounded corners subjected to in-plane axial and tangential

loading applied at the edges. The orientations of the constitutive axes 1 and 2 were varied with

respect to the plate sides and loading directions. These relative positions are denoted with the angle

θ (Fig. 1).

The geometry of the cutout is illustrated in Fig. 2. The calculations have been performed using a

well-known finite element code (Algor 2007) and exhibit excellent agreement for particular cases

with the analytical solution proposed by Lekhnitskii (1968).

Fig. 1 System under consideration Fig. 2 Square hole with rounded corners considered:
r/a = 0.22, c/a = 0.56 
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2. Basic theoretical formulation

As it is well known, in the case of plane state of stress and in the absence of body forces, (Maiz

et al. 2004), the problem in Cartesian coordinates x, y, is governed by:

a) Equilibrium equations

(1a)

(1b)

where  are the normal components and  are the shear components of the stress

tensor.

b) Constitutive equations

When the elasticity axes coincide with the coordinate axes 

(2a)

(2b)

(2c)

where  are the corresponding Young’s moduli along the principal directions of elasticity 1 and

2,  are the Poisson’s ratios; G12 is the shear modulus and  are the strains in the

Cartesian system.

The following relation between the Young’s moduli and the Poisson ratios exists: 

due to the symmetry of Eq. (2).

Obviously, when the directions of elasticity 1, 2 do not coincide with the directions x, y,

expressions (2) are more complicated.

 

c) Strain - Displacement relations

(3a,b,c)

where u, v are the displacements in directions x, y.

d) Compatibility condition

(4)

Substituting Eq. (2) in Eq. (4) yields the compatibility equation in terms of the components of the

stress tensor.
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(5)

Finally, the calculated stresses and/or displacements must satisfy the prescribed boundary

conditions.

3. Finite element modeling

A commercial finite element code, available for every designer, was used to perform the

numerical experiments presented in this paper.

As it is known, an important point in the process of obtaining accurate values is the design of the

mesh of the elements.

In order to optimize the mesh design, the fulfillment of the boundary condition was chosen as

optimization parameter, particularly the null value of the normal component stress perpendicular to

the edge of the hole.

Quadrangular and triangular conformal elements with four and three nodes respectively are

combined. Those elements possess two degrees of freedom at each node and are suitable for the

plane stress problem.

Trial runs were made to select the proper net of finite elements for each problem. 

As a general rule, obviously the density of the mesh is strongly increased in the proximities of the

cutout where stress gradient is higher.

In particular around the corners, concentric circumferences and radial lines construct quadrangular

elements.

The distance between circumferences increases gradually with the ratio in order to obtain

trapeziums of regular shape.

The density of elements diminishes towards the center of the sides of the rectangle where the

stress gradient is lower. The transition was made with three node elements. 

Far away from the hole, the stress field is not affected significatively, so the mesh density

decreases strongly. 

Fig. 3 shows schematically the selected mesh for the problem.
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Fig. 3 Mesh details near the edge of the hole
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4. Numerical and graphical results

The procedure was verified comparing for the analytical approximated solution proposed by

Lekhnitskii (1968). He considered a rectangular infinite orthotropic plate with the principle

directions of elasticity parallel to its sides.

The plate is weakened at its center by a small opening, the contour of which is described by the

parametric equation 

(6)

where axes x and y are parallel to the sides, 0 < c ≤ 1 and m is an integer.

For certain values of the parameters included, the opening differs slightly from a square with

rounded corners.

Lekhnitskii solved the problem for a square hole  in an orthotropic plate

subjected to tension by forces p which are uniformly distributed on two opposite sides (Fig. 4).

The orthotropic material chosen by Lekhnitskii is defined by:

He studied cases both of tension in direction of the largest Young’s modulus (Ex = Emax) and the

smallest (Ex = Emin) respectively.

In Table 1 a comparison is made with the results obtained in the present study. 

x r cos α( ) εcos mα( )+[ ]=

y r csin α( ) εsin mα( )–[ ]=

m 3= c 1= ε 1/9–=, ,[ ]

E1 1.2 10
5 kg

cm
2

---------; E2 0.6 10
5 kg

cm
2

---------; G12 0.07 10
5 kg

cm
2

---------; ν1 0.071====

Fig. 4 Infinite orthotropic plate under uniaxial tension studied by Lekhnitskii

Table 1 Stress concentration factors at contour points of a square opening in an orthotropic plate under axial
tension 

Point
Ex = Emáx Ex = Emin

Lekhnitskii Present Study Lekhnitskii Present Study

A −0.57 p −0.58 p −1.11 p −1.11 p

B 2.60 p 2.57 p 2.22 p 2.21 p

C 0.83 p 0.71 p 1.28 p 1.11 p



554 D.V. Bambill, C.A. Rossit and A. Susca

A, B and C are selected points at the contour of the hole (Fig. 4).

