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Reliability analysis of wind-excited structures using 
domain decomposition method and line sampling
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Abstract. In this paper the problem of calculating the probability that the responses of a wind-excited
structure exceed specified thresholds within a given time interval is considered. The failure domain of the
problem can be expressed as a union of elementary failure domains whose boundaries are of quadratic
form. The Domain Decomposition Method (DDM) is employed, after being appropriately extended, to
solve this problem. The probability estimate of the overall failure domain is given by the sum of the
probabilities of the elementary failure domains multiplied by a reduction factor accounting for the
overlapping degree of the different elementary failure domains. The DDM is extended with the help of
Line Sampling (LS), from its original presentation where the boundary of the elementary failure domains
are of linear form, to the current case involving quadratic elementary failure domains. An example
involving an along-wind excited steel building shows the accuracy and efficiency of the proposed
methodology as compared with that obtained using standard Monte Carlo simulations (MCS).
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1. Introduction

In reliability problems of wind-excited structures where a deterministic linear structural model and

a stochastic excitation model are assumed, the random variables used to model the random wind

excitation can be combined in an NZ-dimensional random vector  with joint PDF

f (Z). For a given realization of the excitation, corresponding to a specific sample Z, the structural

response is computed through dynamic analysis and is checked as to whether it satisfies the adopted

failure criteria. The failure probability can be written as 

(1)

where IF(Z) indicates the state of the structure for a given Z: IF(Z) = 1 if the structure fails, in the

sense that the structural responses exceed some pre-specified thresholds, and IF(Z) = 0 otherwise.

Due to the large number NZ of random variables and the complexity of the failure domain {Z|IF(Z) =

1}, one needs to resort to statistical methodologies to evaluate the above reliability integral.

Z Z1 … ZNZ
, ,[ ]=

PF IF Z( )f Z( )dZ
R

N
Z∫=
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Monte Carlo simulations (MCS) (Rubinstein 1981, Proppe et al. 2003) offer a robust methodology

well suited for solving such high-dimensional reliability problems. In MCS, the failure probability is

estimated by the arithmetic average of the indicator function IF (Z) over the samples {Z(r), r = 1, …,

Ns} generated according to f (Z). The accuracy and efficiency of MCS does not depend on the

geometry of the failure domain or the dimension of the problem. Instead, it depends only on the

failure probability P(F) and the number of generated samples Ns. The coefficient of variation (COV)

δ of the MCS estimator for P(F) is 

(2)

In engineering applications, the failure probability is expected to be small. In this case, the above

equation implies that the computational effort is prohibitively high in order to obtain an estimate

with acceptable accuracy. For example, if P(F) = 10−4, one needs Ns = 106 samples (structural

dynamic analyses) to achieve the accuracy level of 10% COV. 

The excessive computational requirement of MCS is its main shortcoming and has been the

reason for pursuing the development of alternative more efficient simulation algorithms. However, it

is noted that several commonly used simulation algorithms, such as importance sampling, encounter

serious difficulties when considering high-dimensional reliability problems such as the one at hand.

Some of the pioneering works highlighting the problems encountered when dealing with high-

dimensional problems are (Au and Beck 2003, Schuëller et al. 2004, Schuëller and Pradlwarter

2007, Katafygiotis and Zuev 2008). 

In this paper a very efficient algorithm, called Domain Decomposition Method (DDM)

(Katafygiotis and Cheung 2006), is used for solving the given reliability problem, i.e., calculating

the probability of the wind-excited structural responses exceeding some specified thresholds within

a given time duration. Expressing the failure domain as a union of elementary failure domains, the

DDM estimates the probability of the overall failure domain as the sum of the probabilities of these

elementary failure domains multiplied by a reduction factor which reflects the overlapping degree of

the different elementary failure domains. The key difference of the investigated problem from the

original formulation of the DDM is that the elementary failure domains are quadratic rather than

linear. Herein we extend the DDM with the help of Line Sampling (LS) (Schuëller et al. 2003,

Koutsourelakis et al. 2004, Schuëller et al. 2004, Pradlwarter et al. 2007) so as to handle the

specific type of reliability problem considered. An illustrative example involving an along-wind

excited steel building shows the accuracy and efficiency of the proposed methodology.

