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Abstract. This paper aims to study the large deflections of variable-arc-length elastica subjected to the
terminal forces (e.g., axial force and torque). Based on Kirchhoff’s rod theory and with help of Euler
parameters, the set of nonlinear governing differential equations which free from the effect of singularity
are established together with boundary conditions. The system of nonlinear differential equations is solved
by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with
adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance
(10−5). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening
first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent
order. The other process is performed by reversing the sequence of loading in the first process. The
results are interpreted by observing the load-deflection diagram and the stability properties are predicted
via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon,
secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to
behavior of elastica. 

Keywords: Kirchhoff’s rod; variable-arc-length elastica; large deflections; snap-through phenomenon;
Euler parameters; shooting method.

1. Introduction

The first development of three-dimensional elastica was proposed by Kirchhoff 1859. In his work,

he showed that the equilibrium equations from his theory akin to the equations of motion of rigid

body with a fixed point. This analogy has been called Kirchhoff’s kinetic analogy. Later Clebsch

1862 modified the Kirchhoff’s rod theory by adding the initial curvatures into the formulation and

Love 1892 completed the formulation of Kirchhoff by using the ordinary approximation theory. In

1907, Cosserat and Cosserat 1907 suggested an important theory about Kirchhoff’s rod, the director

theory, in which material points of rod were described by position vector and directors. These

exceptional works developed by the aforementioned researchers are the foundation of many research

areas in engineering and technology at present. 
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In engineering point of view, there are many applications that employ the Kirchhoff’s rod theory

for solving the practical problems. For the example, in ocean engineering, marine cables can be

treated as the rod and the theory of Kirchhoff’s rod can be used to solve the problem of cable such

as loop formation (Coyne 1990 and Goyal et al. 2005) and the stability of the cables under variety

of loads and support conditions (Lu et al. 1994, 1995 and Benecke and Vuuren 2005). In

biomechanics, the stability and shapes of DNA were investigated by using the Kirchhoff’s rod

theory (Coleman et al. 1995, Coleman and Swingon 2000, Goyal et al. 2005 and Balaeff et al.

2006). In medical device, the Kirchhoff’s rod can be applied to study the loop formation of

endoscope probe (Katopodes et al. 2001) where the initial curvatures have been taken into account. 

With these models, the total arc-length can not be varied but, in some applications such as in

marine riser, the arc-length of riser can be released for preventing the excessive tension which may

damage the riser. However when the riser is over slackened, the riser may form the loop easily. In

order to eliminate the loop, the large amount of tension must be applied to the riser and this causes

the riser to experience the high bending stress which can also damage the riser. Thus the study

about effect of variable-arc-length to the loop formation may give the information to prevent the

riser from such circumstance.

The characteristic of total arc-length of rod that can be varied is called variable-arc-length (VAL)

rod/elastica. The model of VAL elastica was initiated and developed by Chucheepsakul and Huang

1992, and in the next three years, the name of VAL elastica was arisen in paper of Chucheepsakul

et al. 1995. Subsequently, many models of VAL elastica have been developed continuously by

studying the behavior of elastica under the different load and end conditions and the fluid

interaction. For the example, the fluid interaction was considered in Chucheepsakul and

Monprapussorn 2000 and by the same authors in 2001. Many types of loads applying to VAL

elastica was investigated such as point load by Chucheepsakul et al. 1996, Chucheepsakul and

Huang 1997 and Wang et al. 1997, moments by Chucheepsakul et al. 1997, Chucheepsakul et al.

1999, follower load by Wang et al. 1998 and Chucheepsakul and Phungpaigram 2004 and the

uniform self-weight by Pulngern et al. 2005. In addition to the hinge end, the various end

conditions were also studied such as clamped end (Zhang and Yang 2005) and rotational spring

(Wang et al. 1997 and Wang et al. 1998). However, the study of VAL elastica in the past confined

only to the planar elastica, thus the study of VAL elastica in three-dimensional space is of interest

for studying the behavior of spatial VAL elastica.