Previously, numerical experiments have been performed in order to find out the hole size to plate

dimensions ratio (a/l) up to which the stress distribution is not affected and the plate may be

considered infinite. That ratio was found to be: a/l = 0.005. 

A very good agreement is observed, for points A and B. At point C the difference obey to the fact

that the constant curvature of the model under study at the cutout corners differs from the geometry

that arises from Eq. (6) in the neighborhood of the corners.

Once the procedure was checked-up, numerical and graphical results were obtained.

In the first place, the case of a square plate of graphite-epoxy, with a centered square hole with

rounded corners subjected to general, in - plane loading is studied.

The elastic parameters of material considered are:

E1 = 181 GPa; E2 = 10.3 GPa; G12 = 7.77 GPa; ν1 = 0.28; ν2 = 0.01593

The orientations of the constitutive axes 1, and 2, were varied with respect to the plate sides and

loading direction (which is taken coincident with the Cartesian axe: x). 

Accordingly, the following values of θ were taken: 0o, 22,5o, 45o, 67,5o, 90o.

The concentration factors calculated were conveniently defined as:

where σn is the principal stress of the solid plate, at the point of the contour where σmax or σmin

occurs.

K+

σmax

σn

----------; K_
σmin

σn

---------==

Table 2 S.C.F for a perforated square plate subjected to different combinations of external forces and
orientation of elastic axes (graphite/epoxy). a/l = 0.2

a/l = 0.2
θ o

-45 -22,5 0 22,5 45

1

K+ 3,67 5,09 10,99 13,04 14,07
β+ 135,36 120,09 121,45 128,41 135,00
K− -7,86 -7,17 -6,00 -1,63 -0,50
β− 45,00 51,76 59,06 60,25 45,00

0,75

K+ 3,6 4,85 10,14 12,01 12,95
β+ 135,36 135,36 121,45 128,41 135,00
K− -5,85 -5,31 -4,45 -0,91 -
β− 45,00 45,00 59,06 60,42 -

0,5

K+ 3,51 4,55 9,01 10,65 11,45
β+ 135,36 135,36 121,62 128,41 135,00
K− -3,17 -2,83 -2,42 -0,31 -
β− 45,00 45,00 59,57 96,04 -

0,25

K+ 3,37 4,12 7,45 8,74 9,35
β+ 135,36 120,09 121,79 128,41 135,00
K− - - -0,48 - -
β− - - 72,07 - -

0

K+ 6,22 5,87 5,14 5,87 6,22
β+ 45,00 52,65 57,87 127,36 135,00
K− - - -0,22 - -
β− - - 90,00 - -

Nxy

N
------- =

Nxy

N
------- =

Nxy

N
------- =

Nxy

N
------- =

Nxy

N
------- =
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Table 3 S.C.F for a perforated square plate subjected to different combinations of external forces and
orientation of elastic axes (graphite/epoxy). a/l = 0.1

a/l = 0.1
θ o

-45 -22,5 0 22,5 45

1

K+ 3,33 4,62 9,34 10,74 11,28
β+ 135,36 120,09 121,62 128,41 135,00
K− -5,45 -5,22 -4,95 -1,35 -0,34
β− 45,00 51,76 59,06 60,25 45,00

0,75

K+ 3,28 4,43 8,65 9,99 10,50
β+ 135,36 120,09 121,62 128,41 135,00
K− -3,84 -3,69 -3,65 -0,70 -
β− 45,00 51,76 59,23 60,42 -

0,5

K+ 3,22 4,17 7,73 9,00 9,46
β+ 135,36 120,09 121,79 128,41 135,00
K− -1,69 -1,65 -1,96 -0,29 -
β− 45,00 51,94 59,74 99,54 -

0,25

K+ 3,13 3,82 6,46 7,61 8,01
β+ 135,36 120,26 121,96 128,41 135,00
K− - - -0,56 - -
β− - - 73,37 - -

0

K+ 5,82 5,52 4,61 5,52 5,82
β+ 45,00 51,41 57,52 128,59 135,00
K− - - -0,40 - -
β− - - 90,00 - -

Table 4 S.C.F for a perforated square plate subjected to different combinations of external forces and
orientation of elastic axes (graphite/epoxy). a/l = 0.05

a/l = 0.05
θ o

-45 -22,5 0 22,5 45

1

K+ 3,27 4,50 8,92 10,05 10,64
β+ 135,36 120,09 121,62 128,41 135,00
K− -4,84 -4,63 -4,64 -1,27 -0,31
β− 45,00 51,76 59,06 60,25 45,00

0,75

K+ 3,22 4,32 8,27 9,39 9,95
β+ 135,36 120,09 121,79 121,41 135,00
K− -3,32 -3,20 -3,40 -0,63 -
β− 45,00 51,76 59,29 60,42 -

