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Stochastic response spectra for an actively-controlled 
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Abstract. A stochastic response spectrum method is proposed for simple evaluation of the structural
response of an actively controlled aseismic structure. The response spectrum is constructed assuming a
linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the
product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-
Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control
strategy for an enlarged state space system, and the response amplification factor is given by the
combination of the obtained statistical response values and extreme value theory. The response spectrum
thus produced can be used for simple dynamical analyses. The response factors obtained by this method
for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical
simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This
method is expected to be useful for engineers in the initial design stage for structures with active aseismic
control. 
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1. Introduction

Active control technology is one of the approaches employed for improving the seismic resistance

of structures (Chang and Soong 1980, Yang 1982, Pantelides 1990, Singh et al. 1997). Dynamic

control analysis for the design of such active control is executed from the initial design stage,

requiring both examination of structural integrity and also estimation of control characteristics for

the structure. Dynamic seismic design of structures is often carried out using response spectra given

as functions of the damping ratio and natural period of the structure. A comprehensive response

spectrum analysis is rarely executed because of the large number of parameters required for control

design, whereas the ordinary response spectrum analysis involves only two relatively simple design

parameters such as damping ratio and natural period. In the present study, a new response spectrum

method is proposed for evaluating the structural response of a multiple degree-of-freedom (DOF)

structure in the design of an active control system for seismic resistance.

† Professor, E-mail: mochio@waka.kindai.ac.jp

DOI: http://dx.doi.org/10.12989/sem.2009.32.1.179



180 Takashi Mochio

2. Mathematical model for response spectrum analysis

2.1 Equations of motion governing dynamics of actively-controlled structure

The fundamental mathematical model adopted to construct the response spectrum is shown in

Fig. 1. This model estimates the dynamics of the actively controlled structure in response to ground

motion. Although several active control systems have been proposed for aseismic building design,

the active mass damper (AMD) method is adopted here as one of the simplest systems in order to

demonstrate the potential of the proposed response spectrum method. 

In Fig. 1, y, yd and z0 describe the absolute displacements of the main structure, the AMD, and the

ground, and m, c, and k denote the mass, damping coefficient, and stiffness of the structure,

respectively. The parameters md and f denote the mass of the AMD and the control force. The

system equations for the mathematical model shown in Fig. 1 are then given as follows:

(1)

 (2)

 (3)

where u is the control signal and g is the transformed gain from u to f.

2.2 Earthquake model

The following non-stationary stochastic model describing earthquake motion is assumed in the

present study

 (4)

where a(t) is a deterministic time-dependent function, with . The envelope

function a(t) is defined in order to realize the non-stationary state for amplitude. The term  is a

narrow-band stationary Gaussian process that is frequently modeled as a absolute acceleration

response in a single-DOF(SDOF) system subject to stationary Gaussian white noise given by .

This model is a well-known artificial earthquake model having a Kanai-Tajimi spectrum (Tajimi
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Fig. 1 Mathematical model for response spectrum generation
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1960), and is adopted in the present study. The governing equation is expressed by

 (5)

Substituting  into Eq. (5) yields

; (6)

3. Control rule and covariance of structural response

3.1 State space expression of active control system 

By defining the relative displacements as 

, (7)

and coupling these variables with Eqs. (1)-(4) and (6), the following extended state equation for an

actively-controlled structure can be obtained 
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3.2 Stochastic control rule

To achieve active vibration control, the linear quadratic Gaussian (LQG) algorithm (Wu and Yang

2000) is employed. Applying the LQG algorithm to the state space equation, which consists of

time-dependent coefficients associated with Gaussian white noise (Eq. (8)), the optimal control

signal u0(t) is derived as follows 

(9)

Here, P(t) is the solution satisfying the following Riccati equation (Preumont 1997) 

(10)

and Q and r are defined as control parameters within the following performance index 

(11)

where E[•] denotes the expected value.

The time-dependent feedback gain vector F(t) can be obtained by solving P(t) in Eq. (10).

