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Abstract. An importance sampling method is presented for computing the first passage probability of
elasto-plastic structures under stochastic excitations. The importance sampling distribution corresponds to
shifting the mean of the excitation to an ‘adapted’ stochastic process whose future is determined based on
information only up to the present. A stochastic control approach is adopted for designing the adapted
process. The optimal control law is determined by a control potential, which satisfies the Bellman’s
equation, a nonlinear partial differential equation on the response state-space. Numerical results for a
single-degree-of freedom elasto-plastic structure shows that the proposed method leads to significant
improvement in variance reduction over importance sampling using design points reported recently. 
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1. Introduction

Determining the first passage probability of nonlinear hysteretic structures remains a challenging

computational problem in stochastic dynamics (Wen 1976, Soong and Grigoriu 1993, Lin and Cai

1995, Lutes 1997, Schueller 2006). The complexity involved is featured by a large number of

random variables (theoretically infinite), nonlinear/hysteretic behavior and a large number of degrees

of freedom. The first renders geometric intuitions in low dimensions less useful or sometimes

misleading in high dimensions (Schueller et al. 2004, Au and Beck 2003). Nonlinearity, hysteresis

and a large number of degrees of freedom make the understanding of system behavior more

involved and in many cases analytical solution almost impossible. A recent benchmark study by

Schueller and co-workers (Schueller 2007) indicated that advanced Monte Carlo methods have

shown promise for tackling complex systems. Subset Simulation, line sampling, and collectively

methods that make use of Markov Chain Monte Carlo have demonstrated their variance reduction

capability while retaining certain robustness in applicability. These methods explore the progressive

failure nature of reliability problems and do not significantly rely on knowing system behavior. The

benchmark study also revealed a big gap between the extent of variance reduction that can currently

be achieved for linear systems versus nonlinear hysteretic systems. For example, Problem 3 in the
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benchmark study indicates that, using Subset Simulation (Au et al. 2007a) or line sampling

(Pradlwarter et al. 2007) that are based on Markov Chain Monte Carlo, one can achieve a unit c.o.v.

(standard error = unit c.o.v./square root of no. of samples) of 30-40 for a target failure probability of

the order of 10−4. This translates into about 5,000 samples to achive a 50% c.o.v. in the failure

probability estimate. In contrast, using methods such as importance sampling or line sampling that

incorporate information about system behavior, one can achieve for linear systems a unit c.o.v. of 2-

5 regardless of failure probability level, i.e., at most 100 samples required to achieve 50% c.o.v. in

the estimate. A large variance reduction has been achieved for linear systems but there is much

room to improve for general nonlinear systems. Notably, linearly system behavior is analytically

tractable and very efficient importance sampling methods have been developed (Au and Beck 2001,

Yuen and Katafygiotis 2005, Jensen and Valdebenito 2007). 

The trade-off between efficiency and robustness of a simulation method justifies methods to be

more application-focused to improve efficiency at the expense of generality in application. This of

course rests on the premise that the problem focused has important relevance. An effort was

initiated to develop an importance sampling method for nonlinear hysteretic structures. The ultimate

aim is to achieve a level of variance reduction similar to that for linear systems, or otherwise find

out what methods do not work and the reasons behind. The first attempt was to determine the

design points of single-degree-of-freedom (SDOF) elasto-plastic structures and use them to

construct an importance sampling density, speculating significant variance reduction similar to the

linear case. SDOF structures with perfect elastic-plastic behavior were focused as they exhibit

important hysteretic characteristics that are shared by their MDOF (multi-degree-of-freedom)

counterparts. It turned out that efficient solutions for design points are possible in this case (Au

2006a, Au 2006b). Using the design points for importance sampling, however, led to only limited

variance reduction compared to the linear case (Au et al. 2007b). Further investigations showed that

the actions of the design points were rendered ineffective by random phase shifts associated with

plastic excursions as well as opposing plastic excursions that cancelled out each other. This

suggested naturally a design point that could ‘adapt’ and synchronize its actions with the response.

