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Abstract. A quasi ideal importance sampling simulation method combined in the conditional
expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint
probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept
as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling
variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined
numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance
sampling simulations combined in the conditional expectation are executed to estimate the failure
probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives
accurate estimations efficiently.

Keywords: structural failure probability; simulation-based reliability method; conditional expectation;
ideal importance sampling.

 

 

 1. Introduction

 

This paper describes a quasi ideal importance sampling simulation combined in the conditional

expectation for the simulation-based structural reliability estimation. There have been various

simulation-based methods studied for the estimation of the structural reliability. It has been a very

important issue in the simulation-based structural reliability estimation to enhance the simulation

efficiency by making use of various variance reduction techniques (VRT). 

 The conditional expectation is one method of the powerful VRT (Rubinstein 1981), which is
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utilized by randomly generating all the basic random variables except one variable referred to as a

control variable and randomly generated variables referred to as sampling variables are selected as

the ones of least variability. The conditional expectation VRT reduces the variance of the estimate

of the structural failure probability under consideration by conditioning on the sampling variables

and resulting conditional failure probabilities can be evaluated by the cumulative distribution

function of the control variable (Ayyub et al. 1984, Karamchandani 1991). 

The importance sampling method is also known as one of the powerful VRT tools. In the recent

years, a number of methodologies have been studied and developed in the importance sampling

techniques not only to compose the importance sampling density function (p.d.f.) but to enhance the

simulation efficiency of the high dimensional problems (Schuëller et al. 2004, Katafygiotis et al.

2006, Hurtado 2007, Au 2008).

In this study, a quasi ideal importance sampling joint p.d.f. is defined on the basis of the ideal

importance sampling concept (Bucher 1988, Ang et al. 1989). And the respective marginal p.d.f.s of

the quasi ideal importance sampling joint p.d.f. are so composed as to be proportional to the

expectation of the conditional failure probabilities multiplied by the p.d.f. of the sampling variables.

These marginal p.d.f.s are determined numerically by the simulations based on the conditional

expectation and partly by the piecewise integrations (Yonezawa et al. 2007).

The quasi ideal importance sampling simulations combined in the conditional expectation are

executed to estimate the failure probabilities of structures with multiple failure surfaces. The

samples of the basic random variables are generated by applying the inverse transformation to the

cumulative distribution functions corresponding to the respective marginal p.d.f.s determined in the

proposed method. It is shown that the proposed method gives accurate estimations with smaller

sample size and frequency of function calls. 

 

 

 2. Simulation based on the conditional expectation 

 

2.1 Basic definition of structural failure probability

 

For the analysis of time invariant structural reliability problems, the probability of failure is given

by

 

(1)

where , (j = 1, 2,…, m) are the limit state functions and fU(u) is the joint p.d.f. of k-

dimensional basic random variables U = (U1, U2,…, Uk)
T, which are assumed to be independent

standardized normal variables. Df is the failure domain defined by

 

(2)

 

2.2 Conditional failure probability
 

The basic random variables are divided into two groups, one is a control variable Ul and the other

are the sampling variables denoted as US = (U1, U2, ..., Ul−1, Ul+1,..., Uk)
T. By using Ul and US, the
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failure probability given by Eq. (1) is expressed as follows:

 

 

 (3)

where fUS(uS) is the joint p.d.f. of the sampling variables. The notation PfC(ul | uS) is the conditional

failure probability of the event of gjU(ul, uS) ≤ 0, (j = 1, 2,…, m) for a given US = uS. EfUS[ ] is the

expectation with respect to fUS(uS). 

The conditional failure probability  for a given  in a two-dimensional

reliability problem with two limit state surfaces, as an example illustrated in Fig. 1, is evaluated as

follows:

 

 (4)

 

 

An unbiased estimate of Eq. (3) and its variance are given by
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limit state surfaces

u
1

i( )



58 Masaaki Yonezawa, Shoya Okuda and Hiroaki Kobayashi

 
 (5)

 (6)

where N is the sample size of the simulation to estimate Pf. 