However, the application of such a time-dependent gain to on-site active control is not always

useful, as the calculation of the time-dependent gain is computationally intensive. The present

treatment therefore adopts a time-invariant feedback gain that is estimated at some appropriate time

at which the envelope function a(t) is maximum, that is, at . This estimation

is defined from the viewpoint of obtaining the best effect on vibration suppression in the larger

response region. Despite the use of such a time-invariant gain, good vibration control can be

achieved as shown later, owing to the improved robustness of the LQG strategy. 

Using the time-invariant feedback gain vector, i.e., F(t) ≡ F, Eq. (8) can be arranged as follows 

 (12)

Supposing the initial values of all state variables to be zero, the equation to be satisfied by the

response covariance matrix V(t) with V(t = 0) = 0 (Preumont 1990), is given by

(13)

The covariance of the structural response can thus be obtained by solving Eq. (13).

4. Derivation of response spectrum

4.1 Basic strategy for evaluation of the response spectrum 

The expression of the response spectrum describing the absolute acceleration response of a

structure generally has one of the following forms
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1) (14)

2) (= response factor) (15)

where  and  are the maximum values of absolute acceleration relating to structural

response (see Fig. 1), T is the natural period of the structure, and ξ is the damping ratio of the

structure. Eq. (15) is adopted in the present treatment, because the maximum level of earthquake

acceleration is not always decided in the initial design stage. 

To obtain the response spectrum stochastically, Eq. (15) is approximated by 

(16)

where σ(t) is the non-stationary standard deviation, and  and  are the peak factors relating to

 and , which are approximated as time-invariant parameters under the assumption that these

parameters are not affected by the non-stationary state of the random process or by the active

control force. The specific expression for the peak factor adopted in the present treatment is that of

Kiureghian (1980), and is given by

 (17)

Here, T0 is the duration, and λm is the mth-order spectral moment, which is given by 

(18)

where GF(ω) is the one-sided power spectral density of the input acceleration, and H(ω) is the

frequency transfer function from input acceleration to response acceleration.

4.2 Calculation of peak factors

As it is assumed that the peak factor is not affected by the non-stationary state, the derivation of

the peak factor for  is identical to that for  through Eq. (4). The peak factors  and 

can thus be easily obtained. 

To obtain , some additional manipulation is required. As the non-stationary state is neglected in

estimation of the peak factor, stationary analysis of random vibration may be executed using 

instead of . The applicable equations of motion are then revised as follows 
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Introducing Laplace transforms for Eqs. (2), (3), (6), (9), and (19), the transfer function G2(s)

from  to  is obtained utilizing the transfer function G1(s) from  to , as follows.

(20)

The mth-order spectral moment required for peak factor  can then be obtained easily.

4.3 Estimation of maximum value concerning non-stationary standard deviation

The maximum value related to the non-stationary standard deviation of  is estimated as

follows. The square of the non-stationary standard deviation of  is represented by Eq. (4) as

follows 

(21)

The maximum value thus occurs at the time at which the envelope function a(t) reaches a

maximum, since  is a stationary random process and  becomes constant. This

peak value can thus be easily acquired.

The maximum value related to the non-stationary standard deviation of  is then estimated

from the square of the non-stationary standard deviation of , given by , which can be

readily obtained through simple statistical calculations using Eqs. (1) and (3). 

The response spectrum  required for calculating the structural dynamics of a multi-DOF

structure using an AMD system can then be approximately obtained through Eq. (16).

5. Extension of response spectra to multi-dof structure

The dynamic characteristics of a multi-DOF structure with an active control system can be

obtained analytically by utilizing the extended state space equation and covariance matrix method as

shown above. It is to be demonstrated in the present study, however, that approximate values of

each maximum response can be estimated using an appropriate stochastic response spectra, allowing

the peak responses to be calculated easily using known modal parameters without computers.

The mathematical model shown in Fig. 2 is assumed for a multi-DOF structure. The system

equations for this model are given by
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where

and M, C, and K are the mass, damping, and stiffness matrices for the main structure.

