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Optimal design of composite laminates for minimizing 
delamination stresses by particle swarm 
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Abstract. The present paper addresses the optimal design of composite laminates with the aim of
minimizing free-edge delamination stresses. A technique involving the application of particle swarm
optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also
conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which
provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to
partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to
the starting design points, and an unsuitable initial design set will lead to a result far from global solution.
By contrast, the proposed method can find the global optimal solution regardless of initial designs, and
the solutions were better than those obtained by ZOM in all the cases investigated.
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1. Introduction

Laminated structures have found many fields of application in recent decades owing to their

advantages of combined high strength and low weight as well as good flexibility. In order to fully

exploit the potential of composite laminates, it is essential to become acquainted with the stress

distribution features in a laminate under external action. Traditional classical lamination theory

(CLT) provides a good prediction for in-plane stresses and strains for some simple cases. In general,

however, owing to the mismatch of the mechanical properties of the adjacent layers, interlaminar

singular stress fields will develop in the vicinity of the free edges of the laminate. This so-called

“free-edge effect”, i.e., localized high interlaminar stresses, is directly attributed to delamination in a

laminate and causes laminate fracture to take place earlier (Peng and Chen 2006, Sleight 1999). 

Peng and Chen (2006) pointed out that for the laminates [(±θ)2, 90o]S and [90o, (±θ)2]S, when the

location of the 90o layer changes from inside to outside, the interlaminar normal stress at all the

interfaces of the free-edge changes from a relatively high tensile magnitude to a compressive stress

and, as a result, the delamination failure is suppressed and the ultimate strength is enhanced
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accordingly. Sancho and Miravete (2006) reported that the interlaminar normal stress σz is

responsible for most delamination failures, based on experimentation and stress analyses of

laminates. Ferreira et al. (1995) formulated the interlaminar normal and shear stresses as functions

of the transverse normal stress σy based on the bilinear approximation method developed by Pagano

and Pipes (1970). Thereafter, a multi-objective optimization was executed to minimize the

interlaminar stresses. Since the calculation was based upon CLT, the model and the load conditions

were restricted to simple parameters. Lindemann et al. (2002) assessed the delamination tendency by

using the square value of the interlaminar normal stress σz
2
 and minimized it by two optimization

algorithms, i.e., the zero order method and the generalized reduced gradient algorithm. These

gradient-based algorithms are computationally efficient, but they do not guarantee global optimum

results. Therefore, it is necessary to start the optimization from different initial designs and compare

the results to ensure that the optimization is global. 

In the structural optimization field, much attention has recently been paid to evolution-based

algorithms. These algorithms do not require continuity and derivative existence of the objective

function or constraint function. They are robust and can provide a more reliable approach to obtain

the global optimum in non-smooth problems as compared to the gradient-based methods. Genetic

algorithms (GAs) have been applied successfully to composite structure problems (Aligeigloo et al.

2007, Paluch et al. 2008, Park et al. 2001, Muc and Gurba 2001, Murugan et al. 2007, Naik et al.

2008, Walker and Smith 2003, Rahul et al. 2005). Very recently, particle swarm optimization (PSO)

(Kennedy and Eberhart 1995), which is also an evolutionary global algorithm, has gained

popularity. The PSO algorithm is based on a simplified social model and mimics the behavior of a

bird flock in search for food. PSO has also been successfully applied to composite structure

problems (Chen et al. 2008, Kathiravan et al. 2007, Omkar et al. 2008). PSO shares several

similarities with GA. For example, both PSO and GA start with a randomly generated population,

evaluate the population for fitness values, update the population, and use random methods to search

for the optimal solution. The main advantage of PSO over GA is that it does not need complicated

encoding, decoding, or special genetic operators such as mutation and crossover, and thus it has

fewer parameters to be adjusted. It is therefore more effective in terms of CPU time (Dong et al.

2005, Ge et al. 2007, Suresh et al. 2007) and offers quite straightforward implementation. 

