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Abstract. This paper presents analytical methodologies for remaining life prediction of plain concrete
structural components considering tension softening and size effects. Non-linear fracture mechanics
principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various
tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been
presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law,
leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of
the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size
effect in the computation of SIF and remaining life prediction have been presented. Numerical studies
have been conducted on three point bending concrete beams under constant amplitude loading. The
predicted remaining life values with the combination of tension softening & size effects are in close
agreement with the corresponding experimental values available in the literature for all the tension
softening models. 

Keywords: concrete fracture; fatigue loading; tension softening; stress intensity factor; size effect; crack
growth; remaining life.

1. Introduction

Concrete is a widely used material that is required to withstand a large number of cycles of

repeated loading in structures such as highways, dams, airports, bridges and offshore structures. The

present state-of-the-art of designing such structures against the fatigue mode of distress is largely

empirical, gained by many years of experience. Fracture mechanics is a rapidly developing field that

has great potential for application to concrete structural design. As long as the designer is dealing

with structures made of similar to those for which the relationships were derived, the performance

can be reasonably well predicted. However, as conditions change, a need exists for a rational

approach. Concrete contains numerous flaws, such as holes or air pockets, precracked aggregates,

lack of bond between aggregate and matrix, etc., from which cracks may originate. Cracks generally

propagate in a direction, which is perpendicular to the maximum tensile stress. The fracture

behavior of concrete is greatly influenced by the fracture process zone (FPZ). The variation of FPZ
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along the structure thickness or width is usually neglected. The inelastic fracture response due to the

presence of FPZ may then be taken into account by cohesive pressure acting on the crack faces.

Fig. 1 shows FPZ in ductile-brittle materials and quasi-brittle materials (Bazant 2002).

Few experimental investigations on fatigue crack propagation in concrete have been reported

(Ingraffea 1977). The rate of fatigue crack growth in concrete exhibits an acceleration stage that

follows an initial deceleration stage. In the deceleration stage the rate of crack growth decreases

with increasing crack length, whereas in the acceleration stage there is a steady increase in crack

growth rate up to failure. Fracture mechanics principles were applied to describe the crack growth

during the acceleration stage of fatigue crack growth in concrete. It has been observed that the Paris

law coefficients are dependent on the material composition potentially explaining the large

differences in the values of the Paris law coefficients. Prasad and Krishnamoorthy (2002) developed

a 2D computational model for investigation of crack formation and crack growth in plain and RC

plane stress members. Thomas et al. (2005) described methodologies for modeling 3D crack

propagation in unreinforced concrete. It was mentioned that tensile failure involves progressive

micro-cracking, debonding and other complex irreversible processes of internal damage. Wu et al.

(2006) proposed an analytical model to predict the effective fracture toughness of concrete based on

the fictitious crack model. The equilibrium equations of forces in the section were derived in

combination with the plane section assumption. Slowik et al. (2006) presented a method for

determining tension softening curves of cementitious materials based on an evolutionary algorithm.

Extensive research work was carried out towards numerical modelling of fracture and size effect in

plain concrete using lattice model by Raghu Prasad et al. (2006). From literature, it has also been

observed that the research work towards crack growth analysis and remaining life prediction of

concrete structural components considering tension softening is limited (Ingraffea 1977, Stuart 1982,

Baluch et al. 1987, Bazant and Xu 1991, Ramsamooj 1994, Toumi and Turatsinze 1998, Matsumoto

and Li 1999, Subramaniam et al. 2000, Prasad and Krishnamoorthy 2002, Gasser and Holzapfel

2005, Wu et al. 2006, Slowik et al. 2006, Raghu Prasad and Vidya Sagar 2006). There is a scope to

conduct crack growth analysis and remaining life prediction of concrete structural components

considering tension softening effect in to account under fatigue loading. Further, it has been

observed from the literature that there is numerous tension softening models to account for

softening effect. There is scanty information in choosing the appropriate softening model for reliable

remaining life prediction.