By applying modal analysis (e.g., ) to Eq. (22) under the assumption of orthogonality for

the damping matrix, a set of equations to be analyzed in ith-order modal space can be obtained

approximately as follows 

(23)

 (24)
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Fig. 2 Mathematical model for multi-DOF structure
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where ui gives the modal control signal derived under the assumption of independent modal space

control (Meirovitch and Silverberg 1983) being valid. In Eq.(23),  and  are the modal

coordinate, modal damping, modal frequency, participation factor, and modal mass for the ith-order

mode, and φni (normalized to one in this treatment) denotes the ith-order modal shape at the top

floor (n). 

Eq. (24) can also be rewritten as

(25)

where  is exactly equal to . The approximated expression for , however, is introduced

in order to realize the same calculation as the ordinary response spectrum method against an

actively-controlled multi-DOF structure, by neglecting modal coupling effects and considering the

limited case where Eq. (25) is used at the ith-order modal coordinate, i.e. 

 (26)

Thus, Eq. (25) becomes 

 (27)

which is formally identical to Eq. (2).

Using Eqs. (2) and (3), Eq. (1) can be transformed into another expression as follows 

(28)

where the right side of Eq. (28) may be approximately represented as , because of 1 >> 

for many actively-controlled structures. Through utilizing Eqs. (25) and (26), similarly, Eq. (23) is

also transformed into 
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where the right side of Eq. (29) may be designated as  at lower modes, because there is higher

possibility of >>  at those modes. In such a case, the maximum values of ith-order

mode can be easily obtained by scaling of βi with the response spectrum already calculated from the

SDOF structure with the active control system, by the same methodology as the well-known

response spectrum method. βi at higher modes, on the other hand, frequently becomes small. There

are, however, considerable cases such as > , because  becomes larger at higher

modes owing to the normalization of . Without regard to >  being correct or not,

total value of  becomes smaller at higher modes, and it means that modal responses at

higher modes do not affect the dynamics of structural response too much.

This method, therefore, allows the response factor for absolute acceleration of structure to be

determined by conventional approximation methods, which are frequently used in aseismic design

for non-actively controlled structures. 
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6. Evaluation of proposed method

The response spectrum, produced by SDOF actively-controlled structure, as the fundamental data

in order to estimate approximately the dynamics of multi-DOF structure with an active control

system is derived from Eq. (16). The validity of the proposed technique is examined here through a

comparison between analytical results and numerical simulations. The parameters for the reference

case are as follows:

1) parameters for mass and control

2) parameters for structural dynamics

3) parameters for input

where h = 0.6 means the tendency of the input wave to be a broadband process, and this value is

especially selected, from the viewpoint of giving higher response amplifications against all the

natural frequencies shown in Table 1, in order to examine the effects of multi-DOF system.

Fig. 3 shows a comparison between the analytical results obtained using Eq. (16), with numerical

results obtained by Monte Carlo simulation of 500 artificial earthquakes. The analytical results are

in good agreement with the numerical results, confirming that the proposed method based on

Eq. (16) is useful as a simple approach for obtaining the response spectrum for an actively

controlled structure under seismic loading.

The effect of active control can be evaluated by comparing the response spectra obtained with and

without control, as shown in Fig. 4 for the same set of parameters. It can be seen that the absolute

acceleration response of the actively controlled structure is reduced with respect to that without

control in the shorter natural period region. In the longer period region, active control results in

slightly larger response, since the control rule adopted in the present paper aims to reduce the

response level of  by considering the corresponding weighting parameters at Eq. (11) being

larger.

md

m
------⎝ ⎠
⎛ ⎞ 0.02,

g

m
----⎝ ⎠
⎛ ⎞ 0.98= =

r 1, Q

100

1 0

1

100

0 1

1

= =

ξ 0.01=

Ω 5π h, 0.6 ζ 1= T0, , 10 Am 5.379= c1 0.3 c2 0.5=,=, ,= = =

x x·,



188 Takashi Mochio

7. Parametric study

7.1 Influence of structural damping on response acceleration

The response spectra  for structural damping (ξ) of 0.005, 0.010, and 0.050 are shown in

Fig. 5. Note that the ξ = 0.050 case corresponds to the reference case. It is clear that the response of

the structure without active control is markedly affected by structural damping in the resonance

region. With active control, however, there is no remarkable influence on the building response,

since the equivalent damping force introduced by the active control system has a more pronounced

effect on the structural dynamics compared to the natural structural damping.

