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Abstract. The problem of estimating the dynamic response of a distributed parameter system excited
by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By
adopting the Galerkin’s method and modal analysis, a set of approximate governing equations of motion
possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic
response of the coupled system can be calculated in deterministic sense. The statistical characteristics of
the responses of the system are computed by using improved perturbation approach with respect to mean
value. This method is simple and useful to gather the stochastic structural response due to the vehicle-
passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the
perturbation technique are checked by Monte Carlo simulation. 
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1. Introduction

The problem of estimating the response of a distributed parameter system due to a moving loads

or moving masses is very important in current engineering applications such as, to the analysis and

design of bridge, highway, and railway bridges. The response of structural systems subjected to
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moving loads depends on numerous parameters, such as the mass, stiffness, and damping in

structures and vehicles, the velocity of moving vehicles, the track irregularities.

The evaluation of dynamic response of distributed parameter systems subjected to a moving load

has been extensively studied in the past. Early Timoshenko (1922) presented the classical solution

of a vibrating load passing over a beam and for the analysis of trains crossing a bridge. Sadiku and

Leipholz (1987) compared the solutions for both the moving-mass and moving-force problems by

utilizing series solutions involving the Green function. Based on the Euler-Bernoulli, Rayleigh and

Timoshenko beam theories, Katz et al. (1988) investigated the dynamic response of a constant-

velocity moving load acting on a rotating shaft. Esmailzadeh and Ghorashi (1995) have coped with

the problem of transverse vibration of simply supported beams subjected to uniform partially

distributed moving mass. Lee (1994) estimated the dynamic response of a beam with intermediate

point constraints subjected to a moving load by using Hamilton’s principle. Fryba (1999)

investigated the vibration of simply supported beams with a single, lumped load moving at constant

speed along its span. Recently Esmailzadeha and Jalilib (2003) deeply studied the dynamics of

vehicle-passenger-structure interaction of bridges traversed by moving vehicles.

The stochastic analysis of distributed parameter system under moving loads has been assumed as

stochastic the intensity of moving force (Bolotin 1965) or been assumed as stochastic the force

amplitudes and the time arrivals on the system (Ricciardi 1994). In both cases, the velocity of

moving forces has been considered constant. Zibdeh (1995) dealt with the random vibration of an

elastic beam subjected to random loads moving with time-varying velocity. Sobczyk et al. (1996)

studied the dynamics of structural systems with randomly varying parameters; the analysis and

formulations were based on the theory of random integral equations. Chang and Liu (1996)

investigated the stochastic response of a nonlinear beam subjected to a moving load by using finite

element analysis. Recently Sniady et al. (1999) studied the vibration of the beam by considering the

velocity of the moving force as stochastic. ElBeheiry (2000) adopted the perturbation criteria to

investigate the effects of small travel speed variations on active suspensions of vehicles. More

recently, Wang et al. (2002) proposed a new technique to obtain the approximate probability density

for the resonance response of finite-damping nonlinear vibration system under random disturbances.

Zibdeh and Abu-Hilal (2003) performed the random vibration analysis of laminated composite

coated beam traversed by a random moving load. Feng and He (2003) described the random vibro-

impact systems by mean of impact Poincare’ map. Chang et al. (2006) adopted the Galerkin’s

technique to investigate the dynamic response of a beam with internal hinge subjected to a random

moving oscillator.

In the present investigation, both the deterministic and stochastic analysis of the vehicle-

passenger-bridge coupled system will be performed. First the deterministic analysis of the coupled

system will be performed before we proceed to deal with the stochastic analysis. In stochastic

analysis, the improved perturbation technique with respect to mean value recently proposed by

Muscolino et al. (2000, 2002) is utilized. This method adopts the first-order and second-order

probabilistic information of stochastic parameters to compute the statistical response of the system.