In the conditional expectation VRT, most of samples are made use of yielding the conditional

failure probabilities, that is to say, they contribute more or less to estimate the structural failure

probability. Furthermore in this study, in order to enhance the simulation efficiency it is proposed to

combine the importance sampling VRT in the conditional expectation VRT as described below.

 

 

3. Importance sampling simulation

 

3.1 Importance sampling probability density function

 

An importance sampling joint p.d.f. hUS(uS) is introduced into Eq. (3), which is rewritten as

follows: 

 

 

 (7)

where EhUS[ ] is the expectation with respect to hUS(uS). 

An unbiased estimate of Eq. (7) and its variance are given by

   (8)

 (9)

A conditional failure probability for a given sample  generated from an importance sampling

p.d.f. centered at the β-point based on the concept of ISPUD (Shuëller et al. 1987) is illustrated in

Fig. 2 for a structural reliability problem with one failure surface of two basic random variables.

This is one approach to combine the importance sampling VRT in the conditional expectation VRT. 

For the structures with multiple failure surfaces, various multiple checking point (β-point) methods

have been proposed (Shuëller et al. 1987, Murotsu et al. 1990, Yonezawa et al. 1998), where

samples are allocated to the respective failure surfaces according to the weight related to the

respective β-values. If the multiple checking point method is applied to cope with the structures with

multiple failure surfaces, it is inevitable to identify the β-points of the respective failure surfaces. 
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It should be noted that the simulation based on the conditional expectation can treat the multiple

failure surfaces without using the multiple β-points as illustrated in Fig. 1. Then it is proposed in

this paper to combine the importance sampling in the conditional expectation for the estimation of

the structural failure probability without using the β-points.

 

3.2 Ideal importance sampling

In the importance sampling, how to compose the importance sampling joint p.d.f. is the most

important matter of concern. Suppose that the importance sampling p.d.f. in Eq. (7) is given by 

  (10)

Then the structural failure probability is expressed as the expectation of Pf itself with respect to

hUS(uS) as follows:

   

(11)

Therefore Eq. (10) gives an ideal importance sampling p.d.f. (Bucher 1988, Ang et al. 1989),

however it is impossible to compose such a sampling p.d.f., because it contains the Pf to be

estimated and it is also difficult to determine analytically the conditional failure probability

. 

Then instead of treating the ideal importance sampling p.d.f. directly, it is proposed to compose

approximately a quasi ideal importance sampling p.d.f. And the respective marginal p.d.f.s of the
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quasi ideal importance sampling joint are so composed as to be proportional to the expectation of

the conditional failure probabilities multiplied by the p.d.f. of the sampling variables. These

marginal p.d.f.s are determined numerically by the simulations based on the conditional expectation

and partly by the piecewise integrations. In the following section, the procedure to compose the

quasi ideal importance sampling marginal p.d.f.s is described.

 

 

 4. Composition of the quasi ideal importance sampling marginal probability den-

sity functions

 

 4.1 Marginal probability density functions in a three-dimensional reliability problem
 

A reliability problem with three basic random variables is considered for convenience of

explanation, where u3 is specified to be the control variable and u1 and u2 are specified to be the

sampling variables. The two-dimensional ideal importance sampling joint p.d.f. denoted as hI(u1, u2)

is expressed according to Eq. (10) as follows:

 

  (12)

Since u1 and u2 are assumed to be independent, fUS(u1, u2) is rewritten as a product of the

respective marginal p.d.f.s, fU1(u1) and fU2(u2), as follows: 

 

(13)

The marginal p.d.f.s of hI(u1, u2) denoted as hI1(u1) and hI2(u2) are determined by integrating

Eq. (12) over u2 and u1 respectively by taking into account of Eq. (13) as follows:
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It is seen from Eqs. (14) and (15) that hI1(u1) and hI2(u2) are proportional to the expected

conditional failure probability multiplied by the respective p.d.f. The proportionality constant is 1/Pf.