Although a ‘stochastic design point’ sounds subtle at first glance because the design point plays the

role of the mean shift of the importance sampling distribution, detailed arguments support its

legitimacy when its components bear a causal property. Such a process is in fact called an adapted

process, and its concept is long-rooted in the celebrated Girsanov Theorem (Girsanov 1960). The

use of adapted process opens up new variance reduction possibilities for hysteretic structures and, in

general, complex causal systems. An attempt was previously made using heuristic rules to design

the adapted process and lead to improvement over importance sampling using design points (Au

2008). The heuristic rules were developed with the aim to grow the response according to the

regime it currently belongs to. Sequential pulses were applied by the adapted process whose

magnitudes were determined based on approximate energy concepts. For simplicity the design

formulation ignored the stochastic effect of the white noise that was combined with the adapted

process during importance sampling. 

This paper presents a sequel on the development with an attempt to address the stochastic effect

of the white noise in the design of the adapted process. A stochastic control approach is adopted,

which appears a natural choice because designing the adapted process is equivalent to designing a

control law to achieve certain purposes with minimum energy under a stochastic environment where

the future response is influenced not only by the control force but also by random white noise

disturbances. Although stochastic control is an established area, ‘off-the-shelf’ control laws are not
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available for first passage problems. This paper shall discuss the design of adapted process for

solving the first passage problem in the context of stochastic control. An optimal control law, in

some heuristic sense, is developed and its variance reduction efficiency shall be investigated.

2. Importance sampling for first passage problems

Consider a SDOF elasto-plastic structure subjected to white noise excitations. The displacement

response of the elasto-plastic structure follows the governing equation

(1)

where ω and ζ are the natural frequency and critical damping ratio of the associated linear system at

low amplitudes; Fr is the restoring force that follows an elasto-plastic hysteretic rule:  if

 and  otherwise; b0 is the first yield displacement. The white noise excitation is

modeled digitally in the time domain by 

(2)

where  is the sampling time; S is the spectral intensity;  are independent and

identically distributed (i.i.d.) standard Gaussian random variables. Failure is defined as the first passage

of the displacement response over the double barrier ±bF within a given duration of interest 

(3)

The last expression in Eq. (3) views the failure probability as an expectation of the indicator function

 with the failure region ;  here denotes explicitly the

response at the i-th time step to the realization of white noise corresponding to . The

expectation is taken with  distributed as a standard Gaussian vector, i.e., with

probability density function (PDF)

(4)

Importance sampling (Rubinstein 1981, Hammersley 1964) is a popular technique for variance

reduction in reliability problems, especially for rare failure events where the computational effort

required by direct Monte Carlo is prohibitive. The idea is to generate samples from a properly

chosen distribution that leads more frequently to failure. Let , called the importance sampling

density (ISD), be a PDF whose support covers the failure region. By a change of probability

distribution from φn to f, the failure probability is expressed as

(5)

where in the last expectation Z' is distributed as f instead of φn. The failure probability is then

estimated via statistical averaging by
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(6)

with  being i.i.d. (independent and identically distributed) samples generated

according to f. For a proper choice of f,  is an unbiased estimator for PF. Its statistical error is

often measured by its coefficient of variation (c.o.v.), δ, defined as the ratio of its standard deviation

to its mean. Due to the use of i.i.d. samples, δ is inversely proportional to  and can be

expressed as

(7)

where ∆ is the c.o.v. of , referred as the ‘unit c.o.v.’ of the importance

sampling estimator. The unit c.o.v. ∆ is sample-size independent and is often used for measuring the

efficiency of the sampling method (Engelund and Rackwitz 1993, Schueller and Pradlwarter 2007).