The aim of this paper is to investigate large deflections behavior of spatial VAL elastica without

effects of self-contact and Poisson’s ratio. One end of the elastica is clamped and the other is placed

on a sleeve support. There are two processes for studying this problem. In the first process, the VAL

elastica is loaded by axial force until the elastica is deformed by sliding through the sleeve support.

After that the VAL elastica is twisted by applying the torque at that the sleeve end. This process is

similar to the clamped rod reported in excellent works of Miyazaki and Kondo 1997 and Heijden et

al. 2003 but different in initial values of axial load because the fixed total arc-length elastica gives

the hardening path in load-deflection curve while VAL elastica yields the softening path (see Fig. 1).

The other process is performed by applying the twist at the end. Subsequently, by keeping the twist

angle as a constant and then the axial force is applied in which the effect of variable-arc-length will

be studied in this process. 

The solution strategies for solving this kind of problem are stated in many literatures. One is to

solve the problem with reference (or fixed) coordinate which yields the complexity in the

formulations. Another strategy is the use of local (or attached) coordinate for reducing the
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complexity of the formulation. Normally, the Euler angles are utilized as the parameters in

transformation matrix that maps the coordinate frame from reference coordinate to local coordinate

(Benecke and Vuuren 2005, Katopodes et al. 2001, Miyazaki and Kondo 1997 and Atanackovic and

Glavardanov 2002). However there is a difficulty in formulating the equations using the Euler

angles in which the equations contain the singularity during inverse process of transformation

matrix. Thus, some researchers (Heijden et al. 2003) avoided using the Euler angles but they

formulated the equations directly with the unit vectors in local frame. In addition, there also has the

transformation matrix involving the four parameters that produces the singularity-free matrix. These

four parameters are called Euler parameters (Nikravesh 1988) which is the normalized form of

quaternions. Using Euler parameters instead of Euler angles gives not only the singularity-free

matrix but also reduces the computational cost since the elements in the matrix are merely

polynomial function. Euler parameters were also utilized in work of Balaeff et al. 2006 in which

they studied the behavior of protein-DNA complexes. In this paper, we take the advantage of Euler

parameters for constructing the singularity-free governing differential equations of the problem.

After formulating the governing equations, the shooting method is employed to solve the solutions

of the problem.

2. Statement of the problem

Considering Fig. 2(a), the naturally straight elastica having uniformly circular cross-section and

span length L is clamped at one end and the other is placed on sleeve support that can rotate and

slide freely. The flexural and torsional rigidities are EI and GJ, respectively. The applied torque Q

and axial force T act at the sleeve end. The unit vectors in reference coordinate are named by

 in which  is directed along the axial line of the rod while  and  are attached

to the principal axes of the elastica. Noting that the symbol for vectors and matrices are bold face

letters otherwise they are scalar.

In deformed configuration shown in Fig. 2(b), the total arc-length of the rod is changed from L to

ê ê
1
ê
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ê
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ê
2

ê
3

Fig. 1 Equilibrium paths for clamped VAL and fixed total arc-length elastica
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st
. The unit vectors in local coordinate are introduced as  in which e1 is oriented to

tangential direction of the rod and moved according to the direction of increasing of arc-length s

while e2 and e3 are still attached to the principal axes of the cross-section.

3. Governing equations 

In order to construct the governing differential equations for this problem, the assumption of

Kirchhoff ‘s rod should be made as follows.

- The rod has uniform cross-section and the flexural rigidities of principal axes are equal.

- The material of rod is homogenous and isotropic.

- The dimension of cross-section must be small when compared to the length of rod.

- Axial and shear deformations are neglected.

- The body force and distributed moments are omitted, thus the forces are applied at the end only.

- The applied forces are conservative force.