The stochastic analysis can be readily performed through a numerical procedure once the transition

matrix of the system has been obtained; the complete procedure was described in details by

Muscolino (1996). The probabilistic characteristics of the stochastic parameters are obtained by the

improved perturbation method and the results are checked by Monte Carlo simulation, also, the

reliability analysis of structure is performed based on certain failure criteria of the structure

described by Chang and Chang (1994).
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2. Governing equation of motion

The goal of this study is to perform the deterministic and stochastic dynamic analysis of the

mathematical model for the passenger-vehicle-bridge interaction. For simplicity, only linear models

are assumed to simulate the dynamics of both bridge and vehicle suspension systems. We adopt a

uniform Euler-Bernoulli beam to characterize the bridge that is assumed as horizontal at the

equilibrium position under its own weight.

Moreover, the steady state displacements of the vehicle are also measured from their static

equilibrium positions generated just before the vehicle enters the bridge. Therefore, the gravitational

effect of the vehicle weight is considered as an extra portion of variable moving loads acting on the

bridge. We assume that the vehicle travels along the bridge with the velocity , where u(t) is the

position of the center of gravity (c.g.) of the vehicle body measured from the left-end support of the

bridge, as shown in Fig. 1. The vehicle is characterized as a half-car planar model with six degrees-

of-freedom, which is composed of a body mass, a driver and a passenger, and two axles. The body

mass is considered to have the vertical deflection and rotational deflection, while the driver and

passenger are restrained to have only their own vertical motion, meanwhile, each axle has its own

u· t( )

Fig. 1 Suspension system of 6-d.o.f half-car model moving on a bridge
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vertical oscillation. The compositions of the suspension system, the tires, and the passenger seats are

characterized by the combination of linear springs and viscous dampers connected in parallel

arrangements as shown in Fig. 1. To derive the governing equation of motion for the coupled

system, the Lagrange’s equation is adopted. First of all, in order to obtain the approximate solution

of equations of motion of the coupled system, the deflection of the beam w(x, t) can be expressed as

a series expansion as follows

(1)

where qi(t) are the generalized time-dependent coordinate, and φi(t) are the transverse

Eigenfunctions (mode shapes) of a beam satisfying the boundary conditions.

By considering only the first n eigenfunctions of Eq. (1), the orthogonality conditions among

these mode shapes can be derived as follows

, , (2)

where c is the equivalent linear viscous damping ratio of the bridge. δij is the Kronecker delta

function for i, j = 1, 2,…, n, and Ni, Si, and Oi are, respectively, the generalized mass, generalized

stiffness, and generalized damping coefficients in the ith mode.

In Lagrange’s formulation, we need the time-dependent contact force between the tires and the

beam, which can be expressed in terms of the Heaviside function in the following 

(3)

In Eq. (3),  and  denote the locations of the contact points of the front and rear tires

along the bridge at any instant t, which can be expressed as

, (4)

where u(t) is denoted as the position of the center of gravity of the moving vehicle measured frm

the left-end support of the beam, as presented in Fig. 1. Based on the orthogonality conditions given

by Eq. (2) and the Galerkin approximation of Eq. (1), the governing equations of motion of the

coupled system can then be derived readily. The model is governed by six linear second order

differential equations of motion, which are formulated in the following.

The equation of the vertical motion for the vehicle body is

(5)
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(6)

The equation of the vertical motion of the driver is

(7)

while the vertical motion of the passenger is expressed as

 (8)

The equation of the vertical motion for the front axle is

(9)

and the vertical motion of the rear axle is expressed as

(10)

The governing of equation of motion of the bridge is formulated by n second order differential

equations as follows

,

(11)

where the coefficients Ω1 to Ω8 in Eqs. (5) and (6) are

,

,

,

, (12)
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and the ith element of Ω9 and Ω10 in Eq. (11) can be written in the following forms 

(13)

(14)

The coefficients D1 and D2 are utilized to determine whether the front or rear tires stay on the

bridge, for instance, D1 = 1 denotes the front tire is on the bridge while D1 = 0 means the front tire

is off the bridge.