The change of a structural property when the size of a structural specimen changes is known as

size effect related to this property. Most structures experience an increase in brittleness and a

decrease is strength as their size increases. The size effect on fatigue in bending is strongly

Fig. 1 FPZ in ductile and brittle materials (Bazant 2002)
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dependent on the structural size. Under the same flexural stress levels, the smaller the beam height,

the longer is the fatigue life. The deformation characteristics such as fatigue crack growth history as

well as final critical fatigue crack length at fatigue failure are also dependent on the beam size

(Bazant and Schell 1993, Bazant 1984, Bazant and Kazemi 1990). Bazant (2000) presented most of

the results related to size effect on the nominal strength of structures. Hanson and Ingraffea (2003)

conducted numerical studies to compare the fracture toughness values for concrete using the size

effect, two parameter and fictitious crack models considering tension softening effect. From their

analyses, it was observed that the fracture toughness values for the size effect and two parameter

models tend to be less than those of fictitious crack model. Karihaloo et al. (2006) examined the

deterministic size effect in the strength of cracked concrete structures and observed that the

deterministic strength size effect becomes stronger as the size of the cracked structure increases but

weakens as the size of the crack reduces relative to the size of the structure. Yi et al. (2007) carried

out experiments to evaluate the size effect on the flexural compressive strength of RC flexural

members. They observed that size effect is apparent where the flexural compressive strength at

failure and the corresponding strain value and the ultimate strain decrease as the specimen size

increases. From the literature, it is observed that the research on crack growth analysis and

remaining life prediction of concrete structural components accounting for size effect under fatigue

loading is limited (Bazant and Schell 1993, Bazant 1984, Bazant and Kazemi 1990, Bazant 2000,

Hanson and Ingraffea 2003, Karihaloo et al. 2006, Yi et al. 2007).

This paper presents methodologies for remaining life prediction of plain concrete structural

components considering tension softening and size effects. Non-linear fracture mechanics principles

(NLFM) have been used for crack growth analysis and remaining life prediction. Various tension

softening models such as linear, bi-linear, tri-linear, exponential and power curve have been

presented with appropriate expressions. Size effect has been accounted for by modifying the Paris

law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power

function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening

effects and size effect in the computation of SIF and remaining life prediction have been presented.

Numerical studies have been conducted on three point bending concrete beams under constant

amplitude loading for four cases namely, (i) considering linear elastic fracture mechanics (LEFM)

(ii) combination of LEFM and size effect (iii) NLFM and (iv) combination of NLFM and size

effect. It is observed that the predicted remaining life values using LEFM principles are

significantly lesser compared to the corresponding experimental values. The predicted remaining life

values are lesser in the case of combined LEFM and size effect when compared with those of the

values predicted in the case of LEFM alone. The predicted remaining life values with the

combination of NLFM & size effects are in close agreement with the corresponding experimental

values for all the tension softening models. From the studies, it can be concluded that the difference

in the predicted remaining life with and without considering size effect is not very significant.

2. Concrete fracture models

Based on different energy dissipation mechanisms, NLFM models for quasi-brittle materials can

be classified as a fictitious crack approach (cohesive crack model) and an equivalent-elastic crack

approach. Fracture mechanics models using only the Dugdale - Barenblatt energy dissipation

mechanism are usually referred to as the fictitious crack approach, whereas fracture mechanics
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models using only the Griffth-Irwin energy dissipation mechanism are usually referred to as the

effective-elastic crack approach or equivalent-elastic crack approach. 

The strain energy release rate for a mode I crack, Gq, can be expressed as (Shah and Swartz 1995)

 (1)

The value of GIc, can be evaluated based on LEFM and is called the critical energy release rate.

Gσ is equal to the work done by the cohesive pressure over a unit length of the crack for a structure

with a unit thickness. 

Brief description of fictitious crack model is presented below (Shah and Swartz 1995).

2.1 Fictitious crack approach (Cohesive crack model)

The fictitious crack approach assumes that energy to create the new surface is small compared to

that required to separate them, and the energy rate term GIC vanishes in Eq. (1). Fig. 2 shows the

simulation of a newly formed crack structures and the corresponding fracture process zone (Shah

and Swartz 1995). As a result, the energy dissipation for crack propagation can be completely

characterized by the cohesive stress-separation relationship σ(w). Since all energy produced by the

applied load is completely balanced by the cohesive pressure, Eq. (1) is reduced to (with GIc = 0)

(2)

wt is the crack opening displacement at the initial crack tip.