As it can be seen from Fig. 2(b), the mapping between reference coordinate and local coordinate

is necessary. Using the transformation matrix in terms of Euler angles leads to an important

drawback which is the occurring of singularity in the formulations. The alternative choice is the use

of transformation matrix in terms of Euler parameters  in which the singularity-

free formulation is obtained. In this paper, the governing differential equations are constructed in

terms of Euler parameters for obtaining the singularity-free formulations. The transformation matrix

in terms of Euler parameters is shown in Eq. (1)

(1)

where

(2a,b,c)

The vector u is the unit vector in direction of rotational axis and φ is the rotation of rotational

e e1 e2 e3, ,( )=

q q0 q1 q2 q3, , ,( )=

U

q0

2
q1

2
1/2–+ q1q2 q0q3– q1q3 q0q2+

q1q2 q0q3+ q0

2
q2

2
1/2–+ q2q3 q0q1–

q1q3 q0q2– q2q3 q0q1+ q0

2
q3

2
1/2–+

=

q0 cos
φ

2
---⎝ ⎠
⎛ ⎞ ; q1 q2 q3, ,( ) usin

φ

2
---⎝ ⎠
⎛ ⎞ ; U

1–
U

T
= = =

Fig. 2 Variable-arc-length rod: (a) undeformed configuration, (b) deformed configuration
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axis. The global coordinate is rotated into local coordinate by following relation.

(3)

The derivative of Euler parameters with respect to arc-length parameter s in terms of local

coordinate is shown below (see Nikravesh 1988).

(4)

where

(5)

(6)

The symbol ( )' stands for the derivative with respect to arc-length parameter s. Eq. (4) gives the

relationship between derivative of Euler parameters q and angular velocity vector ω where its

components are total twist ω1 and curvatures ω2 and ω3. However, each component of angular

velocity is difficult to measure. Thus, the components of angular velocity may be changed into the

internal torque and moments by using the linear constitutive equation.

The geometric relation of inextensible and unshearable elastica is established via basic concept of

differential geometry which is given by

(7)

After the geometric relations are setup, next, the equilibrium equations of rod will be considered.

From Fig. 3, the equilibrium equations of rod segment (exclude the body force and distributed

moment) are expressed below.

e U
T
ê=

q′ 1

2
---A

T
ω=

A

q1– q0 q3 q2–

q2– q3– q0 q1

q3– q2 q1– q0

=

ω ω1e1 ω2e2 ω3e3+ +=

dr

ds
----- r′ x′ê

1
y′ê

2
z′ê

3
+ + e1= = =

Fig. 3 Rod segment
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  (8, 9)

The equilibrium equations in Eqs. (8) and (9) are valid for every coordinate system. Based on

local coordinate system, the internal forces are defined as  and the internal

torque and moments are defined as . The components of internal forces

are axial force F1 and shear forces in principal directions (F2 and F3). In the case of internal torque

and moments, M1 represents the internal torque and M2 and M3 are bending moments. The axial

force F1 has positive value when it is tension and, for the internal torque M1, it is positive when it

rotates according to the direction of unit vector e1 (e.g., counterclockwise direction).

As it can be observed in Eqs. (8) and (9), the unit vector of local coordinate must be

differentiated with respect to arc-length s. With contribution of Frenet’s formulas, the derivative of

unit vectors in local frame is governed by following equation.

(10)

As previous mention, the angular velocity can be changed into the internal torque and moments

by using linear constitutive relation, namely.

(11)

For the sake of generality, the non-dimensional parameters are introduced.

(12a-f)

(12g-l)

(12m-o)

The non-dimensional parameter axial force  and torque  are equivalent to the internal force

 and internal torque  at the boundary. For computational purpose, the vector form of

equilibrium equations in Eqs. (8) and (9) must be presented in scalar form by using Eqs. (10), (11)

and (12). After some manipulations, the equilibrium equations in non-dimensional form can be

rewritten as follows.

(13)

(14)

(15)

(16)

(17)

(18)

F′ 0; M′ e1 F×+ 0= =

F F1e1 F2e2 F3e3+ +=

M M1e1 M2e2 M3e3+ +=

ei′ ω ei×= i 1 2 3, ,=

M GJω1e1 EIω2e2 EIω3e3+ +=
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-----------, F2
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-------== =
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s t 1 α–( )M1M2 F2–{ }=
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The symbol ( )* denotes the derivative with respect to arc-length parameter . The stiffness ratio

α equals to 1 when the elastica has circular cross-section and the effect of Poisson’s ratio is

neglected. From Eq. (16), it is clear that torque  is independent from the arc-length of the rod.