0,5

K+ 3,17 4,08 7,41 8,51 9,02
β+ 135,36 120,09 121,79 128,41 135,00
K− -1,30 -1,29 -1,80 -0,28 -
β− 45,00 51,94 59,74 100,92 -

0,25

K+ 3,08 3,74 6,23 7,27 7,73
β+ 135,36 120,26 121,96 128,41 135,00
K− - - -0,56 - -
β− - - 74,03 - -

0

K+ 5,79 5,43 4,51 5,43 5,80
β+ 45,00 51,41 57,35 128,59 135,00
K− - - -0,43 - -
β− - - 90,00 - -
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Table 5 S.C.F for a perforated square plate subjected to different combinations of external forces and
orientation of elastic axes (graphite/epoxy). a/l = 0.01

a/l = 0.01
θ o

-45 -22,5 0 22,5 45

1

K+ 3,24 4,45 8,75 9,76 10,38
β+ 135,36 120,09 121,62 128,41 135,00
K− -4,59 -4,39 -4,54 -1,24 -0,29
β− 45,00 51,76 59,06 60,25 45,00

0,75

K+ 3,20 4,27 8,13 9,14 9,72
β+ 135,36 120,09 121,79 128,41 135,00
K− -3,11 -2,99 -3,32 -0,61 -
β− 45,00 51,76 59,23 60,58 -

0,5

K+ 3,15 4,04 7,29 8,30 8,84
β+ 135,36 120,09 121,79 128,41 135,00
K− -1,14 -1,14 -1,75 -0,28 -
β− 45,00 51,94 51,91 101,60 -

0,25

K+ 3,07 3,72 6,14 7,13 7,61
β+ 135,36 120,26 121,96 128,59 135,00
K− - - -0,57 - -
β− - - 74,36 - -

0

K+ 5,77 5,38 4,47 5,39 5,77
β+ 45,00 51,41 57,35 128,59 135,00
K− - - -0,44 - -
β− - - 90,00 - -

Table 6 S.C.F for a perforated square plate subjected to different combinations of external forces and
orientation of elastic axes (graphite/epoxy). a/l = 0.005

a/l = 0.005
θ o

-45 -22,5 0 22,5 45

1

K+ 3,24 4,45 8,74 9,72 10,29
β+ 135,36 120,09 121,62 128,41 135,00
K− -4,53 -4,34 -4,50 -1,23 -0,28
β− 45,00 51,76 59,06 60,25 45,00

0,75

K+ 3,20 4,27 8,11 9,10 9,65
β+ 135,36 120,09 121,79 90,79 135,00
K− -3,06 -2,96 -3,29 -0,60 -
β− 45,00 51,76 59,23 60,58 -

0,5

K+ 3,14 4,04 7,28 8,27 8,78
β+ 135,36 120,09 121,79 128,41 135,00
K− -1,10 -1,11 -1,73 -0,28 -
β− 45,00 51,94 59,91 101,60 -

0,25

K+ 3,07 3,71 6,13 7,11 7,58
β+ 135,36 120,26 121,96 128,59 135,00
K− - - -0,57 - -
β− - - 74,36 - -

0

K+ 5,77 5,38 4,46 5,37 5,76
β+ 45,00 128,59 122,65 128,59 135,00
K− - - -0,45 - -
β− - - 90,00 - -
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The case of Nx = Ny = N and different values of Nxy/N = 0, 0.25, 0.5, 0.75, and 1 are taken.

Values of K+ and K- are depicted in Tables 2 to 6, for plates of different a/l ratios.

The Tables contain also the values of β+ and β_, where β+ defines the azimuthal value of hole

contour coordinate where the maximum tensile stress takes place and β_ corresponds the maximum

compressive stress2. When there is no compression, the value of K
−

 is omitted.

Obviously, compressive stresses increase with the relative magnitude of Nxy.

One observes that when the ratio a/l decreases the obtained values tend to be constant

Fig. 5 to 8 make evident this behavior for particular cases of the system under study. The relation

between hole and plate sizes is expressed as l/a in those Figures in order to emphasize the

asymptotic behavior of the obtained parameters as the hole size decreases.

Furthermore, Figs. 5 and 6 show the variation of K+, for different sizes of the hole and kinds of

loads, and two particular orientations of the constitutive axes (  and 45o respectively).

Meanwhile Figs. 7 and 8 show the variation of K+ for different sizes of the hole and orientations

of the elastic axes, and two particular situation of the in-plane loading (Nxy /N = 1 respectively).