By taking into account of Eqs. (7) and (13), Pf , the denominator of Eq. (14), is expressed so as to

be related with the numerator of Eq. (14), as follows:

 

 (16)

 

For the denominator of Eq. (15) in turn

 

  

   (17)

 

4.2 Determination of the quasi ideal importance sampling marginal probability density

functions

 

In this study the ideal importance sampling marginal p.d.f.s, hI1(u1) and hI2(u2) are determined

numerically as the quasi ideal importance sampling marginal p.d.f.s denoted as hQ1(u1) and hQ2(u2)

respectively. 

First, it is proposed that the expected conditional failure probabilities contained in the integration

of Eqs. (16) and (17) are evaluated by the piecewise integration. The specified interval [ua, ub] of

the respective sampling variables is split into n segments and the respective quasi ideal importance

sampling marginal p.d.f.s at u1 = u1
(p1), (p1 = 1, 2, ..., n) and u2 = u2

(p2), (p2 = 1, 2, ..., n) are written

as follows: 
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 (19)

where n is the number of the segments of divided interval of the sampling variables, ∆u is the

constant width of each segment and A1, A2 are the results evaluated by the piecewise integrations of

the respective denominators. 

Next, it is proposed that the expected conditional failure probabilities both in the numerators and

the denominators of Eqs. (18) and (19) are estimated by the simulations based on the conditional

expectation as follows:

 

 (20)

  (21)

where NQ is the sample size of the simulation to estimate the expected conditional failure

probability.

The denominators A1 and A2 in Eqs. (18) and (19) should result in the same value, since they give

the same value of Pf by the piecewise integrations of the expected conditional failure probabilities

given by Eqs. (20) and (21). Some differences between them, however, may arise due to the

numerical error, so A1 and A2 should be evaluated separately to normalize the respective marginal

p.d.f.s. 

The histograms of the respective quasi ideal importance sampling marginal probability densities

thus determined are illustrated in Fig. 3.

For a reliability problem with k basic random variables, where ul is specified as the control

variable and the others as the sampling variables, the respective quasi ideal importance sampling

marginal p.d.f.s at pj-th segment (pj = 1, 2, …, n) are determined as follows:
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 (24)

where the samples are generated from fUS-j(uS).

The above procedure to construct the marginal p.d.f.s of the quasi ideal importance sampling p.d.f.

is referred to as a preliminary stage, where (k-1) × n × NQ samples are totally required. Finally, the

quasi ideal importance sampling joint p.d.f. hQ(uS) is composed of the product of the respective

marginal p.d.f.s above determined as follows:

    (25)

In the main stage of reliability estimation, the importance sampling simulations combined in the

conditional expectation are executed to estimate the failure probabilities of structures with multiple

failure surfaces by using N samples. The random outcomes of k−1 sampling variables are generated

by applying the inverse transformation to the cumulative distribution functions corresponding to the

respective marginal p.d.f.s given by Eq. (22). This simulation procedure for the estimation of the
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Fig. 3 The sampled distribution of the conditional failure probabilities and the histograms of the resulting
quasi ideal importance sampling marginal probability densities
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structural failure probability is referred to as “the quasi ideal importance sampling simulation

combined in the conditional expectation.”

 5. Numerical examples

 

Numerical examples to estimate the structural failure probabilities are presented to demonstrate

the feature of the proposed method. The estimated results of Pf by the proposed “Quasi ideal

importance sampling simulation combined in the Conditional Expectation” (denoted as “QCE”) are

compared in Tables with those estimated by the conventional “Conditional Expectation” (denoted as

“CE”) and those by the crude Monte Carlo Simulation (denoted as “MCS”). The exact solution of

Pf (denoted as “Exact”) is substituted for the estimation by MCS with N = 109 samples. The value

of the coefficient of variation of the estimated Pf (denoted as “cov”) of 0.01 is specified as a

required accuracy level in the main simulation procedure. 

In the Preliminary stage to determine the quasi ideal importance sampling marginal p.d.f.s in

“QCE” method, the specified interval [ua, ub] = [−6.0, 6.0] of the respective sampling variables is

divided into n = 12 segments, that is, ∆u = 1 and Eq. (23) is evaluated by the piecewise integration.

The expected conditional failure probabilities given in Eq. (24) are estimated through simulations

based on the conditional expectation with sample size of NQ. Then (k − 1) · n · NQ samples are used

to determine all the marginal p.d.f.s in the preliminary stage and N samples are used to estimate Pf

in the main simulation. 