Subsequently, the geometric relations in Eqs. (4) and (7) are rewritten in scalar form as

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Eqs. (13)-(25) are the set of governing differential equations of this problem. 

4. Boundary conditions

The boundary conditions of this problem are listed in Table 1. The angle  is the total twist

angle at the sleeve end. The unknown parameters that must be evaluated are , ,

 and . However, the parameters  and  are set as the controlled parameters.

Thus, six unknown parameters are still remained for evaluating. In order to solve the six unknown

parameters, the six equations according to the physical characteristics of the problem must be

determined. These equations are expressed below.

s

M1

q0

* s t

2
---- q1M1– q2M2– q3M3–( )=

q1

* s t

2
---- q0M1 q3M2– q2M3+( )=

q2

* s t

2
---- q3M1 q0M2 q1M3–+( )=

q3

* s t

2
---- q– 2M1 q1M2 q0M3+ +( )=

x
*

2s t q0

2
q1

2
1/2–+( )=

y
*

2s t q1q2 q0q3+( )=

z
*

2s t q1q3 q0q2–( )=

φ 1( )
φ 1( ) s t F1

F2 F3 M1 M2, , , M3 φ 1( ) s t

Table 1 Boundary conditions

Parameters
Boundary values

q0 1

q1 0

q2 0 0

q3 0 0

x 0 1

y 0 0

z 0 0

s 0= s 1=

cos φ 1( )/2( )

sin φ 1( )/2( )
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(26)

(27)

(28)

(29)

(30)

(31)

Eq. (28) is the identity of the Euler parameters . By using the shooting method the

above six equations must be minimized and the solutions of the problem are obtained.

5. Shooting method

The effective tool for solving the two-point boundary value problem, the shooting method, is

employed for solving the system of differential equations (Eqs. (13)-(25)) under boundary

conditions in Table 1. In this method, we attempt to minimize Eqs. (26)-(31) for each value of

controlled parameters  and . The solution steps for evaluating the solutions are summarized

as follows:

1. Assign the value to parameters  and , then estimate the values of unknown parameters

,  and  for the first iteration.

2. Integrate Eqs. (13)-(25) from  to  by using seventh-eighth order Runge-Kutta with

adaptive step size scheme. 

3. Minimize the error of norm in which the objective function for minimization process is 

(32)

If the minimization process is successful , then the solutions of , 

and  are obtained. If the minimization process fails, return to step 1 to estimate the unknown

parameters.

4. After obtaining the solutions, the controlled parameter  or  must be added by  or

 depended on which parameters is varied.

5. Repeat steps 2-4 and create the load-deflection curves.

6. Results and discussion

As mentioned in section 1, there are two processes for studying this problem. The first process is

slackening-twist process in which the axial force is applied first and then the torque is applied at the

sleeve end for studying the behavior of three-dimensional elastica. The second process is twist-

slackening process in which the torque is applied before the axial force. In this process, the effect of

f1 q0 1( ) cos φ 1( )/2( )–=

f2 q1 1( ) sin φ 1( )/2( )–=

f3 q0

2
1( ) q1

2
1( ) q2

2
1( ) q3

2
1( ) 1–+ + +=

f4 x 1( ) 1–=

f5 y 1( )=

f6 z 1( )=

qq
T

1=( )

s t φ 1( )

φ 1( ) s t

F1 F2 F3 M1 M2, , , M3

s 0= s 1=

MinΦ f1 f2 f3 f4 f5 f6+ + + + +=

Φ 10
5–≤( ) F1 F2 F3 M1 M2, , ,

M3

φ 1( ) s t φ∆ 1( )
s t∆
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variable-arc-length to behavior of rod will be captured. In both processes, the total arc-length will

be limited within the range  since in practical considerations, the total arc-length of

marine risers is rarely found to be 10 times greater than its span length  and it is sufficient

to observe the global behavior of VAL clamped elastica.