Although there has been much research concerning the optimization of composite structures

(Ganguli and Chopra 1995, 1996, 1997, Marannano and Mariotti 2008, Murugan and Ganguli 2005,

Rao and Arvind 2007, Topal and Uzman 2006), only a few works among them aimed to suppress

delamination in a laminate. In the present paper, a commercial finite element code, ANSYS, is used

to calculate interlaminar stresses at the free-edge of laminates. Optimization for minimizing

interlaminar normal stresses is then conducted using the zero-order method (ZOM) incorporated in

ANSYS. Results are presented for two different loading conditions: in-plane tensile load and

uniform bending load. Numerical results demonstrate that the optimal solutions based on ZOM are

sensitive to the initial designs. In order to overcome this disadvantage, a technique of applying the

PSO algorithm integrated with FEM is developed. Examples of minimizing, respectively, the

maximum, the mean, and the variation of the absolute peak interlaminar normal stresses in a

laminate are presented. The ability to derive the global optimal and the potential of dealing with

complicated problems in terms of practical time constraints are discussed and demonstrated. 
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2. Interlaminar stresses analysis

In recent decades numerous methods have been developed to explore interlaminar stresses,

including the finite-difference method, finite element method, and boundary layer method.

Overviews of different approaches have been given by Mittelstedt and Becker (2007) and Kant and

Swaminathan (2000). FEM is an effective and convenient approach to assess interlaminar stresses

for various boundary and/or loading conditions. In this paper, the general FE code ANSYS is

utilized for analyzing stresses in a laminate, as shown in Fig. 1. Eight-node anisotropy brick

elements are used in order to obtain the three-dimensional stress fields. As the free-edge effect is

restricted to a distance of approximately the total laminate thickness from the free-edge to the

interior, it is necessary to refine the mesh at these regions, as shown in Fig. 2. 

To verify the accuracy of the interlaminar stresses calculation, a FE analysis was first performed

on a sample plate [0/45o/−45o/90o]s made of T300/5208 (Sancho and Miravete 2006). The plate

analyzed is 120 mm in length and 30 mm in width with a total thickness of 1 mm. Ply properties

are listed in Table 1. The load introduced is an axial deformation of 0.66% along the length. Since a

Fig. 1 A laminate model Fig. 2 FE mesh at the free-edge

Fig. 3 σz distribution at the interface (90o/90o) Fig. 4 τxz distribution at the interface (45o/−45o)

Table 1 Material properties (modules expressed in MPa) 

Ex Ey = Ez Gxy = Gxz Gyz uxy = uxz uyz

181000 10300 7170 4130 0.28 0.51
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symmetric stacking sequence is employed, only half of the plate is modeled. The calculated

interlaminar normal stress σz in the symmetry interface (90o/90o) and interlaminar shear stresses τxz

in the interface (45o/−45o) are plotted in Figs. 3-4. The stress distribution in Figs. 3-4 is very similar

to that reported by Pipes and Pagano (1970). The peak values of σz and τxz are 116 MPa and

−48 MPa, respectively, which are very close to the values (113 MPa and −45 MPa) reported by

Sancho and Miravete (2006).

3. Optimization problem

It is known that compressive normal stress is beneficial with respect to restraining free-edge

delamination. However, high compressive normal stresses at the free edges go along with high

tensile normal stresses at some distance within the interior of the laminates, which in regard to

delamination is undesirable (Lindemann et al. 2002). Given this, the present paper aims to minimize

the absolute value of the interlaminar normal stresses at the free-edges. For a laminate with N

layers, there are n = N − 1 interfaces and n interlaminar peak normal stresses that have to be

minimized. Let the absolute value of the peak interlaminar normal stress at the ith interface be

expressed as σzi(θ); three kinds of functions, i.e., the maximum, the mean, and the variation of

σzi(θ), are respectively taken as objectives. The optimization problems are formulated as follows

1) (1)

2) (2)

3) (3)

where f, µ, and S are respectively, the maximum, the mean, and the variation of σzi(θ) at the n

interfaces. θ is the ply orientation angle. In the following, f, µ, and S in Eqs. (1), (2), and (3) will be

taken as the objective functions separately and each of them is a single-objective optimization

problem.