 

2. Formulation

 

In this part the reliability problem corresponding to wind-excited structural response(s) exceeding

some predetermined threshold(s) during a given time interval is formulated. Using the spectral

representation method (Grigoriu 2002), the wind velocity fluctuation is simulated as a sum of

harmonic waves with amplitudes modeled by standard normal random variables. Utilizing the unit

impulse response functions, the responses of the structure are expressed as quadratic functions of a

standard normal random vector used to simulate the wind velocities. In the corresponding standard

normal space the failure domain can be expressed as a union of elementary failure domains whose

boundaries are of quadratic form.

δ
1 P F( )–

P F( )Ns

--------------------
1

P F( )Ns

------------------≈= P F( )<<1( )
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2.1 Stochastic modeling of multivariate wind velocity field

The generation of along-wind velocity field is considered. At a given point located at height h

from the ground, the velocity is

(3)

where  is the mean value and v(h; t) is the fluctuating component of the wind velocity. In the

discretization of the wind velocity field we aim to generate Nu fluctuating components vj(t), j = 1,

…, Nu, at points with corresponding heights hj, j = 1, …, Nu, where the discretized pressures and

then forces are to be evaluated. The simulation of the fluctuating components amounts to simulating

a one-dimensional Nu-variate zero-mean stationary stochastic vector process 

according to its cross-power spectral density (one-sided) matrix

(4)

which is assumed to be real due to the negligibility of the quadrature spectrum (Simiu and Scanlan

1986), symmetric and positive definite (Di Paola and Gullo 2001) at each frequency ω.

Among various algorithms for simulating the above stochastic vector process, the spectral

representation method (Shinozuka and Jan 1972, Shinozuka and Deodatis 1991, Deodatis 1996,

Grigoriu 2002) is one of the most widely used. According to this method, the stochastic vector

process is simulated as a superposition of harmonic waves with random phases or random

amplitudes. Herein the algorithm using random amplitudes is adopted and is briefly described

below. 

According to Cholesky’s method, the matrix  can be decomposed as follows

(5)

where H(ω) is a lower triangular real matrix due to the principal axis theorem (Jacob 1990). Let

Hd(ω), d = 1, …, Nu, denote the d-th column vector of , that is

(6)

Let ωu denote the cutoff frequency above which all components , j, k = 1, …, Nu, of S0(ω)

are insignificant for practical purposes. That is

(7)

where  is the ratio of the neglected power spectrum content over the total content and ωu is

such that all ru’s are smaller than a predefined threshold. Divide the interval [0, ωu] into Nω equal

segments, each having length ∆ω = ωu/Nω, and consider a sequence of frequencies based on the

V h;t( ) V h( ) v h;t( )+=

V h( )

v t( ) v1 t( ) … vNu
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centroid rule as follows: ωl = (2l – 1) ∆ω/2, l = 1, …, Nω. Then, the stochastic vector process 

is simulated using the following formula (Grigoriu 2002) 

(8)

where Z1ld and Z2ld, l = 1, ..., Nω, d = 1, ..., Nu, are independent standard normal random variables.

Thus, each component ,  is simulated according to

(9)

where Hjd(ωl) is the j-th component of Hd(ωl). It can be easily shown that the probabilistic

properties of the simulated stochastic vector process given by Eq. (8) are identical to the required

targets. In order to reduce the cost of digitally generating the stochastic vector process, the Fast

Fourier Transform (FFT) (Brigham 1988) technique can be utilized. 