Eq. (2) is valid for structures with a constant thickness. The fictitious crack is assumed to

propagate when the principal tensile stress reaches the tensile strength of material, ft. 

Cohesive crack model requires a unique σ - w curve to quantify the value of energy dissipation.

The choice of the σ - w function influences the prediction of the structural response significantly,

and the local fracture behaviour, for example the crack opening displacement, is particularly

sensitive to the shape of σ - w. Many different shapes σ - w curves, including linear, bilinear,

trilinear, exponential, and power functions, have been used in the literature. Some of the widely

used σ - w curves with appropriate expressions are listed in Table 1.

Gq GIc G
σ

+=

Gq σ w( ) wd
0

wt

∫=

Fig. 2 Mode I crack for fictitious crack approach (Shah and Swartz 1995)
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Table 1 Different types of closing pressure for FPZ

Type Expression Shape

Linear curve -
Hillerborg et al., 1976

Bilinear curve - 
Roelfstra and 

Wittmann, 1986

Trilinear curve - 
Liaw et al., 1990

Exponential curve - 
Footer et al., 1986

where n is a fitting parameter

Reinhardt, 1985

where 0 < n < 1 is a fitting parameter

Gopalaratnam and 
Shah, 1985

similar relationship 
was also suggested by 
Cedolin et al., 1987

where k and λ are material parameters
k = −0.06163 and λ = 1.01 for concrete with f

c
' 

values of 33-47 MPa.

Power curve - 
Du et al., 1990
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3. SIF accounting for tension softening and remaining life prediction

The mechanism under fatigue loading in plain concrete may be attributed to progressive bond

deterioration between aggregates and matrix or by development of cracks existing in the concrete

matrix. These two mechanisms may act together or separately, leading to complexity of the fatigue

mechanism. It is well known fact that concrete typically exhibits nonlinear fracture processes

because of the large FPZ, leading to LEFM based approach objectionable. Hence an analytical

model for assessing the fatigue life of concrete accounting the tension softening effect is required.

The following are the basic assumptions of tension softening.

Modelling assumptions

i. Plane sections of the beam remain plane after deformation

ii. Fictitious crack surface remains plane after deformation

iii. Normal closing tractions acting on the fictitious crack follow the linear stress crack opening

displacement

iv. Bending stress in the concrete along the bottom of the beam is equal to the traction normal to

the crack mouth at the bottom of the beam.

To incorporate the tension softening behavior, based on the principle of superposition the stress

intensity factor (SIF) has to be modified as (Fig. 3) 

 (3)

where  is SIF for the concentrated load P in a three point bending beam geometry, and  is

SIF due to the closing force applied on the effective crack face inside the process zone, which can

be obtained through Green’s function approach by knowing the appropriate softening relation.

Superposition principle is used by accounting for the nonlinearity in incremental form. SIF due to

applied load and due to closing force will act in opposite directions. KI will not become zero as the

magnitude of  is around 10 to 20% of .

KI KI

P
KI

q
–=

KI

P
KI

q
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q
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P

Table 1 Continued

Type Expression Shape

Bilinear curve with 
w1 = 0 - 

Figueiras and Owen, 
1984

Where, k = constant

Power curve - 
Hordijk, 1991

where a1 and a2 are fitting parameters
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3.1 Computation of KI
P

SIF due to the concentrated load P can be calculated by using LEFM principles. A three-point

bending beam is shown in Fig. 3(b). The SIF for the beam can be expressed as

(4a)

where, (4b)

where P = applied load, a = crack length, b = depth of the beam, t = thickness and g1(a/b) =

geometry factor, depends on the ratio of span to depth of the beam and is given below for S/b = 2.5

(Tada et al. 1985)

(5)

3.2 Computation of KI
q

The incremental SIF due to the closing force dq can be written as (Shah and Swartz 1995)

(6)

where dq can be expressed as function of softening stress distribution over the crack length ∆a; the

function ‘g’ represents the geometry factor. 
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Fig. 3 Illustration of superposition principle (Shah and Swartz 1995)
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Calculation of ‘dq’

By using the above concept (Fig. 3(d)), cohesive crack can be modelled in the following manner

Fig. 4).