4. Optimization procedure

4.1 Zero-order method

There are two optimization methods provided by ANSYS, the zero-order method (also called the

subproblem approximation method) and the first-order method. The first-order method uses

gradients of the dependant variables. In each iteration, a search direction is selected by using a

steepest descent or conjugate direction method, and the unconstrained problem is minimized along

the specified direction. As expected, each iteration consists of a large number of subiterations

calculating search directions as well as gradients. Hence, the first-order method performs several
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analysis loops and requires substantially much longer CPU time in comparison to that required by

ZOM.

The zero-order method (ZOM), due to its independency from using derivatives of the problem

variables, is the first candidate for the optimization subroutine. It can be efficiently applied to most

engineering problems (Bayandor et al. 2002, Hasan et al. 2003, Hossain et al. 2007, Kayabasi and

Ekici 2007). For this method, the dependent variables are replaced with the response surface (RS)

approximations by means of least squares fitting and minimization is performed every iteration on

the penalized function. Each iteration is equivalent to one complete analysis loop. ANSYS DO

module generates and utilizes the polynomial RS approximation for the objective or constraint

function as follows (ANSYS Manual 2003) 

(4)

where a, b, and c are coefficients determined by a weighted least squares technique.  is the

approximation of the objective or constraint function, N is the number of design variables, and xi

(i = 1, 2, …N) is the design variable. 

For the ZOM, convergence is assumed if any one of the following conditions is satisfied.

 (5a)

  (5b)

(5c)

(5d)

where  is the objective function at iteration j and f (b) is the best objective function at the current

iteration, and x(j) and x(b) are the design variable vectors corresponding to  and f (b). τ and ρ are

the objective function and design variable tolerances, respectively. In the following optimization

examples, both the objective function tolerance and the design variable tolerance are set to be 10e-8.

4.2 Particle swarm optimization

PSO, proposed by Kennedy and Eberhart (1995), was basically developed through simulation of

bird flocking in two-dimensional space. It is a population-based search algorithm where each

individual is referred to as a particle and represents a candidate solution. To discover the optimal

solution, each particle changes its searching direction according to two factors, its own best previous

experience (pBest) and the best experience of all other members (gBest). Every swarm continuously

updates itself through the aforementioned best solutions. Thus, a new generation of community

comes into being, which has moved closer towards the best solution, ultimately converging onto the

optimal solution. In practical operation, one assesses the quality of a particle through its fitness

function value, which is determined by the optimization objective. Let the position of the ith particle

in a D-dimensional space be expressed as Xi = (xi1, xi2…xiD)T and the velocity Vi = (vi1, vi2…viD)T.

The particles are renewed according to Eqs. (6) and (7) given below.
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 (7)

where the superscript i denotes the particle and the subscript k denotes the iteration number.

 and  are random numbers uniformly distributed in the range [0, 1]. c1 and c2 are

the acceleration constants, both taking values around 2 in general cases, and w is the inertia weight

parameter, being adjusted dynamically during the optimization (Shi and Eberhart 1998)

(8)

where  is the initial weight factor and  is the final weight factor. An initial greater value

of w may result in greater population diversity at the beginning of the optimization in order to

promote global exploration of the search space. At a later stage, w takes a smaller value, since a

focused exploration can be realized and more refined solutions can be obtained. In this work, we set

= 0.9 and  = 0.4. t is the current iteration number and tmax is the maximum number of

iterations. In Eq. (6), χ is the constriction factor (Clerc 1999), introduced for ensuring convergence:

.

For a constrained optimization problem, the dynamic penalty function method is used to handle

the constraints as follows.