 

2.2 Geometric description of the reliability problem in high dimension

Consider a linear wind-excited structure with Nu wind excitation forces Uj(t), j = 1, …, Nu, and Ny

dynamic responses of interest Yi(t), i = 1, …, Ny. The relationship between the responses and the

excitation forces is given by 

(10)

where qij(t, τ) is the response function for Yi at time t due to a unit impulse excitation for Uj at time

τ. The system is assumed to start with zero initial conditions, is time-invariant so that qij(t, τ) = qij(t

− τ), and is causal, i.e., qij(t, τ) 0 for t < τ, the latter explaining why the integration in Eq. (10) is

taken from 0 to t instead of from 0 to . The wind excitations Uj(t), j = 1, …, Nu, are random, and

thus the responses Yi(t), i = 1, …, Ny, are random as well. The problem considered herein is to

estimate the probability that any one of the Ny output responses Yi(t), i = 1, …, Ny, exceeds in

magnitude some specified threshold bi within a given time duration T

(11)

 

In this paper only along-wind excitations are considered. Based on the stochastic modeling of the

wind velocity field presented in the last section, the wind excitations Uj(t), j = 1, …, Nu, can be

expressed as

(12)

 

where ρ is the air density, taken to be 1.2 kg/m3 in the illustrative example of the paper, and Lj is

v t( )

v t( ) ω∆ Hd ω l( )Z1ldcos ω lt( ) Hd ω l( )Z2ldsin ω lt( )+[ ]
d 1=

Nu

∑
l 1=

N
ω

∑=

vj t( ) j 1 … Nu, ,=
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d 1=

Nu

∑
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N
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the area upon which the discretized force Uj(t) is assumed to act. Expanding the above equation, we

obtain

(13)

 

Thus, the responses Yi(t), i = 1, …, Ny, can be written as

 

(14)

where Yi
(0) is the deterministic part of the i-th response corresponding to the mean wind speed

excitations, which can be obtained by a single structural static analysis;  and ,

respectively, correspond to the excitations due to the linear and the quadratic terms of the wind

velocity fluctuation 

(15)

(16)

Substituting Eq. (9) into Eq. (15), , i = 1, …, Ny, can be expressed as a linear function of

the standard normal random vector Z comprising all the Z1ld and Z2ld random variables

(17)

with the elements of the coefficient vector a(i)(t) given by 

(18)

(19)

where |Qij(ωl)| and θ{Qij(ωl)} are the magnitude and the phase angle of the Fourier transform of

qij(t) at frequency ωl. Herein we assume stationary response and consider the steady state dynamic

response since the duration of interest is usually long (of the order of an hour). That is, we

disregard the transient part and consider only the steady state part in Eqs. (18) and (19).

Similarly, by substituting Eq. (9) into Eq. (16), Yi
(2)(t), i = 1, …, Ny, can expressed as a quadratic

function of Z

(20)

with the elements of the matrix B(i)(t) given by

Uj t( ) 1

2
---ρLjV j

2

ρLjV jvj t( ) 1

2
---ρLjvj t( )2+ +=

Yi t( ) Yi

0
Yi

1( )
t( ) Yi

2( )
t( )+ +=

Yi

1( )
t( ) Yi

2( )
t( )

Yi

1( )
t( ) ρLjVjqij t τ–( )vj τ( ) τd

0

t

∫
j 1=

Nu

∑=

Yi

2( )
t( ) 1

2
---ρLjqij t τ–( )vj τ( )2 τd

0

t

∫
j 1=

Nu

∑=

Yi

1( )
t( )