It can be readily shown that the following identity holds, which provides insights for variance

reduction (Au and Beck 2003) 

(8)

where  is the conditional c.o.v. of the ‘importance sampling quotient’ 

given that ; QF is the probability that , referred here as the ‘failure rate’ (to

distinguish it from the failure probability PF). For direct Monte Carlo,  (no improvement in

failure rate) and  (since ) and so  which

checks with the classical expression for unit c.o.v. of direct Monte Carlo estimator. The identity in

Eq. (8) suggests two general objectives in the choice of ISD: 1) to increase QF by producing more

samples in the failure region; 2) to reduce  by a proper choice of the functional form of f. The

former has been the major consideration in the structural reliability literature, although the latter has

important significance for stochastic simulation problems that are featured by a large number n

(theoretically infinite) of random variables (Au and Beck 2003, Schueller et al. 2004). Most often,

the ISD is chosen as a Gaussian PDF or a weighted sum of Gaussian PDFs with unit covariance

matrix; the choice of ISD then reduces to the choice of the mean vector(s) of the Gaussian PDF(s).

2.1 Shifting distribution to a fixed point

For instruction purpose, consider first the classical case when the ISD is chosen as a Gaussian

PDF centered at some fixed point , i.e.

(9)

The failure probability is then expressed as

(10)
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where under E[·] the vector Z is distributed as a n-dimensional standard Gaussian vector with

independent components. The failure probability is then estimated by averaging the term inside the

expectation over i.i.d. samples of Z. Note that during importance sampling the structure is subjected

to the forcing corresponding to , which represents the combined action of the design

point excitation and the white noise (Z).

2.2 Shifting distribution to an adapted process

Consider now allowing  to depend on  and viewing 

as a discrete-time stochastic process. Specifically,  is fixed, and for every 

depends only on  but not . That is, the next future value depends on the

information only up to the present. In the theory of stochastic process  is called an

adapted (or predictable) process. In our context,  may be viewed as an adaptive control force in a

stochastic environment. It should be designed by the user depending on the intended purpose. In

contrast to a design point that is a fixed vector, the choice of  as an adapted process involves the

design of a set of rules (control law) defining how a realization of the process is generated. 

For a given adapted process , consider a transformation from Z to Z' defined by 

(11)

where the sequence  is generated sequentially from  as follows

(12)

In general, for ,

(13)

where  denotes the components of Z' up to the i-th time step; a similar notation

applies for other processes. Note that given  can be obtained sequentially

in a reversed manner based on Eq. (12).

To obtain the PDF for Z', note that during importance sampling,  are i.i.d. standard

Gaussian. Given ,  is already determined, and hence  in Eq. (13) is

Gaussian with mean  and unit variance. The conditional PDF of  given

 is thus given by

(14)

where  denotes the one-dimensional standard Gaussian PDF. Here, the lower-case letters
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i
:i 1 2 …, ,={ }

ẑ
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ẑ

ẑ
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(15)

Using Eq. (14), this becomes (abbreviating  as )

(16)

which is the same expression as if  were fixed.

In summary, it is legitimate to make a change of distribution to a Gaussian PDF centered at a

stochastic vector  when it has a causal structure; the corresponding PDF takes the same form as

the one with a shift of a deterministic mean vector. Note, however, that the resulting ISD is no

longer Gaussian in  because  now depends on . Provided that  almost surely, the

importance sampling estimator is valid with a finite variance. The continuous-time or infinite

dimensional ( ) analogue of this result is the Girsanov Theorem (Girsanov 1960, Protter

1990). 

3. Design of adapted process for variance reduction

In the time domain, the adapted process acts as a feed-forward control force. The design of

adapted process involves the design of a stochastic process, or a control law, in contrast to the

choice of design point excitation that only involves specification of a fixed vector. Two issues need

to be resolved: 1) to specify a practical design goal and 2) to design an algorithm that meets the

specified goal.

Ideally, the design goal is to minimize the unit c.o.v. ∆ of the failure probability estimate. This is

not practical, however, because ∆ is analytically intractable; computationally the estimation of ∆ is

even more difficult than the failure probability. A practical goal is one that can be readily analyzed so

that specific algorithms can be devised. According to Eq. (8), ∆ can be reduced by increasing QF and

reducing . As QF and  are difficult to analyze and control directly, we shall work with their

proxies instead. In this work, we take the energy of adapted process as a proxy for . This can be

reasoned from the variance of the exponential term in Eq. (10). The design goal is to grow the

response to excursion with as less energy as possible. These two objectives are often conflicting. For

a given class of control strategy one does not know a priori the optimal combination of QF and 

that minimizes ∆. A prudent choice should trade-off between QF and  in order to reduce ∆.