We can rearrange Eqs. (5)-(11) to form a system of (n + 6) second order coupled differential

equations with time-varying coefficients. Obviously, the two coefficients D1 and D2 and the Eigen-

functions φi(ξ1(t)) and φi(ξ2(t)) represent these time-varying coefficients in the governing equations

of motion. Eqs. (5)-(11) can be represented in the state-space form very readily as follows 

(15)

where

, (16)

and the state variables vector for the coupled system is

(17)

Once Eq. (15) has been solved, it is quite straightforward to compute the dynamic response of the

coupled system, for example, we can obtain the vertical deflection of the bridge, the vertical

deflection and rotational displacement of the vehicle body mass, the vertical deflections of the

driver and passenger, etc… 

 

3. Stochastic analysis

In the stochastic analysis, we assume the initial velocity (v) and body mass (ms) of the moving

oscillator to be uncertain to make their characterization in probabilistic sense. The equations

governing the problem possess both random force and coefficients, and therefore the response

becomes a random process. Denoting by E[v] and E[ms] the mean value of initial velocity and

moving body mass for the vehicle, and by βi the fluctuation of ith (i = 1, 2) uncertain parameter

with respect to its mean value and under the assumption that « 1, the random variables are

described by the following laws of variation:

(18)

Here βi is assumed as uniformly distributed random variables with zero mean. For simplicity,

E[β1β2] is assumed as zero in the present study although the assumption is not necessary.

In this study, the improved perturbation technique is adopted to solve the stochastic equations.
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This method was originally proposed by Elishakoff et al. (1995) to solve static problems as an

improved approach to the traditional stochastic finite element method (Kleiber and Hein 1992), and

then extended to perform the dynamic analysis of linear systems with random coefficients by

Muscolino et al. (2000), and to investigate bridge-vehicle interaction under random moving mass by

Muscolino et al. (1999). The basic concept of the improved perturbation technique uses the Taylor

series expansion of the uncertain parameters and ignores third and higher order terms. In addition,

the state-space vector is used to write the second order differential equations into a set of first order

differential equations. Consequently, it transforms the second order stochastic differential equation

into a set of first order deterministic differential equations. According to the philosophy of this

method, keeping track of the relationship (18) and introducing the vector β of uncertain parameters,

the coupled system of Eq. (15) is rewritten in terms of state variables as follows 

(19)

Eq. (19) consists of (2n + 12) equations since the vectors q and p are, respectively, n × 1 and

6 × 1 order, with random and time-dependent coefficients. According to the mean-value perturbation

approach the matrix B(β, t), the vector G(β, t) and z(β, t) can be rewritten in approximate forms as

follows (Muscolino et al. 2002) 

(20)

(21)

(22)

where the over bar denotes mean value, while the symbol with the index indicates the deviation

from the mean value. Substituting Eqs. (20)-(22) into Eq. (19) and taking the average of Eq. (19),

finally we can wind up with the following equations 

(23)

, (24)

The solution of these coupled Eqs. (23)-(24) can be computed by using the numerical procedure

proposed in Muscolino (1996). Once these equations are solved, the stochastic response of the

coupled system can be readily calculated as described by Muscolino et al. (2002). Furthermore, it is

possible to draw the statistical moments of higher order of the beam deflection by means of the

following relationship

 (25)
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Carlo simulation. The parameters used to test the applicability of this proposed approach are the

coefficient of variation and the coefficient of excess defined by the following relationships,

respectively (Lewis 1987).

(26)

(27)

The first parameter defined as the ratio between the standard deviation σ(x, t) and the mean value

 of the displacement or stress at x = L/2 at the time when the vehicle is located at the middle

point position of the beam. The second parameter is defined as the ratio between the fourth

cumulate k4(x, t) and the square power of displacement or stress variance evaluated at x = L/2 at the

time when the vehicle is located at the mid-point of the beam.