The crack opening displacement w at any point x is assumed to follow linear relationship (Fig. 4)

and can be expressed as 

(7)

where δ is the crack tip opening displacement, a0 is initial crack length and

As an example, let us consider linear softening law (refer Table 1) 

(8)

Where ft = tensile strength of concrete and wc= critical crack opening displacement

Substituting for w from Eq. (7) in the linear softening law given by Eq. (8) one can obtain 

(9)

The crack opening displacement at any point δ(x) can be calculated using the following equation

(10)
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Fig. 4 Cohesive crack modelling
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where CMOD is crack mouth opening displacement and is calculated using the following formula.

(11)

where g2(a/b) is geometric factor, depends on the ratio of span to depth of the beam and is given

below for S = 2.5b

(12)

Hence, replacing dq in Eq. (6) and integrating over length ∆a,  can be obtained as 

(13)

where

 (14)

Similar expressions are obtained for other models such as bilinear, trilinear, exponential, power

curve model etc., 

Remaining life can be predicted by using any one of the standard crack growth equations (such as

Paris, Erdogan - Ratwani, etc.)

(15)

Here ∆K can be computed by using following expression

∆K = Kmax – Kmin, where Kmax = Kp – Kq (16)

4. Accounting for size effect 

In general, Paris law is of the form

(17)

where C, m are crack growth constants. This law can also be expressed as 

(18)

where  and KIc = fracture toughness under monotonic loading.

Since it is known that Paris law is valid only for one specimen size (crack growth parameters

being adjusted for that size) or asymptotically for very large specimens. Paris law is combined with

the size effect law, leading to a size adjusted Paris law, which gives the crack length increment per

cycle as a power function of the amplitude of a size adjusted SIF. The size adjustment is based on

the relative specimen size, also called as brittleness number of the structure. Hence, KIc will become,
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(19)

in which β = D/D0 = relative specimen size, where, D is beam depth, KIf is a constant which

represents the asymptotic value of fracture toughness for infinitely large specimen coinciding with

the asymptotic value of the R-curve and D0 is an empirical constant that may be interpreted as the

size in the middle of the transition between the strength theory and linear elastic fracture mechanics.

4.1 Calculation of Do

The length of fracture process zone for an infinitely large specimen, cf can be written as (Bazant

and Kazemi 1990)

assume, (20)

The geometric factor g(x) for a three point bending specimen as shown in Fig. 5 can be calculated

using the following expression (RILEM 1990)

(21)

where,  is the geometry factor corresponding to S/b ratio.

For S/b = 2.5, the geometric factor (g1(x)), can be calculated using Eq. (5). The first derivative of

g(x) w. r. t x is

(22)

where

(23)

KIc KIf
β

1 β+
-----------=

cf

g a0/b( )
g′ a0/b( )
-------------------D0=

a0

b
----- x=

g x( ) s

b
---⎝ ⎠

⎛ ⎞
2

πx 1.5g1 x( )[ ]2=

g1 x( )

g′ x( ) s

b
---⎝ ⎠

⎛ ⎞
2

π
d

xd
-----x 1.5g1 x( )[ ]2=

d

xd
-----x 1.5g1 x( )[ ]2

9

4
--- 1 2.5x– 4.49x2 3.98x

3
– 1.33x

4
+ +( )

1 x–( )4
--------------------------------------------------------------------------------------

2 9

4
---x 1 2.5x– 4.49x2 3.98x

3
– 1.33x

4
+ +( )

1 x–( )3
----------------------------------------------------------------------------------------+=

1 2.5– 8.89x 11.94x
2

– 5.32x
3

+ +( )

27

4
------x 1 2.5x– 4.49x2 3.98x

3
– 1.33x

4
+ +( )

2

1 x–( )4
-------------------------------------------------------------------------------------------------+

Fig. 5 Three point bending specimen
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Similarly for s/b = 4.0, the geometric factor can be calculated using the following expression

(Tada et al. 1985)

(24)

The first derivative of g(x) w. r. t x is same as given in Eq. (22) and

 (25)

5. Numerical studies 

Crack growth studies and remaining life prediction has been carried out for three point bending

concrete beams using LEFM, NLFM and size effect principles under constant amplitude loading.