6.1 Slackening-twist process

First, the VAL elastica is compressed by axial force in which the relationship between axial force

and total arc-length is shown in Fig. 1. As it can be seen in Fig. 1, the axial force decreases as total

arc-length increases. In contrast to the normal clamped elastica that total arc-length is fixed, the

axial force must be increased in order to maintain the equilibrium configuration in deformed state.

This can be concluded that planar VAL elastica with the inflection points exhibits the softening path

while clamped elastica gives the hardening path. 

Beginning with the deformed shapes in softening path of clamped VAL elastica, a torque is

applied at the sleeve end of the elastica. The results are plotted in load-deflection diagram of torque

 and twist angle  shown in Fig. 4. To determine the stability properties of these curves, the

fold rule initiated by Maddocks 1987 is utilized for predicting the stability of VAL elastica as well

as in Heijden et al. 2003. They used the fold rule for evaluating the stability of clamped elastica.

The fold rule stated that “If the real valued functional  is chosen as the ordinate in

a bifurcation diagram, then the lower branch of extremals in a fold opening to right, and the upper

branch in fold opening to left can not represent local minima of functional F”. For this study in

Eq. (33), the functional Π obtained from Heijden and Thompson 2000 refers to the functional F in

the fold rule statement. 

(33)

As it can be observed that the sign of axial force T and torque Q are different, then the stability

properties in fold rule must be switched. 

1 s t 10< <
s t 10>( )

Q φ 1( )

Fy i.e. ∂F/∂λ( )–

Π 1

2
--- GJω1

2
EIω2

2
EIω3

2
+ +( ) sd T st L–( ) Qφ 1( )–+∫=

Fig. 4 Load-deflection curve between torque  and twist angle  at various values of total arc-length :
(a) ; (b) : solid line is stable path, dash line is unstable path

Q φ 1( ) s
t

1 st 3< < 3 s
t

≤ 10<
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The results are plotted in load-deflection curves of torque  and twist angle  in Figs. 4(a) and

(b). Two behaviors of clamped VAL elastica will be elucidated. One is the case of total arc-length

 and the other is for total arc-length . In the former case in Fig. 4(a), the

equilibrium paths are initiated from point O that matches with the planar elastica (see Fig. 5(a)).

Using the fold rule and considering the minus sign in Eq. (33), the stability properties of load-

deflection curves between torque  and twist angle  must be opposite to fold rule. Considering

path OABC, from point O to A, the equilibrium path is stable in which the torque  increases as the

twist angle  increases. By continuously increasing of the applied torque on path OA, the elastica

forms the equilibrium shapes in three-dimensional space (Figs. 5(b) and (c)). However the

equilibrium paths are not monotonic, they have a limit load points (e.g. point A), the critical point,

depending on values of total arc-length . The configuration shape at point A is presented in

Fig. 5(c). By observing the peak values of torque  in each curve from Fig. 4, the critical load is

decreased considerably when total arc-length  is increased. This indicates that when flexible marine

riser is substantially slackened, the riser can easily form the loop shape. At point A, if the twist angle

 still increases, the elastica will lose its stability by snap-through phenomenon. Unless the

decrease of twist angle along unstable path ABC results in loop formation of elastica at point B

presented in Fig. 5(d) where the applied torque becomes zero and twist angle  is rotated at 2π.

Regardless of the effect of self-contact, the VAL elastica continuously move through the intersection

point until reaches point C (see Fig. 5(e)). After point C, the equilibrium path displays stable state

again and the equilibrium configuration along this path unfolds to planar elastica with inflection

points at twist angle  = 4π. The behavior of twisted elastica will be repeated to path OABCD

again after this point or we may state that the load-deflection curve  has the period at ±4π.

From previous results, the planar elastica occurs when twist angle  equals 0, 2π and 4π. Hence,

we may summarize that at twist angle  where n is an integer odd number, the elastica is

deformed as planar elastica with inflection points but if n is integer even number (include zero), the

elastica is deformed as planar elastica without inflection point. 