4. Stochastic control law for adapted process

In this section we design the adapted process based on a stochastic control approach. We first

focus on the up-crossing problem and then extend the results to apply for a double-barrier problem.

Previous work (Au 2008) employed a heuristic rule for assigning the future excitation that is three-

folded: 1) when the response is small, apply a suitable force to grow the amplitude; 2) when the

amplitude is close to the yield limit and the structure is accelerating towards the target, apply a

pulse to cause plastic deformation in the direction of failure; 3) when the amplitude is close to the

yield limit but the response is accelerating away from the target, let the structure to go through free
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vibration until it reaches the other extreme position. The rule was updated whenever the

displacement response has just passed a stationary point. 

The algorithm presented in Au (2008) did not consider the stochastic effect of the white noise

excitation. In particular, intuition suggests that when the response is small the effect of the white

noise dominates. In this case the response will grow even in the absence of the adapted process and

so addressing the stochastic effect may help save energy in the adapted process whenever suitable.

In this work we adopt a stochastic control approach to design the adapted process. The method

naturally takes into account the stochastic effect of white noise. The theory is more generic and

allows for further development. 

We consider the stochastic control problem of driving the response to have large positive plastic

excursion, assuming the current state is in the linear regime. The objective is to drive the response

from the current state in the linear regime to yielding. This objective does not directly address the

original objectives in the first passage problem but it simplifies the design of controller.

For the purpose of deriving the control law we shall work in continuous-time as the derivation is

more elegant. Under importance sampling the governing equation in the linear regime is given by 

(17)

where  is measured relative to the current neutral axis;  is the adapted process in the time

domain, related to that in the standard Gaussian space by . Interpreting in the

Ito sense,  follows the stochastic differential equation 

(18)

where ,  and  is the standard Brownian motion

increment ( ). 

Consider designing a control force that depends on the current state . For a given

future realization define the objective function as 

(19)

where  are positive constants to be specified;  is the time at which

the response exits the linear-elastic regime, assuming  is in the linear-elastic regime;

 gives the value of its argument when positive and zero otherwise. The objective

function  increases with the energy of the adapted process u until yielding. It also increases

with the time until yielding, through the second term in Eq. (19). To understand the third term, note

that it decreases with the exit velocity at positive yielding (with positive plastic displacement). On

the other hand, it is zero if yielding occurs with negative exit velocity (and hence causing negative

plastic displacement). The third term is thus smaller if positive yielding occurs, and zero if negative

yielding occurs. 

Since  depends on the stochastic future the actual objective function for design shall be

expressed through its expectation conditional on the current state
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Minimizing  will therefore achieve three objectives through the three terms

discussed, respectively: 1) reducing the control effort to yielding; 2) reducing the time to yielding;

and 3) promoting positive yielding. Relative importance of these three objectives are controlled by a

proper choice of the parameters λ1 and λ2. We shall come back to this after we have derived the

control law. 

4.1 Bellman’s equation

The minimization should be performed on the space of all admissible control strategies that

depend only on the information up to the present. The stochastic control problem corresponds to

one of an indefinite time horizon, i.e., the time span over which the performance is evaluated is not

fixed but is dependent on the stopping time τ. With a time invariant system it can be argued that the

control law and the minimum of the objective function depend only on the current state but not

explicitly on time t (Kushner and Dupuis 2001). Let  be the minimum, i.e.

(21)

Assuming V is sufficiently smooth to apply Ito Calculus, it satisfies the Bellman’s equation

(Kushner 1967), which in our case is given by 
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, the right boundary  is constrained and so information should flow leftward, suggesting

a forward difference for . Similarly, for , V is constrained on the left boundary 

and so a backward difference should be used for . For ,  does not appear in the

equation. By similar reasoning, we approximate  by forward, central and backward difference

for ,  and , respectively. Thus, we take

(26)
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and

(28)
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ûi j, µi j,–

2 x· i j,∆
-------------------+ , p2

′ σ
2

2∆x· i j,

2
-------------
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(34)

where a superscript ‘(n)’ denotes that the quantity is calculated using value at the n-th iteration.