4. Numerical examples and discussions

The proposed procedure has been used to calculate the response of a simply supported beam

subjected to a moving vehicle as shown in Fig. 1. The bridge is characterized as a uniform beam

and is considered free of any load or deflection initially, and therefore is horizontal at the

equilibrium position under its own weight. The Eigenfunctions φi(x), based on the Euler-Bernoulli

beam theory, are adopted in the numerical computations, specifically the normalized Eigenfunctions

of a simply supported beam are given by

, (28)

4.1 Deterministic analysis

In deterministic analysis, a vehicle traveling at a constant speed on a bridge is presented here. The

6-d.o.f. passenger-vehicle planar model shown in Fig. 1 is considered here. The numerical values of

the parameters as proposed by Esmailzadeh, et al. (2003) are depicted as follows:

Bridge: L = 100 m, E = 207 Gpa, I = 0.174 m4, ρ = 20000 kg m−1, c = 1750 N s m−1.

Vehicle: ms = 1794.4 kg, mt1 = 87.15 kg, mt2 = 140.4 kg, mp1 = 75 kg, mp2 = 75 kg,

J = 3443.05 kg m2, b1 = 1.271 m, b2 = 1.716 m, d1 = 0.481 m, d2 = 1.313 m,

k1 = 66.824 KN m−1, k2 = 18.615 KN m−1, kt1 =  kt2 = 101.115 KN m−1,

kp1 =  kp2 = 14.0 KN m−1, c1 = 1190 N s m−1, c2 = 1000 N s m−1,

ct1 =  ct2 = 14.6 N s m-1, cp1 = 50.2 N s m−1, cp2 = 62.1 N s m−1 (29)

The dynamic deflections of the mid-point of the bridge are shown in Fig. 2 for three different

values of the vehicle speed. Meanwhile, the transient response for the deflection motion of the

vehicle body is illustrated in Fig. 3. Moreover, the variations of the deflection motion of the driver,

the passenger, the front and rear tires are presented in Figs. 4-7 respectively. It should be noted that

the numerical results shown in Figs. 2-7 match with those presented in Esmailzadeh, et al. (2003).
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Fig. 2 Time history of mid-point deflection w(L/2, t)
of the beam for v = 15.55 m/sec (⎯), v = 20
m/sec (-+-), and v = 24.44 m/sec (…) 

Fig. 3 Time history of vehicle body deflection ws(t)
for v = 15.55 m/sec (⎯), v = 20 m/sec (-+-),
and v = 24.44 m/sec (…)

Fig. 4 Time history of driver deflection wp1(t) for
v = 15.55 m/sec (⎯), v=20 m/sec (-+-), and
v = 24.44 m/sec (…) 

Fig. 5 Time history of passenger deflection wp2(t) for
v = 15.55 m/sec (⎯), v = 20 m/sec (-+-), and
v = 24.44 m/sec (…) 

Fig. 6 Time history of front tire deflection wt1(t) for
v = 15.55 m/sec (⎯), v = 20 m/sec (-+-), and
v = 24.44 m/sec (…)

Fig. 7 Time history of rear tire deflection wt2(t) for
v = 15.55 m/sec (⎯), v = 20 m/sec (-+-), and
v = 24.44 m/sec (…)
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The variations of the mid-point value of the transversal dynamic deflection and the bridge bending

moment, when the vehicle is located at the mid-point of the beam, with respect to the vehicle speed,

are shown in Figs. 8 and 9 respectively. It is observed that when the vehicle travels at 15 m/sec, the

deflection of the mid-point of the beam where the vehicle is located reaches the maximum value. 

4.2 Stochastic analysis

In order to simulate another bridge-vehicle interaction case, the following numerical values for the

parameters are adopted here.

Bridge: L = 100 m, E = 200 Gpa, I = 0.271 m4, ρ = 15000 kg m−1, c = 3000 N s m−1.