 (9)

S.t: ,

  , 

Here, σ is the penalty factor. To improve the performance of the algorithm, the penalty factor σ is

taken to be correlated with the iteration number 

 

where m and n are positive coefficients used to adjust the changing rate of σ; ω0 is the initial

penalty factor. In the present paper, m and n are assigned to be 5 and 1.2, respectively, and ω0 is set

to 10. The dynamic penalty factor is small at the beginning of iteration, which may help to search

for the optimum solution in a larger design space. As the iteration number increases, the penalty

factor gradually becomes larger, enforcing the constraint to be satisfied.

4.3 Optimization procedure combining PSO and FEM 

The optimization procedure is essentially written in the software MATLAB. In the optimization

process, the procedure first initializes the swarm. ANSYS is then called on the back stage to

evaluate the objective and constraint functions of each particle through APDL commands written

beforehand. ANSYS outputs the values of the functions to an external file. MATLAB reads them

and computes the penalty function in Eq. (9) as the fitness of each particle. Every particle updates

itself through Eqs. (6) and (7). The updated swarm is then returned to ANSYS for the next iteration.

This process is repeated until the number of iterations reaches the pre-determined maximum

iteration number. In the whole optimization process, data from ANSYS and MATLAB are

exchanged back and forth with each other, as shown in Fig. 5. The number of times ANSYS is
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invoked for analysis equals the maximum iteration number multiplied by the number of particles.

For PSO, the typical range for the number of particles is 20~40. For most problems, 10 particles are

sufficient to obtain good results (Kathiravan et al. 2007). 

It is well known that the calculated stress value by FE code depends upon the denseness of the

finite element mesh. With a denser mesh, a quantitatively more precise analysis of the objective

function value can be obtained. For optimization problems, however, the difference of alternative

candidates is the main concern. Consequently, a moderate mesh is used for the stress analysis in

order to save computational effort. 

5. Stacking sequence optimization examples

Two kinds of laminate optimization problems are solved. The laminate with one design variable

has a stacking sequence of [0/θ/−θ/0]s, where θ is the design variable. The laminate with two

design variables has a stacking sequence of [0/±θ/±β]s, where θ and β are the design variables. Two

Fig. 5 Flow chart of optimization process by PSO and FE code
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different loading cases are considered: uniaxial tensile load and transverse uniform bending load, as

shown in Fig. 6 and Fig. 7. For the case of in-plane load, n in Eqs. (1)-(3) is taken as N/2 due to

symmetry (N is the total number of plies). For the out of plane load, two opposite edges of the

length are fixed and the other two edges are free, and n in Eqs. (1)-(3) is taken as N−1.

5.1 One design variable problem

The optimization model with one design variable has a symmetric [0/θ/−θ/0]s lay-up. The

laminate is made from 700S/2500 and the ply properties (Takezono et al. 2001) are listed in

Table 2. The laminate has a length of 90 mm, width of 20 mm, and thickness of 1 mm. The in-

plane load is uniform axial tensile stress of 100 MPa and the out of plane load is a transverse

uniform bending load of 0.1 MPa. 

Since the basic reason for the occurrence of the free-edge effect is the layerwise different elastic

properties, it is expected that the optimization will try to minimize the difference in the ply angles

of two adjacent plies. In order to avoid an optimization result leading to a lay-up where all plies are

0o, which gives rather poor properties in the transverse direction, the ratio of the extensional

stiffness A22 perpendicular to the loading direction and A11 in the loading direction is constrained as

(Lindemann et al. 2002) 

0.4 ≤ A22/A11 ≤ 1.0 (10)

Fig. 6 Load Case 1: In-plane load Fig. 7 Load Case 2: Out of plane load

Table 2 Ply properties of CF/EP (T700S/2500) (modules expressed in MPa)

 EX EY = EZ GXY = GXZ GYZ uxy = uxz= uyz 

135000 8000 4500 3700 0.34 

Table 3 Optimization results (one design variable case)

Load case Method
Optimization results

θopt fopt θopt  
  

µopt   θopt Sopt

In-plane

ZOM(10)
ZOM(45)
ZOM(85)