Yi

1( )
t( ) a

i( )
t( )TZ a1ld

i( )
t( )Z1ld a2ld

i( )
t( )Z2ld+( )

d 1=

Nu

∑
l 1=

N
ω

∑= =

a1ld

i( )
t( ) ω∆ ρLjVjHjd ω l( ) Qij ω l( ) cos ω lt θ Qij ω l( ){ }+( )

j 1=

Nu

∑=

a2ld

i( )
t( ) ω∆ ρLjVjHjd ω l( ) Qij ω l( ) sin ω lt θ Qij ω l( ){ }+( )

j 1=

Nu

∑=

Yi

2( )
t( ) Z

T
B

i( )
t( )Z Z1l

1
d

1
Z1l

2
d

2
B1l

1
d

1
1l

2
d

2
,

i( )
t( ) Z1l

1
d

1
Z2l

2
d

2
B1l

1
d

1
2l

2
d

2
,

i( )
t( )+[

d
2

1=

Nu

∑
d

1
1=

Nu

∑
l
2

1=

N
ω

∑
l
1

1=

N
ω

∑= =

 Z2l
1
d

1
Z1l

2
d

2
B2l

1
d

1
2l

2
d

2
,

i( )
t( ) Z2l

1
d

1
Z2l

2
d

2
B2l

1
d

1
2l

2
d

2
,

i( )
t( )+ ]+



42 L.S. Katafygiotis and Jia Wang

(21)

(22)

(23)

(24)

where  and  are the magnitude and the phase angle of the Fourier

transform of qij(t) at frequency ;  and  are the magnitude and the

phase angle of the Fourier transform of qij(t) at frequency .

Thus, the structural response Yi(t), i = 1, …, Ny, can be expressed as a quadratic function of Z 

(25)

In the discrete time formulation, the responses Yi(t), i = 1, …, Ny, are calculated at discrete time

instants tk = k∆t, k = 1, …, Nt 

(26)

where the index k is used to represent the time tk. The failure event defined earlier in Eq. (11) can

be expressed as a union of N = 2NyNt elementary failure events  

(27)

where each elementary failure event is Fiks = {(−1)s Yi(k) > bi}. In the space of standard normal

random variables Z, the failure domain corresponding to the failure event Fiks is defined as follows

(28)

where giks (Z) denotes the quadratic limit state function (LSF) 

(29)
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3. Proposed methodology using Domain Decomposition Method and line sampling

3.1 Domain Decomposition Method

The Domain Decomposition Method (DDM) (Katafygiotis and Cheung 2006) is briefly reviewed

in this section. DDM is similar to Importance Sampling using Elementary Events (ISEE) (Au and

Beck 2001) and a method presented in Yuen and Katafygiotis (2004), although the approaches

leading to each of these methods are different. ISEE stems from IS with a suitably selected IS

density, while the DDM is based on estimating the overlapping degree of different elementary

failure domains comprising the failure domain. 

Consider a failure domain expressed as a union of elementary failure domains, . If

the elementary failure domains Fr, r = 1, …, N, are mutually exclusive, the probability P(F) is

simply the sum of all the P(Fr). The difficulty in calculating the probability of the overall failure

domain arises from that the elementary failure domains overlap each other and the overlapping

degree is unknown. The DDM focuses on the estimation of the overlapping degree and estimates

the failure probability P(F) as

(31)

where  is the estimate of P(Fr), and  is the reduction factor which estimates the overlapping

degree of different elementary failure domains. The overlapping reduction factor estimate  is

obtained as follows: First select K indices rj, j = 1, …, K, from the set {1, …, N} according to a

probability mass function (PMF) g(i) given by 

(32)

F ∪r 1=
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Fig. 1 Schematic illustration of how to count  in DDMM Z
j( )
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Based on the selected indices, generate K sample points Z( j), j = 1, …, K, such that  is

distributed according to the conditional distribution . Then, for each Z( j) the number

 of failure domains to which Z( j) belongs is counted, e.g., in Fig. 1 the point Z( j) following

the conditional distribution  belongs to the failure domains Fr, Fr+1 and Fr+2 and, thus,

. To determine , a dynamic analysis is performed for the given Z( j) and the

number of discrete time instants at which the response(s) of interest exceed the given threshold(s) is

counted. Finally, the overlapping reduction factor estimate  is given by 

(33)

It can be seen that the application of the DDM requires successfully performing two key tasks:

the estimation of P(Fr) and the generation of sample points distributed according to the conditional

PDF . 