Convergence of this iterative scheme is approximately ensured by requiring that 

and , since then the mapping from the matrix  to 

after linearization is a contraction. The first requirement is automatically satisfied by the

definition of . The second requirement can be enforced by limiting  to lie within

. The control law obtained in this manner is optimal only among the

space of all those that make the iterative scheme convergent. The bounds on  are inactive when

. This means that when the bounds are found to be active the converged solution is only

suboptimal and it can be improved by refining the mesh on  (reducing ). 

4.3 Choice of λ1 and λ2

The parameters λ1 and λ2 control the relative importance of the three objectives in the design of

the optimal control law. In principle they can be chosen to maximize variance reduction, although

such choice is not trivial and may not be worthwhile to pursue. For effective variance reduction it is

sufficient to assign their values to the right order of magnitude. As a simple choice, we may require

the three terms in  to be of the same order of magnitude, which suggests

(35)

where E is the energy of the linear-elastic design point that pushes the structure from rest to the

level x = b at time t0. The time t0 may be taken as some reasonable time at which the response is

expected to go from the linear regime to yielding. Note that the linear-elastic design point can be

obtained easily from the unit impulse response function. The assignment of λ1 and λ2  need not be

precise, as the aim is to specify them just to the right order of magnitude.

4.4 Double barrier problem

For single-barrier problems, e.g., up-crossing failure, one can use an adapted process designed for

up-crossing and then apply Eq. (10). For double-barrier crossing problems, one can use an average

of ISD based on the up-crossing and down-crossing adapted process to account for failures due to

up-crossing and down-crossing, respectively 

(36)

where  and  denote the adapted process for up- and down-crossing respectively. Note that for

each realization , even though the algorithm for generating  can be modified to be used

for generating . By symmetry the up-crossing and down-crossing adapted process in the time

domain are given by 

(37)

Using the ISD in Eq. (36), the failure probability is given by
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ẑ
–

–≠ ẑ
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(38)

where the expectation is taken with Z' distributed according to f and 

(39)

Evaluating the expectation in Eq. (38) to account for the bimodal nature of f gives

(40)

where the subscript ‘+’ in the first expectation denotes that Z' is distributed as ; similar

notation applies for the second expectation. The second equality makes use of the observation that

the up-crossing and down-crossing expectations are the same, due to symmetry. By importance

sampling, the failure probability is estimated by averaging the term under expectation over i.i.d.

samples.

5. Numerical investigation

Consider an SDOF elasto-plastic structure with ,  and yield displacement .

Failure is defined as first passage over the double barrier , , within a duration of

interest  sec. The spectral intensity of the white noise is assumed to be , for which

the response standard deviation at 20s is approximately equal to 1.

5.1 Control law

We first study the characteristics of the control law. Here we set λ1 = λ2 = 2, which is found to

yield a reasonable failure rate. Other values of λ1 and λ2 shall be considered later when variance

reduction is investigated. Fig. 1 shows the contour of the control potential  and the

corresponding control law . These are computed by Jacobi iteration on a 40 × 400 -grid

shown in the figure. As enforced by the boundary conditions, V is identically zero along the lower-

left boundary and it decreases with  along the upper-right boundary. It is seen that V behaves

differently in the upper and lower quadrants, partly due to the different boundary conditions

imposed in the first and third quadrant. In the lower quadrants (third and fourth) it is essentially

zero, while in the upper quadrants (first and second) it roughly decays radially with x and ,

which is akin to the total energy. The control law  shown in Fig. 1(b), which is just ,

shows a peak in the upper quadrants and a trough in the lower quadrants, although the former is

more pronounced. The contour shows that the control law is not directly proportional to . It does

not increase monotonically with ; even within the increasing region the rate is not constant. This

suggests that a constant gain feed-forward rule can be far from being optimal. When  is small the

control law is small regardless of x. This is the region where the stochastic effect of the white noise

dominates and so saving control effort is a good strategy.