PSO

65.7 
59.1  
59.7  
58.8  

1.03
 0.28
 0.29
 0.28   

65.8 
58.9 
58.9 
58.5 

0.74
0.18
0.18
0.18

65.7
58.8
59.7
59.7

0.25
0.07
0.04
0.04

Out of plane 
load

ZOM(10)
ZOM(45)
ZOM(85)

PSO

65.4
73.5
59.8
61.7

1.90
1.98
1.93
1.86

65.5 
60.8 
67.9 
61.7 

0.98
0.99
1.01
0.94

65.6
66.5
65.5
61.6

0.63
0.63
0.63
0.62
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For the one design variable case, when optimizing with PSO, a swarm size of 10 particles is

chosen and the maximum number of iterations is assigned to be 10. For ZOM, the maximum

iteration number is set to 100 so that ZOM and PSO would entail a comparable number of FE

analyses. Three different initial designs are used for ZOM: θ = 10o, 45o, and 85o. The optimization

results are listed in Table 3. θopt(
0) is the optimum design solution, and fopt, µopt, and Sopt are the three

optimum objectives corresponding to Eqs. (1)-(3) (unit in MPa).

Table 3 shows that under an in-plane load, when the initial design is 10o, the optimization results

based on ZOM are unfeasible and are far from global solutions. For other cases, the best results

obtained with ZOM are equivalent to those yielded by PSO. Interestingly, it is shown that for both

load cases the three different objectives obtained by PSO reach their minimal values at nearly the

same point. In order to validate the optimization results, the semi-analytical method reported in

Ferreira et al. (1995) was adopted to calculate the interlaminar normal stresses under an in-plane

load. In this method, the peak value of interlaminar normal stress at an interface was formulated as

a weighted function of the in-plane transverse normal stress σy in all the laminae outboard of the

interface. The formulation is described in detail in Ferreira et al. (1995). The in-plane transverse

normal stresses were calculated with CLT and the interlaminar normal stresses can be obtained

through the formulation. The calculated peak values of interlaminar normal stresses at interfaces

under Nx = 100 N/m are plotted in Fig. 8. The interfaces 1, 2…n are counted from the uppermost

interface (0/θ) to the mid-plane (0/0). Fig. 9 shows the calculated results for f(θ), µ(θ), and S(θ), as

defined in Eqs. (1)-(3). Fig. 8 shows that the absolute values of the peak interlaminar normal stress

at all the interfaces reach their minimum when θ is located at about 59o (0o not included). This is

the reason that the three different objectives reach their minimal values at nearly the same point, as

shown in Fig. 9, and the calculated results are in good agreement with those given in Table 3.

Fig. 8 Calculated peak σz at interfaces based the on
analytical approach (Ferreira et al. 1995)

Fig. 9 Calculated f (θ), µ(θ) and S(θ)

Table 4 Results of maximum f (θ), µ(θ) and S(θ) for in-plane load by PSO

θ fmax θ µmax θ Smax

29.7 6.06 30.9 3.19 29.2 1.76
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The solutions that resulted in maximum f, µ, and S were additionally obtained through PSO, as

shown in Table 4. We found that all the three objectives reach the maxima when θ takes a value

near 30o. These results also agree with those illustrated in Fig. 9.

In order to compare the convergence performances of PSO and ZOM, we take the optimization of

f under an in-plane load as an example. The variations of the objective function versus the iteration

number by PSO and ZOM, respectively, are presented in Fig. 10. It can be seen that for PSO an

optimal result equivalent to that given by ZOM is obtained at 2 iterations, and the corresponding

number of ANSYS evoked for the FE analysis is 2 × 10 = 20. For other cases, the optimum solution

is reached at 1~3 iterations. For ZOM, all the optimum solutions are achieved at the former 30

iterations. Thus, for the case of one design variable, PSO and ZOM (a suitable initial design set

provided) yield equivalent solutions with a comparable number of FE analyses executed. 