For the reliability problem at hand, if the part of response due to the the quadratic terms of wind

velocity fluctuation, Yi
(2)(t), is neglected in the expression of Yi(t), i = 1, …, Ny, the boundary of the

elementary failure domains will be of linear form, which is the case considered in the original

formulation of DDM, and the algorithms for the above two tasks are straightforward (Katafygiotis

and Cheung 2006). Specifically, for an elementary failure domain F = {Z |g(Z) < 0} with linear LSF

(34)

the corresponding failure probability is readily obtained as 

(35)

where Φ(.) denotes the standard normal cumulative distribution function and β is given by

(36)

where  is the Euclidean norm of the vector a. To generate a point Z in F according to the

conditional PDF , simulate a standard normal vector Z' first. Next, simulate a scalar x

according to the conditional standard normal PDF given that , which can be done by first

simulating a random number λ that is uniformly distributed in the interval [0, 1] and then

calculating . Finally the required point is given by 

where u = a/  is the unit direction vector along a.

3.2 Line sampling method

For the reliability problem considered herein, where the boundary of the elementary failure

domains are of quadratic form, the tasks of estimating P(Fr) and generating sample points

distributed according to the conditional PDF  are nontrivial. This section presents the

procedures for performing these two key tasks by applying Line Sampling (LS) (Koutsourelakis

et al. 2004, Schuëller et al. 2004, Pradlwarter et al. 2007). 
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Consider the failure domain F with quadratic LSF given by

(37)

LS starts with choosing an important direction vector u characterizing the failure domain. The

selection of the direction vector u depends on the problem under study, and plays a key role in the

performance of the method (Koutsourelakis et al. 2004). Recall that in our problem, where the LSF

is given by Eq. (37), the quadratic term represents the structural response corresponding to the

quadratic terms of the wind velocity fluctuation. This is small compared to the linear term

corresponding to the structural response due to the linear terms of the wind velocity fluctuation.

Thus, this quadratic LSF is weakly nonlinear and, therefore, it is reasonable to choose u to be equal

to a/ , i.e., the unit direction vector along a. Based on the chosen u, the NZ-dimensional space

 of the standard normal random variables Z is divided into two subspaces: the one dimensional

subspace  which is parallel to u, and the (NZ − 1)-dimensional subspace  which is orthogonal

to u. That is, each vector Z can be expressed as  where . Note that the scalar

x = ZTu follows a standard normal distribution because the norm of u is one and Z is a standard

normal random vector.

The LS algorithm for estimating the probability of the failure domain F = {Z |g(Z) < 0} with g(Z)

given by Eq. (37) is as follows: Firstly, generate Nl independent sample points  r = 1, ..., Nl, in

 according to . This can be done by generating points Z(r), r = 1, …, Nl, according to

f (Z) and then taking their projections in the subspace 

(38)

Secondly, calculate the conditional failure probability given , that is, 

. The conditional failure event 

(39)

is a quadratic inequality with respect to the scalar x, and can be simplified further to be explicit, in

order that its probability can be easily computed according to the standard normal distribution of x.

Fig. 2 illustrates Line Sampling for the case we have been encountering in our numerical example,

where the equation

(40)

has a negative quadratic coefficient, i.e., uTBu < 0, and two real roots denoted as  and 

where . In this case, the conditional failure event  can be simplified as

 and thus  is given by

(41)

Finally, the probability of the failure event F = {Z |g(Z) < 0} is estimated by the arithmetic

average of the Nl conditional failure probabilities 
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(42)

The procedure for performing the second task, i.e., generating a point according to f(Z|F), is as

follows: Firstly, generate Nl points , , in the subspace  and compute the

corresponding conditional failure probabilities , as above. Secondly, choose a point

 from the set , , according to the PMF 

(43)

Finally, based on the chosen point  simulate a random number x following the conditional

standard normal distribution given that it corresponds to failure, i.e., . The final

simulated point is then given by 

(44)

The simulation of x is explained further below. If the conditional failure event 

is simplified as , then x should be generated from the conditional standard normal

PDF given . To simulate such x, one of the regions  and  is

selected first according to their probabilities, that is, the region  is selected with probability

, and the region  is selected with the remaining probability. Then x is
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Fig. 2 Schematic illustration of line sampling
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obtained by first simulating a random number λ that is uniformly distributed in the interval [0, 1] and

then calculating  if the selected region is  or +

 if the selected region is . 