The frequency of limit state functions calls is compared as an index of the calculation efficiency

for both in the preliminary stage and the main simulation procedure. In the case of the reliability

problem with m failure modes, the frequency of function calls is obtained by {(k − 1) ·

n · NQ+N} · m, where k is the number of the dimension of the problem, n that of segments of the

piecewise integration in Eq. (23) and m that of the failure modes. The effect of various NQ on the

results of the estimated Pf and the required total frequency of function calls is also compared.

In all simulation methods, the algorithm of “Mersenne Twister” for generating uniform pseudo-

random numbers is adopted, which provides uniform random variables with a super astronomical

period 219937-1 and 623-dimensional equi-distribution up to 32 bits accuracy (Matsumoto et al.

1998). Numerical examples are compiled in C++ on a Windows XP personal computer.

 

5.1 Case 1

First consider the structural system with limit state functions given in Eq. (26). The basic random

variables are assumed to be standardized normal Ui: N(0, 12), (i = 1, 2, 3, 4). The variable U4 is

specified as the control variable for applying the conditional expectation. The results of the

estimated failure probabilities are given in Table 1. 

 

 (26)
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 5.2 Case 2 

Next consider a ten-member truss structure shown in Fig. 4. The limit state functions of eight

significant failure modes considered are given in Table 2 (Ono et al. 1990), in which Ti, (i = 1, 2,

…, 10) are the strength of the members and Fi, (i = 1, 2) are the external forces. The standardized

variable of F1 is specified as the control variable for applying the conditional expectation. The

statistical data of the basic random variables are given in Table 3 and the results of the estimated

failure probabilities are given in Table 4.

Table 1 Estimation results for Case 1

Method 
(NQ)

Preliminary 
sample size

(k−1) · n · NQ

Main simulation
sample size

N

Estimated
Pf

Frequency of
function calls

{(k−1) · n · NQ+N} · m

MCS
CE

QCE(102)
QCE(103)
QCE(104)
QCE(105)
QCE(106)

  0
  0

3.60×103

3.60×104

3.60×105

3.60×106

3.60×107

2.737×107

1.030×107

6.469×107

4.758×105

7.406×104

6.862×104

7.649×104

3.6524×10−4

3.5943×10−4

3.6224×10−4

3.5732×10−4

3.5903×10−4

3.6141×10−4

3.5920×10−4

8.211×107

3.091×107

1.941×108

1.535×106

*1.302×106

1.100×107

1.823×107

Exact
(by MCS)

  0 1.0×109 
(cov = 0.0044)

3.6165×10−4  3.0×109

Note: Required accuracy level of the estimated Pf in the main simulation: cov ≤ 0.01
 NQ is the sample size of the simulation used in Eq. (24). 
 Parameters: k = 4, n = 12 and m = 3

Fig. 4 A ten-member truss structure for Case 2
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5.3 Results and discussions

Generally speaking, sampling variables are selected as the ones of least variability and one of

larger variability should be selected as a control variable. Furthermore variables involved in the

nonlinear terms among the limit state functions should be carefully treated and possibly avoided as

Table 2 List of the limit state functions for Case 2

Mode no. Limit state function

1
2
3
4
5
6
7
8

0.7071T4 + 0.7071T5 – 2.2F1

T6 + 0.7071T10 – 1.2F1 –F2

T3 + 0.7071T5 + 0.7071T10 – 2.2F1

T8 + 0.7071T10 – 1.2F1

T6 + T7 – 1.2F1

T3 + 0.7071T5 + T6 – 1.2F1 – F2

0.7071T9 + 0.7071T10 – 1.2F1

T1 + 0.7071T5 – 3.4F1 – F2

Table 3 Statistical data of basic random variables for Case 2

Variable
Mean value

[kN]
Standard deviation

[kN]
Distribution type

T1, T2

T3

T4, T5

T6, T7

T8

T9, T10

F1

F2

90.0
9.0
48.0
21.0
15.0
30.0
11.0
3.6

13.5
1.35
7.20
3.15
2.25
4.50
3.30
0.72

Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal

Table 4 Estimation results for Case 2

Method 
(NQ)