From the one design variable case with a relatively simple design space, the results given by the

proposed method show excellent agreement with the analytical results and they are superior or

equivalent to the best results among the three different initial sets by ZOM with a comparable

number of FE analyses regardless of the initial designs.

5.2 Two design variables case

Lindemann et al. (2002) used two different approaches to minimize the maximum absolute value

of interlaminar normal stresses. For comparison, the same laminate model is chosen. The thickness

and the width were 2 mm and 50 mm, respectively. The laminate lay-up is [0/±θ/±β]s. The in-plane

load in the literature is uniform axial strain of εx = 0.001 and the out of plane load is taken as

0.1 MPa in this work. The ply properties are listed in Table 5.

The length of the laminate was not given in the literature. In this paper, it is assigned as 150 mm.

Likewise, in order to refrain from an optimum result of a lay-up in which all plies are 0o, Eq. (10)

Fig. 10 Iteration history for optimization of f under in-plane load using PSO (left) and ZOM (right, initial
design: 45o)

Table 5 Ply properties of CF/EP (T700S/2500) (modules expressed in MPa)

EX EY = EZ GXY = GXZ  GYZ uxy= uxz = uyz

135000 10000 5000 3972 0.27 
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is adopted as a constraint function. For the two design variables case, a swarm size of 15 particles

is taken and the maximum number of iterations is assigned to be 10. For ZOM, the maximum

iteration number is set at 150. The same initial designs, [0/±45o/±45o]s, [0/±36o/±72o]s, and [0/±60o/

±60o]s, as in the literature are used for ZOM in the present example. The optimization results with

two design variables are listed in Table 6. θopt(
o) and βopt(

o) are the optimum design solutions, and

fopt, µopt and Sopt are the three optimum objectives (unit in MPa).

Table 6 shows that for an out of plane load, the optimum objective function results obtained by

ZOM are dependent on the initial designs, and the best among the three solutions are close to the

results based on PSO. For an in-plane load, however, ZOM provides considerably worse results

relative to those based on PSO, and the results of ZOM are more sensitive to the initial designs. If

an initial design [0/±15o/±85o]s is utilized, a better solution from ZOM can be reached, as given in

Table 7.

Table 6 Optimization results (Two design variables case)

Load case  Method
Optimization results

θopt βopt fopt θopt βopt µopt θopt βopt Sopt

In-plane

ZOM(45,45)
ZOM(36,72)
ZOM(60,60)

PSO

57.6 
45.3 
48.5 
61.4 

57.1 
46.5 
48.0 
0.3 

0.52 
2.51 
1.69 
0.03

56.9 
55.4 
61.5
0.5 

57.8 
56.1 
0.3 
61.7 

0.31
0.44
0.044
0.022

48.2
55.5 
48.2 
61.6 

 47.4 
55.3 
48.3 
0.4 

0.29
0.09
0.33
0.003 

Out of 
plane load

ZOM(45,45) 
ZOM(36,72)
ZOM(60,60)

PSO

60.3 
68.0 
63.1 
64.5 

54.1 
0.3 
3.0 
0.07 

1.94
1.35
1.36
1.31

67.4 
54.7 
63.2 
61.5 

0.3 
56.7 
0.3 
0.4 

0.70
1.78
0.72
0.68

70.2 
70.6 
63.1 
0.04 

5.7 
3.5 
2.8 
77.8 

0.37
0.40
0.41
0.24

Table 7 Optimization results for in-plane with initial design of (15o, 85o)