Rr T ξ,( )

Fig. 3 Comparison of analytical (line) and numerical
(symbols) response spectra

Fig. 4 Comparison of response spectra with (line)
and without (symbols) active control

Fig. 5 Influence of structural damping on response spectrum
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7.2 Control parameters affecting structure response

Response spectra for active control using various values of md/m and g/m are shown in Figs. 6

and 7. The damping ratio in both cases is 0.01, and all other parameters are the same as for the

reference case. The parameters md/m and g/m can be seen to have a pronounced influence on the

performance of active control. An increase in either of these parameters generally implies an

improvement in performance for suppressing the absolute response in the resonance region or the

relative response at higher natural periods. Conversely, the response spectrum with active control

moves toward that without active control as each of these parameters tends to zero. This analysis

demonstrates how the response spectra can be used to evaluate the dynamic response of a structure

and assess the structural vibration suppression achieved by various implementations of active

control.

8. Example of application to a multi-dof structure

As a typical application of the proposed response spectrum analysis, the response of a 3-DOF

main structure (n = 3 in Fig. 2) is evaluated. The following parameters are employed:

1) Modal parameters 

Fig. 6 Influence of (md/m) on response spectrum
with active control

Fig. 7 Influence of (g/m) on response spectrum with
active control

Table 1 Modal parameters used in typical example

βi φ3i φ2i φ1i

first mode 0.01 15.58 368.2 0.532 1.22 1 0.802 0.445

second mode 0.01 43.66 572.6 0.342 -0.28 1 -0.555 -1.247

third mode 0.01 63.10 1859 0.105 0.06 1 -2.247 1.802

ξ̃ i ω̃
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m̃
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i
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2) Control parameters

Weighting function ; the same as the reference case

State space vector concerned ; 

3) Other parameters

Same as the reference case 

The response factors for absolute acceleration at the top floor obtained by the present spectral

analysis using the square root of sum of squares (SRSS) and absolute sum (ABS) methods are

compared in Table 2 with the results of Monte Carlo simulation. The results obtained by the

spectral analysis are in reasonable agreement with the simulation result, demonstrating that it is

possible to apply the proposed response spectrum analysis to the design of an active control system

for a multi-DOF structure in a similar manner to existing approaches. 

9. Conclusions

Active control technology is often applied to increase the seismic resistance of structures. In the

design of such an actively controlled structure, detailed dynamical analysis is executed from the

initial design stage, requiring not only examination of structural integrity but also estimation of

control characteristics. The dynamical aseismic design is often carried out in a simplified manner

using response spectra given as functions of the damping ratio and natural period of the structure. In

the present study, a new response spectrum method that accounts for active control was proposed.

The response spectrum was constructed considering a linear SDOF structure with an active mass

damper system as a fundamental mathematical model, from which the dynamics for a multi-DOF

structure with active control are estimated. The derivation includes an earthquake wave given by a

product of a non-stationary envelope function and a stationary Gaussian random process with the

Kanai-Tajimi spectrum, and a control design executed using a linear quadratic Gaussian control

strategy. Comparison of the results of the response spectrum analysis with numerical simulations for

a 3-DOF structure with AMD demonstrates that the proposed approach is useful as a simplified

design method for actively controlled structures. The proposed technique is expected to be readily
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Table 2 Calculated response factors for absolute acceleration at the top floor under active control

Method Response Factor Algorithm*

SRSS 2.1

ABS 2.7

Monte Carlo simulation 2.62

*  denotes the mean value of the response factor for absolute acceleration related to

the ith mode, and is obtained from stochastic response spectra such as Figs. 5-7.
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applicable for simple estimations in the initial seismic design stage for an actively controlled

structure. 
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