Preliminary 
sample size

(k−1) · n · NQ

Main simulation
sample size

N

Estimated
Pf

Frequency of
function calls

{(k−1) · n · NQ+N} · m

MCS
CE

QCE(101)
QCE(102)
QCE(103)
QCE(104)

  0
  0

1.32×103

1.32×104

1.32×105

1.32×106

1.953×109

2.119×106

6.663×106

1.045×105

7.019×104

7.447×104

5.1189×10−5

5.0740×10−5

5.0609×10−5 

5.0978×10−5 

5.0664×10−5 

5.0941×10−5 

1.562×109

1.696×107

5.332×107

*9.421×105

1.617×106

1.116×107

Exact
(by MCS)

  0 1.0×109 
(cov = 0.0044)

5.0844×10−5  8.0×109

Note: Required accuracy level of the estimated Pf in the main simulation: cov ≤ 0.01
 NQ is the sample size of the simulation used in Eq. (24). 
 Parameters: k = 12, n = 12 and m = 8
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a control variable. In the case of the reliability problems with multiple failure modes, the variables

commonly appearing among the limit state functions should be preferably selected. In the present

numerical examples, U1 involved in the square term is avoided and any one of U2, U3, U4 may be

applicable, then U4 is selected as the control variable for Case 1 and F1 appearing most commonly

among eight limit state functions is selected as the control variable for Case 2.

Fig. 5 Simulation results of the estimated Pf vs. sample size for Case 2

Fig. 6 Simulation results of the cov of the estimated Pf vs. sample size for Case 2
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It is observed from Table 1 for Case 1 that the proposed QCE method with NQ = 104 gives the

best estimation at the smallest frequency of function calls compared with other methods. It is seen

from Table 4 for Case 2 that the proposed QCE method with NQ = 102 gives the best estimation at

the smallest frequency of function calls compared with other methods. Generally the smaller NQ is

the better, but it can be said that too small or too large size of NQ is inappropriate for enhancing the

simulation efficiency in terms of the frequency of function calls. 

For Case 2, the estimated failure probabilities and their cov vs. sample size are shown in Figs. 5

and 6. The effects of NQ on the shape of the resulting quasi ideal importance sampling marginal

p.d.f. of u4, the standardized variable of T4, are compared in Fig. 7 with various NQ. It is seen from

Fig. 7 that the shape of the resulting marginal p.d.f. at NQ = 101 seems to converge to a certain

stable shape as the value of NQ increases. The quasi ideal importance sampling marginal p.d.f.s of

other sampling variables also tend to reflect the same tendency. In this case, NQ = 102 seems to be

appropriate for the determining the quasi ideal importance sampling marginal p.d.f.s.

Since the determination of the quasi ideal importance sampling marginal p.d.f.s usually requires

(k−1) times (k−2)-th multiple integral, then the calculation amount of the piecewise integrations will

increase drastically and confront the lack of computer memories as the number of k increases.

Therefore it can be said that instead of executing the piecewise integrations in the entire process of

the preliminary stage, the simulation approach is effective when constructing the quasi ideal

importance sampling marginal p.d.f.s. for the reliability problems whose dimension is not too high.

6. Conclusions

A quasi ideal importance sampling simulation combined in the conditional expectation is proposed

for the estimation of the structural failure probability. A quasi ideal importance sampling joint p.d.f.

is defined on the basis of the ideal importance sampling concept. For all sampling variables, the

Fig. 7 The effect of NQ on the shape of the resulting quasi ideal importance sampling marginal p.d.f. of u4 (u4:
the standardized variable of T4 in Case 2)
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respective marginal p.d.f.s. of the quasi ideal importance sampling p.d.f. are determined numerically

by the simulation based on the conditional expectation and partly by the piecewise integration. 

It is shown by the numerical examples that the proposed method gives accurate estimations with

smaller sample size and frequency of function calls and the proposed method can be applied for the

estimations of the failure probabilities of the structures with multiple failure surfaces. 
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