3.3 Summary of the proposed methodology

In the following we present a summary of the procedures using the DDM and LS to estimate

P(F), where . Note that herein the responses Yi(t), i = 1, …, Ny, are

assumed to be stationary because they are assumed to be the steady state responses of a linear

structure subjected to stationary excitations. This implies that the probability of failure is the same

at each time instant, and the overlapping degree among the various elementary failure domains is

time invariant. With this observation, the procedures are summarized as follows: 

1. Arbitrarily choose an index p from the set of time instants {1, …, Nt}, and establish the

quadratic LSF for the 2Ny elementary failure domains Fips, i = 1, …, Ny, s = 1, 2: 

(45)

           (46)

where the coefficient vector a(i)(p) and the coefficient matrix B(i)(p) are determined respectively

by Eqs. (18)-(19) and Eqs. (21)-(24). 

2. Estimate , the probability of the failure domain Fips, i = 1, …, Ny, s = 1, 2, using the LS

method.

3. Select K index pairs {(ij, sj), j = 1, …, K} from the set {(i, s), i = 1, …, Ny, s = 1, 2}  according

to the PMF g(i, s) given by

(47)

4. Based on the above-selected index pairs{(ij, sj), j = 1, …, K}, simulate K sample points ,

j = 1, …, K, using the described LS-based procedure such that  follows the

conditional distribution . For each point , count the number  of the

elementary failure domains Fiks, i = 1, …, Ny, k = 1, …, Nt, s = 1, 2, to which the point 

belongs.

5. The failure probability P(F) is estimated by

, (48)

4. Illustrative example

We consider an along-wind excited steel building (Fig. 3), which has the same geometric shape as

the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building model

(Melbourne 1980). A 45-story, 10-bay by 15-bay rectangular tubular framework is used to model
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this building. With story height of 4 m and bay width of 3 m, the building has a total height of 180

m and a rectangular floor with dimension 30 m by 45 m. Each floor is assumed to be rigid and has

lumped swaying mass of 6.75×105 kg and rotational mass moment of inertia of 1.645×108 kg.m2 at

the geometric center of the floor. The members of beams and columns have standard AISC steel

sections, and the details of the design are presented in Table 1. With the above configurations, the

established building model has the following first three modal frequencies: 0.197 Hz, 0.251 Hz and

0.422 Hz.

The along-wind excitation in the Y-direction of the building is considered. The excitation field is

discretized using two schemes: In Scheme 1(a) fine spatial discretization involving Nu = 45

excitation forces is considered; in Scheme 2(a) coarser discretization involving Nu = 6 excitation

forces is assumed. The acting heights and acting areas for Scheme 1 and 2 are shown in Table 2

and Table 3, respectively. 

According to the Hong Kong wind code, the mean wind speed  (m/s) at the height hj(m), j = 1,V j

Fig. 3 Along-wind excited steel building in the example

Table 1 Design of colum members and beam members

Floor zone Column members Beam members

1~9F W14X550 W30X357

10~18F W14X500 W30X326

19~27F W14X370 W30X292

28~36F W14X257 W30X261

37~45F W14X159 W30X221
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…, Nu, is given by the power law (Simiu and Scanlan 1986) 

(49)

The formulas proposed by Davenport (1961, 1968) are used to model the one-sided cross spectral

density matrix S0(ω) of the fluctuating wind velocity components . The

power spectral density function  of vj(t), j = 1, …, Nu, is given by

(50)

(51)

where ω (rad/s) is the frequency, k = 0.4 is Von Karman’s constant, h0 = 0.05 m is the roughness

length, and m/s is the mean wind velocity at the height of 10 m. The cross-power

spectral density function  of vj(t) and vk(t) is given by 

, , (52)

(53)

where γjk(ω) is the coherence function between vj(t) and vk(t), and Ch is a constant that can be set

equal to 10 for structural design purposes (Simiu and Scanlan 1986).