Q φ 1( )

1 s t 3< < 3 s t 10< <

Q φ 1( )
Q

φ 1( )

s t

Q

s t

φ 1( )

φ 1( )

φ 1( )
Q φ 1( )–

φ 1( )
φ 1( ) ±2nπ=

Fig. 5 Equilibrium configurations of VAL elastica for = 1.25: (a) = 0, (b) = 12, (c) = 23.2,
(d) = 2π; (e) = −10.65, (f) = 4π

s
t

φ 1( ) φ 1( ) φ 1( )
φ 1( ) φ 1( ) φ 1( )
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By considering the axial force , first the compressive force must be exerted in order to obtain

the deformed configuration before twist process. From diagram in Fig. 6(a), during twisting process,

the compressive force decreases rapidly and become tensile force at a certain value of twist angle

. The axial force is developed along the curve in Fig. 6(a). The tensile force  increases as

twist angle φ increases until it reaches critical point, after that the twist angle  decreases but

the tensile force still increases to the maximum tension corresponding to the loop shape of elastica.

After that the axial force decreases continuously to the minimum point which is same value as the

beginning.

For the case of total arc-length in the range , the equilibrium path emanated from point

O is unstable path (see Fig. 4(b)) and this path becomes stable at minimum the turning point

(critical point A). Beyond this turning point, the elastica folds into the loop shape (point B) at twist

angle φ (1) = 2π. By increasing the twist angle φ (1), the applied torque is developed until it reaches

the critical point at positive side (point C) after that the equilibrium path is changed to unstable path

again in which the torque  drops to zero for twist angle . At this point, the elastica

returns to the original shape (planar elastica with inflection points). It is worth noticing that the

snap-through phenomenon may occur at point C if the twist angle φ (1) is still increased. The

diagram of axial force  and twist angle φ (1) shown in Fig. 6(b) seems to be different from the

case  but the main features are still unchanged. 

Addressing to the critical torque  and the maximum axial force  in Table 2 and Fig. 7, it

can be seen that the critical torque decreases as total arc-length  increases. However, in some

values of total arc-length (e.g. = 4 and 5), the critical torque slightly increases and it begins to

T

φ 1( ) T

φ 1( )

3 s t 10< <

Q φ 1( ) 4π→

T

1 s t 3< <
Qcr Tmax

s t

s t

Fig. 6 Relationship between axial force  and twist angle  at various values of total arc-length : (a)
, (b) 

T φ 1( ) s
t

1 st 3< < 3 s
t

≤ 10<

Table 2 Critical torque  and maximum axial force  

Loads
1.2 2 3 4 5 6 7 8 9 10

19.994 2.566 0.853 1.008 1.02 0.979 0.922 0.862 0.806 0.753

400.109 15.684 3.508 1.361 0.672 0.381 0.238 0.158 0.110 0.080

Q cr Tmax

s
t

Q cr

Tmax
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drop again for . Above the critical torque, there is no equilibrium state. In case of maximum

axial force , it decreases rapidly when the total arc-length  increases. It is important to note

that the critical torque and maximum tension are occurred at different situations. The critical torque

is occurred before elastica jumps into the loop formation but the maximum tension is occurred

when elastica is the loop configuration. 

6.2 Twist- slackening process

By keeping the twist angle as a constant and then applying the axial force, the results from this

process are shown in Fig. 8. The effects of variable-arc-length to the axial force are presented in

Fig. 8. The buckling equation derived by Heijden et al. 2003 is employed to this problem since in

the case of small deflection there is no difference between calmped VAL elastica and normal

clamped elastica. Thus, the buckling equation from Heijden et al. 2003 is quoted again in following

equation for giving the initial information about buckling load.