θ 45
o

–=

Fig. 5 K+ vs. l/a curves for different values of Nxy/N
and θ = −45o

Fig. 6 K+ vs. l/a curves for different values of Nxy/N
and θ = 45o

2In absolute value

Fig. 7 K+ vs. l/a curves for different orientation of
elastic axes, θ, and Nxy/N = 1

Fig. 8 K+ vs. l/a curves for different orientation of
elastic axes, θ, and no shear forces (Nxy = 0)
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Fig. 9 K+ vs. θ curves for different values of l/a, and
when Nxy/N = 1

Fig. 10 K+ vs. θ curves for different values of l/a,
and no shear forces (Nxy = 0)

Table 7 S.C.F for a perforated square plate of different relations l/a and orientation of elastic axes, θ,
subjected to pure shear forces (graphite/epoxy)

a/l θ o K+ β+ K- β−

0.2

-45,0 4,17 135,00 -22,00 45,00

-22,5 6,55 120,09 -20,08 51,76

0,0 17,00 121,28 -17,00 58,72

22,5 20,07 128,24 -6,55 59,91

45,0 22,00 135,00 -4,17 45,00

0.1

-45,0 3,67 135,36 -16,73 45,00

-22,5 5,97 119,92 -15,95 51,59

0,0 14,23 121,45 -14,23 58,55

22,5 15,95 128,41 -5,97 60,08

45,0 16,73 135,00 -3,67 45,00

0.05

-45,0 3,57 135,00 -15,48 45,00

-22,5 5,76 119,92 -14,68 51,59

0,0 13,49 121,45 -13,48 58,55

22,5 14,68 128,41 -5,75 60,08

45,0 15,48 135,00 -3,57 45,00

0.01

-45,0 3,54 135,36 -14,95 45,00

-22,5 5,68 119,92 -14,14 51,59

0,0 13,20 121,45 -13,25 58,55

22,5 14,14 128,41 -5,68 60,08

45,0 14,98 135,00 -3,53 45,00

0.005

-45,0 3,52 135,00 -14,84 45,00

-22,5 5,67 119,92 -14,06 51,59

0,0 13,19 121,45 -13,15 58,55

22,5 14,08 128,41 -5,67 60,08

45,0 14,82 135,00 -3,52 45,00
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On the other hand, Figs. 9 and 10 show the variation of K+, for different values of Nxy /N and a/l

and two particular values of  and 45o.

The case of pure shear forces acting on the outer edge of a square plate with a centered square

hole of rounded corners is presented in Table 7.

Finally, a rectangular finite plate lx /ly = 2, a/ly = 0.2 subjected to biaxial tension is considered

(Fig. 11) for two relations of Nx/Ny = 0.5 and 2.

Due to the configuration of the loading the azimuthal angle θ was varied from 0o to 90o.

Table 8 exhibits the obtained values.

An explanation must be done about the value of K+ in the first row of Table 8.

For this situation (Nx/Ny = 0.5, θ = 0o) the maximum tension occurs at the outer edges parallel to the

coordinate axe x, (which coincide with the constitutive direction 1), at coordinates: x = 0, y = ±ly/2.

The nearness between hole and outer edge cause this behavior.

In this case, the maximum stress concentration factor at the contour of the hole is 3.08 . Certainly,

four points symmetrically located (β = 45.89o, 134.11o, 225.89o and 314.11o) support this tension.

This situation is shown clearly in Fig. 12.

It is important to point out that for biaxial tension, compressive stresses arise

θ 45
o

–=

Fig. 11 Rectangular orthotropic plate with a centered square hole under biaxial tension

Table 8 S.C.F for the rectangular perforated plate subjected to biaxial tension (graphite/epoxy) 

Nx/Ny θ o K+ β+ K− β−

0.5

0,0 3,45 90,00* -3,25 90,00

22,5 4,39 132,68 -3,29 123,42

45,0 7,07 137,32 -0,79 125,77

67,5 10,72 143,35 - -

90,0 9,52 30,85 - -

2

0,0 5,86 58,98 - -

22,5 6,34 126,56 - -

45,0 5,69 132,68 -0,29 143,88

67,5 4,41 138,30 -1,70 147,44

90,0 3,08 38,59 -2,21 0,00
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5. Conclusions

The static problem of a laminate graphite/epoxy with a square hole of rounded corners under in-

plane loading has been considered by means of a finite element code.

The procedure has been verified in the case of classical solutions of orthotropic plates available in

the open literature.

Numerical investigation was performed to demonstrate that for hole size to plate dimension ratios

a/l smaller than 0.005 the plate may be considered infinite.

As a general behavior one may conclude that as it occurs in the case of isotropic, linearly elastic

solids, K+ increases as the parameter a/l does. For the orthotropic material investigated, the absolute

value of K
−

, when arises, also increase, as a/l is incremented.

On the other hand, the values of β+ and β
−

 remain practically constant.

Since for tensile loads Nx and Ny, large compressive stresses are originated (Table 8), it seems

reasonable to expect for these situations and depending upon the thickness of the plate, localized

buckling or wrinkling phenomena.

Extensive and detailed experimental studies are needed in this area.
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