To perform the generation of the wind velocity fluctuations according to Eq. (9), the cutoff

frequency is taken as ωu = 0.8π rad/s so that the ratio ru of the neglected power spectrum content is
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Table 2 Acting height sand acting areas of 45 excitation forces in discretization Scheme 1

Excitation Acting height (m) Acting area (m2)

U1(t) 4 6×45

U2(t)~U44(t) 8~176(interval of 4) 4×45

U45(t) 180 2×45

Table 3 Acting heights and acting areas of 6 excitation forces in discretization Scheme 2 

Excitation Acting height (m) Acting area (m2)

U1(t) 24 45×45

U2(t) 68 45×45

U3(t) 112 33.75×45

U4(t) 136 22.5×45

U5(t) 156 22.5×45

U6(t) 176 11.25×45
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less than 10% for each component , . The frequency step ∆ω = π/900 is

selected and the period of the fluctuating wind velocity components  is 4π/

∆ω = 3600 s. Based on the above chosen parameters, the number of standard normal random

variables involved in the simulation, namely, the dimension of Z, is 2 × Nu × ωu/∆ω = 64,800 and

8,640 for discretization Scheme 1 and Scheme 2, respectively. 

In this example we assume that the displacement response Y(t) at the top floor of the building is

of interest. The relationship between the excitation forces and the responses are provided by the

impulse response functions qj(t), j = 1, …, Nu, where qj(t) denotes the response Y(t) due to unit

impulse excitation for Uj(t). These Nu required impulse response functions are obtained through Nu

dynamic analyses of the established finite element model of the building using the software SAP

2000. The failure event is defined as the response Y(t) exceeding in magnitude a specified threshold

b within one hour, i.e., the assumed time duration is T = 3,600 s. This time duration is

conventionally used in wind engineering, for consistence with the duration of actual strong winds.

In the discrete time formulation where the sampling time interval is chosen to be ∆t = 0.01 s and

the number of time instants is Nt = T/∆t = 360,000, the failure event is expressed by 

(54)

In the space of standard normal random variables, the corresponding failure domain is a union of

2Nt = 720,000 elementary failure domains.

The failure events with thresholds b = 1.244 m and b = 1.368 m are considered. These two

thresholds have been chosen such that MCS with 104 samples for the discretization Scheme 1 gives

the estimates  (with COV δ = 9.9%) and  (with COV δ = 31.6%). The

statistical properties of the estimator for the failure probability by the proposed methodology are

assessed by 40 simulation runs, in each of which 200 samples are used in the LS to estimate the

failure probability at a randomly selected time instant and 100 samples are used in the DDM to

estimate the overlapping reduction factor. Note that each sample used in the LS corresponds to a

process of solving Eq. (40) and does not require a structural dynamic analysis. Thus, the

computational effort for one run is controlled by the number of samples used in the DDM, i.e., 100

in our case. For each such sample a dynamic analysis is required in order to determine the number

of time instants at which the response exceeds the specified threshold that defines the failure event.

Thus, one run by our proposed methodology requires an effort equivalent to MCS with 145 and 106

samples (including the effort for calculating the impulse response functions) for Scheme 1 and 2,

respectively. 

The sample mean and the sample COV of the failure probability estimates for Scheme 1 using the

proposed method are shown in the fourth and fifth rows of Table 4. It can be seen that the estimate

by the proposed methodology is very accurate. The sixth row of Table 4 shows the number of MCS

samples required in order to get the same COV as that obtained by the proposed method, i.e., δ =

24.2% for the estimation of P(F) = 0.01 and δ = 33.8% for the estimation of P(F) = 0.001.