Three example problems are presented below.

5.1 Example 1: Toumi and Turatsinze (1998)

This problem was experimentally studied by Toumi and Turatsinze (1998) and the details of the

problem are given below.

wc = 0.2 mm, w1 = 0.03 mm, w2 = 0.05 mm, σ1 = 1.2 MPa

Modulus of elasticity = 37749 MPa and n1 = 0.61

The bending tensile stress (σb) can be calculated by using Eq. 4(b).

Using the above data, crack growth analysis and remaining life prediction has been carried out

using LEFM, NLFM and size effect principles. Tables 2(a) and 2(b) shows the predicted remaining

life values for various loading cases along with the experimental values presented by Toumi and

Turatsinze (1998). The following observations can be made from Tables 2(a) and 2(b).

• The predicted remaining life values with LEFM are within about 12% of the corresponding

experimental values.

Max.stress = 1.125 MPa Length (s) = 320 mm

Min.stress = 0.298 MPa depth (b) = 80 mm

Initial crack length = 4 mm thickness (t) = 50 mm

Final crack length = 0.5b = 40 mm tensile strength (ft) = 4.2 MPa

Fract. toughness = 0.63 MPa
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• The predicted remaining life values with the combination of LEFM and size effect are within

about 15% of the corresponding experimental values.

• The predicted remaining life values accounting for tension softening effect (NLFM) are within

about +4% to −8% of the experimental values.

• In the case of NLFM, the predicted remaining life values with linear, bi-linear, tri-linear,

exponential-Footer and exponential-Reinhardt models are larger compared to the experimental

values whereas power curve model predicts lesser values compared to the experimental values.

• The predicted remaining life values accounting for combination of NLFM and size effect are

within about +8% to −4% of the experimental values.

• In the case of combination of NLFM and size effect, the predicted remaining life values with

linear, exponential – Footer and exponential-Reinhardt models are larger compared to the

experimental values and bi-linear, tri-linear and power curve models predicts lesser values

compared to the experimental values.

• In general, the predicted remaining life values with the combination of NLFM & size effects are

in close agreement with the corresponding experimental values for all the tension softening

models.

Table 2(a) Predicted remaining life with LEFM and NLFM

Max. stress 
MPa

LEFM Linear Bi-Linear Trilinear
Expo-
Footer

Expo-
Reinhardt

Power 
model

Exptl.
Toumi Bascos 
and Turatsinze 

(1998)

1.125
28689

10.96%
33304
-3.36%

32252
-0.09%

32941
-2.23%

33310
-3.38%

33102
-2.73%

30887
4.14%

32222

1.05
57251
9.99%

66747
-4.93%

63892
-0.44%

65032
-2.23%

66781
-4.98%

65348
-2.73 %

61011
4.09%

63611

0.975
62603
9.85%

74775
-7.68%

69692
-0.36%

70998
-2.24%

74791
-7.70%

71346
-2.74%

66592
4.11%

69444

0.9
16188

11.70%
19102
-4.19%

18479
-0.80%

18801
-2.55%

19116
-4.27%

18892
-3.05%

17612
3.93%

18333

Table 2(b) Predicted remaining life with the combination of LEFM/NLFM & Size effect

Max. stress 
MPa

LEFM Linear Bi-Linear Trilinear
Expo-
Footer

Expo-
Reinhardt

Power 
model

Exptl.
Toumi Bascos 
and Turatsinze 

(1998)

1.125
27937

13.29%
32434
-0.66%

31409
2.52%

32080
0.44%

32439
-0.67%

32236
-0.04%

30077
6.66%

32222

1.05
54081

14.98%
64893
-2.02%

62351
1.98%

63331
0.44%

64821
-1.90%

63741
-0.20%

59012
7.23%

63611

0.975
59861

13.80%
71092
-2.37%

67892
2.23%

69140
0.44%

72126
-3.86%

69692
-0.36%

64242
7.49%

69444

0.9
15802

13.81%
18602
-1.47%

17891
2.41%

18320
0.07%

18714
-2.08%

18495
-0.88%

17011
7.21%

18333
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• From the studies, it can be concluded that the difference in the predicted remaining life with and

without considering size effect is not very significant.