Vehicle: ms = 2000 kg, mt1 = 90 kg, mt2 = 140 kg, mp1 = 80 kg, mp2 = 80 kg,

J = 3387.5 kg m2, b1 = 1 m, b2 = 2 m, d1 = 0.5 m, d2 = 1.5 m,

k1 = 65.0 KN m−1, k2 = 20.0 KN m−1, kt1 =  kt2 = 100.0 KN m−1,

kp1 =  kp2 = 140 KN m−1,c1 = 1190 N s m−1, c2 = 1000 N s m−1,

ct1 = t2 = 15 N s m−1, cp1 = 50 N s m−1, cp2 = 60 N s m-1 (30)

The deterministic analysis will be performed before we proceed to confront with the stochastic

analysis. In order to achieve the possible maximal deflection and bending moment of the mid-point

of the bridge, we employ v = 22.22 m/s to carry out the following numerical computations. The

variations of the mid-point value of the transversal dynamic deflection and the bridge bending

moment, when the vehicle is located at the mid-point of the beam, with respect to the vehicle speed,

Fig. 8 The mid-point dynamic deflection Fig. 9 The mid-point bending moment

Fig. 10 The mid-point dynamic deflection Fig. 11 The mid-point bending moment
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are presented in Figs. 10 and 11 respectively. It is observed that when the vehicle travels at 22.22

m/sec, the deflection of the mid-point of the beam where the vehicle is located reaches maximum

value. In stochastic analysis, the stochastic body mass is assumed to have mean value E[ms] = 2000

kg, and the mean value of the initial velocity is assumed to be E[v] = 22.22 m/s. It is noted that, as

stated previously, the initial velocity and vehicle body mass has been assumed as stochastic

variables. The uncertain parameters βi are assumed to be uniformly distributed with zero mean in

the intervals [−ai, ai] (i = 1,2) with ai varying between 0 and 0.4. The field of applicability of the

proposed method is investigated and checked by Monte Carlo simulation. The parameters used to

test the applicability of this proposed approach are the coefficient of variation and the coefficient of

excess defined by Eqs. (26) and (27) respectively. With the purpose to observe the contribution of

the single uncertain parameter, the cases of random velocity and vehicle body mass have been

considered separately. As it can be detected from Figs. 12 to 15, the coefficient of variation (c.o.v.)

and the coefficient of excess (c.e.) calculated from the perturbation approach are in a good

agreement with those computed from Monte Carlo simulation. In Figs. 12-15, the values of ai were

fixed to be equal to 0.2 for all the uncertainties unless it is a varying parameter in that particular

figure. 

Fig. 12 Absolute value of coefficient of variation
c.o.v. of mid-point deflection versus different
fluctuations a1 of stochastic initial velocity

Fig. 13 Absolute value of coefficient of variation
c.o.v. of mid-point deflection versus different
fluctuations a2 of stochastic vehicle mass

Fig. 14 Absolute value of excess coefficient c.e. of
mid-point deflection versus different fluctua-
tions a1 of stochastic initial velocity 

Fig. 15 Absolute value of excess coefficient c.e. of
mid-point deflection versus different fluctua-
tions a2 of stochastic vehicle mass 



748 T-P. Chang, M-F. Liu and H-W. O

5. Conclusions

The problem of calculating the dynamic response of a distributed parameter system excited by a

moving vehicle with random initial velocity and vehicle body mass is investigated. The vehicle,

including the driver and passenger, is modeled as a half-car planar model, which is moving on a

wide span uniform bridge modeled in the form of a simply supported Euler-Bernoulli beam. The

system response is a stochastic process although its characteristics are assumed to be deterministic.

By adopting the modal analysis and Galerkin’s method, a set of approximate governing equations of

motion possessing time-dependent uncertain coefficients and forcing function is obtained. The

statistical characteristics of the response of the beam are computed by using improved perturbation

approach. This method is simple and useful to gather the stochastic structural response due to the

vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results

calculated from the perturbation technique are checked by Monte Carlo simulation. 
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