According to Eq. (2), this number is given by 

(55)

Thus the proposed methodology requires 145 samples versus 1,535 samples in the MCS to get the

same accuracy for estimating P(F) = 0.01, i.e., a factor of around ten times in efficiency
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improvement. For the smaller failure probability P(F) = 0.001, the advantage in computational

efficiency becomes further pronounced, with the efficiency improved by a factor of around fourty

five times. 

If one neglects in the expression of Y (t) the part of the response due to the quadratic terms of the

wind velocity fluctuation, Y(2)(t), and approximates the quadratic LSF by the underlying linear LSF,

DDM in its original version can be directly used for estimating P(F). The sample mean and sample

COV of the failure probability estimates by DDM using 40 simulation runs with 100 samples for

each run are shown in the rows marked “Linear LSF” in Table 4. It can be seen that neglecting Y 
(2)

(t) in the expression of Y (t) can cause severe underestimation of the failure probability. Therefore,

the design based on such linear approximation of the response is not conservative and must be

avoided.

The failure probability estimates using the discretization Scheme 2 (six excitation forces) are

shown in the last seven rows of Table 4. Similarly, it can be observed that the proposed method

provides good estimates and its efficiency improvement (compared with MCS) increases with the

decrease of the failure probability. Also, as in the case of Scheme 1, if the excitation in the

quadratic term of wind velocity fluctuation is neglected, the failure probability is severely

underestimated. 

By comparing the results for discretization Scheme 2 with those for discretization Scheme 1, it

can be seen that the failure probability estimates (with quadratic LSF) for the coarser discretization

Scheme 2 are larger by a factor of three to four times. This is because the coarser discretization

neglects the spatial correlation within the rather large height segments considered, and, therefore,

assumes that the velocity fluctuations are fully correlated over each such segment. As a result, the

total force, calculated using such coarse spatial discretization, has a larger variability, i.e., larger

variance than the corresponding total force over the same segment when a finer spatial

discretization is considered. The resulting larger variance of the total force leads to higher estimates

of the failure probability, which however are conservative. 

Table 4 Comparsion of the failure probability estimates

b =1.244 m b =1.368 m

Discretization
Scheme 1

Quadratic
LSF

MCS
1.0 × 10-2 1.0 × 10-3

COV 9.9% 31.6%

Proposed
Method

Sample mean 1.10 × 10-2 1.32 × 10-3

Sample COV 24.2% 33.8%

NMCS 1,535 6,622

Linear LSF DDM
Sample mean 1.92 × 10-5 2.59 × 10-7

Sample COV 6.5% 6.5%

Discretization
Scheme 2

Quadratic
LSF

MCS
3.60 × 10-2 4.40 × 10-3

COV 5.2% 15.0%

Proposed
Method

Sample mean 3.42 × 10-2 4.79× 10-3

Sample COV 18.8% 28.2%

NMCS 799 2,613

Linear LSF DDM
Sample mean 2.27 × 10-4 5.68 × 10-6

Sample COV 7.7% 6.8%

P̂ F( )

P̂ F( )
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5. Conclusions

The problem of calculating the probability that the wind-excited structural responses exceed

specified thresholds within a given time duration is considered. The Domain Decomposition Method

(DDM) is used to solve this reliability problem, estimating the failure probability as the sum of the

probabilities of the elementary failure domains multiplied by a reduction factor accounting for the

overlapping degree of different elementary failure domains. The DDM has been extended to tackle

the problem at hand involving quadratic elementary failure domains with the help of Line Sampling

(LS). In particular, LS is used for the estimation of the probability of each quadratic elementary

failure domain and also for the simulation of sample points within such a domain according to the

conditional probability distribution given that elementary failure domain. As shown in the

illustrative example involving an along-wind excited steel building the proposed methodology is

accurate and highly efficient compared with standard MCS. 
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