Fig. 6 shows a plot of crack length vs. remaining life for a loading case with stress =1.125 N/mm2

using LEFM/NLFM and size effect principles. 

5.2 Example 2: Bazant and Schell (1993)

This problem was experimentally studied by Bazant and Schell (1993). The details of the problem

are presented below. Different beam depths and spans were considered for experimental studies.

Beam depth (b) = 38.1, 107.8, 304.8 mm

Span (S) = 2.5 * beam depth

Thickness (t) = 38.1 mm

Initial crack length = b/6 mm

Modulus of elasticity = 38,300 MPa

Tensile strength = 8.9 MPa

Tables 3(a) and 3(b) shows the predicted remaining life for the different loading cases using

LEFM, NLFM and combination of these with size effect principles. Tables 3(a) and (b) also shows

the experimentally found remaining life values for the various loading cases reported by Bazant and

Schell (1993). The following observations can be made from Tables 3(a) and (b). 

• The predicted remaining life values with LEFM are within about 14% of the corresponding

experimental values.

• The predicted remaining life values with the combination of LEFM and size effect are within

Fig. 6 Remaining life with combination of LEFM/NLFM & Size effect
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about 16% of the corresponding experimental values.

• The predicted remaining life values accounting for tension softening effect (NLFM) are within

about +5% to -7% of the experimental values.

• In the case of NLFM alone, the predicted remaining life values with linear, bi-linear, tri-linear,

exponential-Footer and exponential-Reinhardt models are larger compared to the experimental

values whereas power curve model predicts lesser values compared to the experimental values.

• The predicted remaining life values accounting for combination of NLFM and size effect are

within about +7.0% to 3% of the experimental values.

• In the case of combination of NLFM and size effect, the predicted remaining life with linear,

exponential – Footer and exponential - Reinhardt models is larger compared to the experimental

values and bi-linear, tri-linear and power models predicts lesser values compared to the

experimental values.

• In general, the predicted remaining life values with the combination of NLFM & size effects are

in close agreement with the corresponding experimental values for all the tension softening

models.

Table 3(a) Predicted remaining life with LEFM and NLFM

Details of 
beam,
mm

Max. and 
Min stress, 

MPa
Linear Bi-Linear Trilinear

Expo. 
model by 

Footer

Expo. 
model by 
Reinhardt

Power 
model

LEFM

Exptl. 
Bazant and 

William 
(1993)

b=38.1
S=95.25
t=38.1

0.291
0.0279

34862
-4.35%

33496
-0.26%

34129
-2.16%

34982
-4.70%

34672
-3.78%

31982
4.27%

29010
13.17%

33409

b=107.8
S=268.75
t=38.1

0.07422
0.00675

7789
-4.55%

7498
-0.64%

7662
-2.84%

7801
-4.71%

7754
-4.08%

7162
3.87%

6779
9.00%

7450

b=304.8
S=762
t=38.1

0.01915
0.00174

42812
-4.76

41146
-0.68%

41970
-2.70%

42798
-4.73%

42486
-3.96%

39102
4.32%

36642
10.34%

40867

Table 3(b) Predicted remaining life with the combination of LEFM/NLFM & Size effect

Details of 
beam,
mm

Max. and 
Min stress, 

MPa
Linear Bi-Linear Trilinear

Expo. 
model by 

Footer

Expo. 
model by 
Reinhardt

Power 
model

LEFM
Exptl. Bazant 
and William 

(1993)

b=38.1
S=95.25
t=38.1

0.291
0.0279

33864
-1.36%

32614
2.38%

33256
0.46%

34125
-2.14%

33812
-1.21%

31102
6.90%

28264
15.4%

33409

b=107.8
S=268.75
t=38.1

0.07422
0.00675

7592
-1.90%

7289
2.16%

7432
0.24%

7599
-2.00%

7561
-1.49%

6902
7.36%

6583
11.64%

7450

b=304.8
S=762
t=38.1

0.01915
0.00174

41632
-1.87%

40158
1.73%

40632
0.58%

41802
-2.29%

41381
-1.26%

38001
7.01%

35201
13.86%

40867
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• From the studies, it can be concluded that the difference in the predicted remaining life with and

without considering size effect is not very significant.