We next investigate the manner in which the control law drives the response to first passage

failure. As a reference Fig. 2 shows the design point excitation that targets to drive the response to

first passage failure at 20 sec, computed using an efficient algorithm documented in Au (2006a).
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Fig. 1 Contour of control potential  and control force V x x·,( ) u x x·,( )

Fig. 2 Design point excitation (first passage failure at 20 sec)

Fig. 3 Random sample of u(t) and corresponding x(t) (not failed)
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The design point excitation initially grows the response by resonance. It then applies positive pulses

to create positive plastic displacements that accumulate until failure while avoiding negative plastic

displacements. The design point excitation is effective in generating large response only in the

absence of white noise. During importance sampling where the excitation consists of the design

point excitation and white noise, previous studies reported that it actions are not effective, leading to

a small failure rate (Au et al. 2007b).

Fig. 3 and Fig. 4 show two typical samples of the control force u(t), the corresponding response

x(t) and hysteretic history of restoring force. Note that the response x(t) is due to the combined

action of the control force and white noise (not shown). The samples of control force exhibit two

properties that are important to generating response effectively: 1) resonance and 2) asymmetry that

avoids negative plastic displacements. Their adapted stochastic nature promotes synchronization

with the response and maintains their effectiveness. The samples of control force and the design

point excitation in Fig. 2 have the same order of magnitude. Previous heuristic design of the

adapted process (Au 2008) also generated similar samples but it was achieved through a set of

decision rules. It is interesting to note that the control force derived from a single control potential

function exhibits features that mimics the decision rules while accounting for stochastic effects.

5.2 Variance reduction

To investigate the variance reduction efficiency of the designed adapted process, we perform

importance sampling using the adapted process. As a reference the failure probability has been

estimated by direct Monte Carlo with one million samples to be 2.4 × 10−5 (c.o.v. = 20%). The

failure probability has been previously estimated by importance sampling with design points (Au et

al. 2007b) and importance sampling with adapted process designed heuristically with updating at

stationary points (Au 2008). Table 1 summarizes the reported variance reduction efficiency.

To investigate the robustness of the control force (for the purpose of importance sampling) with

respect to the choice of λ1 and λ2, we consider different combinations of their values and perform

importance sampling in each case. The combinations covered λ1 = 1, 1.5 and λ2 = 1.5, 2, 2.5. In all

cases the contour of control law was found to be qualitatively similar. The unit c.o.v. was estimated

with one hundred thousand (100,000) samples. The results are summarized in Table 2. For each

combination of λ1 and λ2 the values of the unit c.o.v. ∆, failure rate QF and conditional c.o.v. ∆R F

Fig. 4 Random sample of u(t) and corresponding x(t) (failed at 17.5 sec)
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are shown. Variance reduction is assessed in term of the unit c.o.v. ∆, whereas its mechanism can be

analyzed with QF and , through the identity in Eq. (8). Here, the values of λ1 and λ2 chosen, in

multiples of their respective scales, are of the order of 1. The values chosen are intended to

illustrate the effect of λ1 and λ2 on efficiency, and the trade-off between trade-off of QF and 

that possibly leads to a minimum ∆.

As shown in Table 2, the failure rate QF increases with both λ1 and λ2. This is expected because

in the objective function λ1 reflects the importance of the time to next yield, while λ2 reflects the

importance of exit velocity. The higher the value of λ1, the more important it is to shorten the time

to next yield and hence the higher the power the control law will spend. On the other hand, a high

value of λ2 targets a high exit velocity, which again increases the power.