(34)

where

(35a,b)

Regarding to Fig. 8, four different behaviors of elastica according to , ,

 and  can be captured. In the case of twist angle , the elastica

deforms as a stable planar elastica from total arc-length . At total arc-length , there

is a bifurcation point B1 in which two equilibrium paths emanate from this point. One is unstable

path (dash line) according to planar elastica and the other is stable path (solid line) in which the

elastica deforms in three-dimensional space. In addition, this branch is a connecting branch between

planar elastica with inflection points and planar elastica without inflection point (loop shape). On

the other word, the planar elastica with inflection points moving along this path will form into loop

shape for total arc-length . For the case of , the equilibrium path is stable

path. The axial force  decreases as total arc-length  increases. Under slackening process, the
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Fig. 7 Critical torque  and maximum axial force  at various total arc-length Q cr Tmax s
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VAL elastica has the trend to form the loop at a certain value of total arc-length . The equilibrium

shapes of this case are shown in Fig. 9. In case of twist angle , the equilibrium path is

similar to the case of  but this path goes to connect with path of planar elastica

without inflection point at  (secondary bifurcation point B2) which contains unstable path for

the upper branch and stable path for the lower branch. Following the unstable path, the tension 

becomes larger value according to smaller loop of elastica or the tension  is decreased along the

stable path according to the larger loop of elastica. In the third case , the lower branch of

s t

φ 1( ) 2π=

0 φ 1( ) 2π< <
s t 3=

T

T

φ 1( ) 2π>

Fig. 8 Load-deflection curves between axial force  and total arc-length  at various values of twist angle
= 0, π, 2π, 3π and 4π : solid line is stable path, dash line is unstable path

T s
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Fig. 9 Equilibrium configuration of VAL elastica in slackening process for the case of = π : (a) = 1.5,
(b) = 4.05, (c) = 10
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t
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equilibrium path is the stable path while the upper branch is unstable path. The elastica can form

the loop shape by moving on this unstable path. The total arc-length for this case has the limitation

point depended on value of twist angle . For the example, the total arc-length  is never

larger than 2.0279 and 1.6668 for twist angle  and 4π, respectively. The equilibrium

configurations for this case are presented in Fig. 10. 

7. Conclusions

From the results, the investigation of VAL clamped elastica can be summarized as follows:

1. In slackening-twist process, the two behaviors depended on the value of total arc-length  of

elastica are captured. For total arc-length , the equilibrium path is initiated with stable

path until it reaches the critical point in which the raising of twist angle  leads to snap-

through phenomenon. But for total arc-length , the first branch is unstable path and it

switches into stable path at the turning point. The snap-through phenomenon for this case

appears during the elastica is twisted larger than 4π. In case of total arc-length , the

equilibrium path seems to be in the stage of the transition from the case  to the case

.

2. In twist-slackening process, the stability of clamped elastica is divided into four cases. For the

first case , the elastica deforms as a planar and stable elastica for total arc-length

. For , there is a secondary bifurcation point where two different paths are

emanated from this point. One is unstable according to planar elastica and the other is stable

path corresponding with twisted elastica. The twist angle , the second case, the

buckled elastica exhibits only the stable equilibrium shape for . In the third case,

, the elastica also deforms in stable shape as well as the two former cases. However,

it contains the secondary bifurcation point at total arc-length . At this point, the elastica

is in transition stage which may become stable or unstable depending on the applied tension (or

total arc-length ). The final case is for  in which the elastica is deformed in stable

state at first and it becomes unstable at the turning point.

3. The loop formation occurs when twist angle  is rotated at an angle 2π and becomes the

original shape when  for every value of total arc-length .

φ 1( ) s t

φ 1( ) 3π=

s t

1 s t 3< <
φ 1( )

3 s t 10< <

s t 3=

1 s t 3< <
3 s t 10< <

φ 1( ) 0=

1 s t 3< < s t 3>

0 φ 1( ) 2π< <
1 s t 10< <

φ 1( ) 2π=

s t 3=

s t φ 1( ) 2π>

φ 1( )
φ 1( ) 4π= s t

Fig. 10 Equilibrium configuration of VAL elastica in slackening process for the case of = 3π : (a)
= 1.5, (b) = 2.028, (c) = 1.275
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4. The critical torque  drops considerably as the total arc-length increases. However the critical

torque  is slightly increased at some values of total arc-length  and then it gradually

decrease as total arc length  increases. For the maximum axial force , it decreases

monotonically as total arc-length  increases.
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