θopt βopt  fopt θopt  βopt  µopt θopt  βopt  Sopt

0.4 62.1 0.05 0.3 61.80 0.04 0.3 62.0  0.017

Fig. 11 Iteration history for optimization of µ under in-plane load using PSO (left) and ZOM (right, initial
design: 15o, 85o)
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Fig. 11 displays the convergence performances of PSO and ZOM. The objective functions µ

under an in-plane load versus the iteration number are demonstrated in the figure. We observed that

for PSO a satisfactory optimum solution is obtained at 2 iterations, and the corresponding number

of ANSYS evoked for the FE analysis is 2 × 15 = 30. For other cases, the optimum solutions are

reached at 2~7 iterations. For ZOM, as shown at the right side of Fig. 11, the optimal solution is

achieved at 139 iterations, corresponding to 139 FE analyses, and for other cases, the optimum

solution is also reached at around 130 iterations. It is concluded that for two design variables, PSO

yielded better optimal solutions with fewer FE analyses than ZOM. In the literature (Lindemann et

al. 2002), an optimum lay-up of [0/±52o/±52o] by gradient-based algorithms was obtained, and the

corresponding value of f under an in-plane load was 1.52 MPa, which is much worse than the

present result based on PSO (Table 6). 

Adopting the analytical method in the literature (Ferreira et al. 1995), the contour lines of σz at

each interface of [0/±θ/±β]s under an in-plane tensile load of Nx = 100 N/m are plotted in Fig. 12,

in which the unit of σz is Pa and the unit of θ and β are degree (
o). The label (1)-(5) corresponds to

the interface number 1, 2…5 counting from the uppermost interface (0/θ) to the symmetric interface

(−β/−β). From Fig. 12, it is observed that for each interface the absolute value of σz reaches 0 at the

points around (62o, 0) and (0, 62o). This is the reason why the optimal design variables θopt and βopt

vary between (62o, 0) and (0, 62o), as shown in Tables 6 and 7. The plots in Fig. 12 also show that

Fig. 12 Interlaminar normal stresses at each interface obtained using the analytical approach (Ferreira et al.
1995)
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the problem is multimodal with different local minimum points.

For some practical engineering optimization problems, the design variables behave as a discrete

form for manufacturing reasons. For example, the thickness of a ply is defined as a set of discrete

values [0.1 mm, 0.2 mm, 0.3 mm…] and the fiber orientations of the plies are defined as [0, 15o,

30o, 45o…]. This greatly reduces the design space. In some cases, we can convert the optimum

values of continuous results to the nearest discrete manufacturable values. Meanwhile, for some

other problems, the discrete optimization problems can be strictly solved with PSO by using a

special coding technology, as done in our previous work (Chen et al. 2008). Hence, it is expected

that the proposed methodology is applicable to engineering problems with continuous, discrete or

mixed variables. 

6. Conclusions 

Optimal stacking sequence design of composite laminates is carried out for in-plane load and out-

of plane load with the aim of minimizing the maximum, the mean, and the variation of the absolute

peak value of the interlaminar normal stresses in laminates. A technique involving the application of

the exterior optimization algorithm PSO integrated with the FEM was developed for the

optimization. The semi-analytical method, which provides an approximation of the interlaminar

normal stress of laminates under an in-plane load, was used to partially validate the optimization

results. ZOM incorporated in ANSYS was also used for comparison. It was found that PSO gives

better results than ZOM. For a one design variable case, the results yielded by PSO are superior or

equivalent to the best results among the three different initial sets by ZOM with a comparable

number of FE analyses. For the case of two design variables with a lager design space, PSO can

yield results better than ZOM with fewer FE analyses and the result is also better than that available

in the literature. 

As the optimization results based on ZOM are sensitive to the initial design sets, when conducting

optimization with ZOM, one should choose different initial design sets and compare the

optimization solutions. The central problem is that it is not known which initial design can lead to a

satisfactory optimum and whether another initial design exists from which a better result can be

obtained. By contrast, with PSO it is not necessary to specify initial designs manually as it is a

global stochastic method. Thus, it can be implemented in a straightforward manner and

improvement of the objective function can be achieved simply by choosing a larger number of

particles or iterations. 

It is believed that by merging the general FE package and evolution-based optimization algorithm

with a parallel computing scheme, the proposed approach provides designers a feasible and efficient

methodology with great potential for developing tailoring applications in composite structural design

and other complex engineering designs. 
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