The conditional c.o.v.  increases with the failure rate because it roughly increases with the

energy of the adapted process (control force). The rate of increase is not uniform and can be quite

drastic for high failure rates. The net effect is that variance reduction is better achieved with a

balance between the failure rate and the conditional c.o.v. As shown in Table 2, the value of unit

c.o.v. is similar for different combinations of λ1 and λ2. No optimization with regard to (λ1, λ2) is

intended in this work, although it is observed that variance reduction is highest around λ1 = 1.5 and

λ2 = 2. It is more important for the variance reduction capability to be robust to the choice of (λ1,

λ2) than to locate the optimal value of (λ1, λ2) because the optimum is likely to be problem

dependent.

The unit c.o.v. in other range of values of λ1 and λ2 can be expected from their roles in the

method. Essentially, as their values initially increase from zero they tend to decrease ∆ because in

that range they can increase the failure rate significantly while overweighing the accompanying

increase in QF. At the other extreme if they are very large too much effort is spent on driving the

response to plastic excursions and their large energy will lead to exponentially large . The

resulting detrimental increasing effect on ∆ can hardly be compensated by the increase in the failure

rate QF. The range of values of λ1 and λ2 shown in the Table 2 is the ‘interesting’ region where the

effects of QF and  are trading off.

The values of unit c.o.v. reported in Table 2 are generally smaller than those reported previously,

reflecting a progress in variance reduction. In particular, for a similar failure rate the conditional

c.o.v. of the proposed method is significantly smaller than that of the adapted process developed in

∆R F

∆R F

∆R F

∆R F

∆R F

Table 1 Previous reports on variance reduction

Method
Failure rate

QF

Unit c.o.v.
∆

Conditional c.o.v.

Direct MCS 2.4×10−5 204 0

IS-design point (Au et al. 2007b) 5% 38 8.4

IS-adapted (Au 2008) 14% 20 7.4

Table 2 Variance reduction for different choice of λ1 and λ2

QF, ∆, 
λ2 (×E/ωb0)

1.5 2 2.5

λ1 (×E/t0)
1 5%, 9.8, 2.0 12%, 9.7, 3.2 24%, 13.6, 6.6

1.5 9%, 9.0, 2.5 21%, 7.6, 3.4 38%, 12.8, 7.9

∆R F

∆R F
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the previous work (Table 1, last row), demonstrating the effectiveness of the stochastic control law.

To make a comparison in terms of computational efforts, suppose a δ = 30% c.o.v. in the target

failure probability of 2.4×10−5 is desired. This means the required average number of samples

required is N = ∆2/δ 2~10∆2. Based on the values of ∆ reported in Table 1 and Table 2, the number

of samples for direct MCS, importance sampling using design points (Au et al. 2007b), importance

sampling using previous heuristic rules (Au et al. 2008) and the present work are 416 × 103,

14 × 103, 4 × 103 and 1 × 103. Here, for the present work we have used a representative value of ∆ =

10. These numbers show a progressive improvement in variance reduction using importance

sampling technique. 

6. Conclusions

Within the framework of importance sampling using adapted processes this paper has presented an

approach for designing the adapted process as a stochastic optimal control law. The objective

function reflects the expected energy needed to next yield as well as the exit velocity. This objective

is heuristic but it simplifies design of the controller. Determining the optimal controller involves

solution of a control potential that satisfies the Bellman’s equation. The Bellman’s equation is a

nonlinear PDE on the state-space of response, and it is numerically solved by Jacobi iteration

method in this paper. When the control potential cannot be solved analytically, as is often the case,

it implies that the method will suffer from the curse of the state-space dimension for MDOF

structures. In view of this, a viable strategy is to use control laws that only depend on partial

observation of the response state. Alternatively, one may develop heuristic rules as control law for

MDOF structures, so that it does not involve solving PDEs. This of course is not trivial but the

development may leverage on understanding of the response generating mechanisms of optimal

controllers in lower state-space dimensions.

The proposed method can be applied to elastic-nonlinear SDOF systems. In this case the

nonlinearity will be reflected in the drift term of the stochastic differential equation of system

dynamics; the same Jacobi iteration can be applied for solving the Bellman’s equation to obtain the

control potential. Of course, similar problems with increasing state-space dimensions as in elasto-

plastic structures will be encountered, which can possibly be resolved by reducing the state-space

dimension in the design of the adapted process.
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