5.3 Example 3 Baluch et al. (1987)

Another example problem has been chosen for crack growth analysis and remaining life

prediction. This problem was experimentally studied by Baluch et al. (1987)

Length of supported span (S) = 1360 mm, Thickness (t) = 51 mm

Depth (b) = 152 mm, Fracture toughness = 1.16 × 106 N/m3/2

Table 4 shows the predicted remaining life for different loading cases using LEFM and NLFM

principles considering size effect. From Table 4, it can be observed that there is about 11%

difference between the predicted value and the corresponding experimental value in the case of

combination of LEFM and size effect. For other loading cases, the experimental values are not

available in the literature for comparison. The methodologies for crack growth analysis and

remaining life prediction accounting for tension softening effect have been tested and verified for

the previous examples. For this example, the remaining life has been predicted employing bi-linear

and tri-linear models with the combination of NLFM and size effect.

6. Conclusions

Methodologies for remaining life prediction of plain concrete structural components considering

tension softening and size effects have been presented. NLFM principles have been used for crack

growth analysis and remaining life prediction. Various tension softening models such as linear, bi-

linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate

expressions. Size effect has been accounted for by modifying the Paris law, leading to a size

adjusted Paris law, which gives crack length increment cycle as a power function of the amplitude

of a size adjusted SIF. The size adjustment is based on the brittleness number of the structure,

representing the ratio of the structure size D to the transitional size Do. Details of tension softening

Table 4 Remaining life using combination of LEFM/NLFM and (Bilinear and trilinear) Size effect

Max. stress 
MPa

Stress ratio
initial Crack 

Length

Crack Growth
Constants

 C m

Remaining life predicted by using

LEFM Bi-Linear Tri-Linear

0.5194
0.1
0.2
0.3

75mm
7.71e-25, 3.12
5.78e-24, 3.12
1.72e-24, 3.15

38078*

33176
25436

41768
36415
27968

42641
37123
28501

0.692
0.1
0.2
0.3

75mm
7.71e-25, 3.12
5.78e-24, 3.12
1.72e-24, 3.15

24536
21987
14789

26912
24115
16208

27492
24618
16584

0.4328
0.1
0.2
0.3

85 mm
7.71e-25, 3.12
5.78e-24, 3.12
1.72e-24, 3.15

25123
22453
17936

30984
24601
19692

28112
25214
20102

*-Experimental value 44000 (Baluch et al. 1987) (stress ratio = 0.1 and maximum stress = 0.5194 MPa)
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effects and size effect in the computation of SIF and remaining life prediction of concrete structural

components has been presented. 

Numerical studies have been conducted on three point bending concrete beams under constant

amplitude loading for four cases namely, (i) LEFM (ii) combination of LEFM and size effect (iii)

NLFM and (iv) combination of NLFM and size effect. Remaining life has been predicted for the

above cases and the predicted values have been compared with the corresponding experimental

observations. The predicted remaining life with LEFM is significantly lesser than those of the

corresponding experimental values. In the case of NLFM, the predicted remaining life values with

linear, bi-linear, tri-linear, exponential-footer and exponential-reinhardt models are larger compared

to the experimental values whereas power curve model predicts lesser values compared to the

experimental value. In the case of combination of NLFM and size effect, the predicted remaining

life values with linear, exponential – Footer and exponential - Reinhardt models are larger compared

to the experimental values and bi-linear, tri-linear and power curve models predicts lesser values

compared to the experimental values. The predicted remaining life values with the combination of

NLFM & size effects are in close agreement with the corresponding experimental values for all the

tension softening models. From the studies, it can be concluded that the difference in the predicted

remaining life with and without considering size effect is not very significant.
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