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Abstract. Transient response analysis can be conducted either in the time domain, or via the frequency
domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A
practical issue in the FDM is to find out an appropriate extended period, which may be affected by
several factors, such as the excitation duration, the system damping, the artificial damping, the period of
interest, etc. In this report, the extended period of the FDM based on the Duhamel’s integral is
investigated. This Duhamel’s integral based FDM does not involve the unit impulse response function
(UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero
beyond the period of interest to shorten the extended period. As a result, the preferred extended period is
the summation of the period of interest and the excitation duration. This conclusion is validated by
numerical examples. If the extended period is too short, then the front portion of the period of interest is
more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error. 

Keywords: transient response; frequency domain method; fast fourier transform (FFT); laplace trans-
form; Duhamel’s integral; linear time invariant system.

1. Introduction

Dynamic analysis by computers, generally, can be achieved by discretizing governing equations,

and then solving these discrete equations numerically. There exist several forms of describing a

linear system, such as, the ordinary differential equations (ODE), multiplication in the frequency

domain (FD), and convolution in the time domain (TD)—Duhamel’s integral. Different forms of

control equations lead to different algorithm families. Well-known algorithms of discretizing ODE
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include the Runge-Kuta scheme, Wilson-theta scheme, Newmark-beta scheme, etc. Utilizing

multiplication in the FD is based on the Fourier Transform (FT) or Laplace Transform theory, and

practical computation makes use of the Fast Fourier Transform (FFT). This family is conventionally

termed the frequency domain method (FDM) (Hall 1982, Chen and Zhang 1999, Moulinec and

Suquet 2003, Kargarnovin and Younesian 2004, Polyzos et al. 2005).

FDMs possess inherent advantages in understanding the system behavior. First, the multiplication

operation in the FD looks simpler than the ODE expression. This simple expression can facilitate

both qualitative analysis and approximate computation. Second, concepts in the FD have a

straightforward relationship with the FFT. Third, there are some systems containing infinite degrees

of freedom. These systems pose difficulty, if not impossible, by solving ODE numerically, since we

can not numerically solve equations with infinite orders. But, they may be comprehensive and

solvable in the FD if the transfer function (or frequency response function) is known. 

Usually, the FDM is derived from ODE expressions, which will be reviewed briefly in section 2.

The essential concept is the extended period (Veletsos and Ventura 1984, 1985). The FDM can be

built on the Duhamel’s integral too, which is the topics of section 3. With this method, the ever-

lasting unitary impulse response function (UIRF) can be truncated to shorten the extended period.

Numerical examples will be examined in section 4. 

2. FDM derived from ODE

2.1 Applying laplace transform to ODE

The governing equation of a linear vibration system with n degrees of freedom is

(1)

Here [M], [C] and [K] are n × n symmetrical matrices. They stand for the mass, damping and

stiffness matrix, respectively. {f(t)} and {x(t)} are the n × 1 excitation and response vectors,

respectively. [C] can be of either proportional damping or non- proportional damping, but must

ensure that the system is stable. Transient analysis focuses on the short-lasting {f(t)}, such as an

earthquake excitation. Denoting the duration of {f(t)} as Td. 

Contribution of initial conditions is very important (Gupta et al. 1996, Siqueira Meirelles and

Arruda 2005), but it is beyond the scope and aim of this report. For the sake of simplicity, zero

initial conditions are assumed, that is, . 

Applying the Laplace Transform to both sides of Eq. (1) and utilizing its differential properties

lead to the following algebraic equation

(2)
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are the Laplace Transforms of , respectively. In light of Eq. (2),  can be read

as

 (4)

Here 

(5)

is the transfer function matrix. The interested {x(t)} in the time domain can be retrieved out by the

following inverse Laplace Transform

(6)

Here real number c0 is the convergence abscissa, that is, all the singular points locate on the left

to Re(s) = c0. Let us introduce the unitary impulse response function (UIRF) matrix [h(t)]-- the

inverse Laplace Transform of [H(s)]

Combining Eq. (4) and Eq. (6) leads to

(7)

Eq. (6) only needs the data along the straight line Re(s) = c, thus only the integrand value along

Re(s) = c is relevant, although s is defined over a two-dimension complex plane. If we choose

, then all the Laplace Transform operations reduce to those of the FT, and Eq. (7) is as

follows

 (8)

Theoretically, analytically solving Eq. (7) or Eq. (8) renders a closed-form solution. But,

computers favor numerical operations, especially when the FFT is employed to speed up Eq. (7) or

Eq. (8). When continuous integrals are approximated by numerical versions, several practical

considerations confront us, such as:

1) How does the integration scheme affect the accuracy? 

2) How does the sampling point distribution along Re(s) = c affect the accuracy of numerical

version of Eq. (8)? 

3) How [H(s)] can be achieved efficiently? [H(s)] correlates with the system matrix by Eq. (5),

but the matrix inverse for a great deal of s is much involved.

2.2 Extended period 

Regarding the FT approach, a practical issue is specifying an appropriate extended period Te. Te is

a finite time interval truncated by a FDM algorithm to compute the approximate Fourier transform.
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In FFT, this extended period Te has a relationship with the frequency interval Δω as Δω = 2/Te.

Veletsos (1984) had shown that the size of Te is crucial, particularly for a lightly damped system.

For example, for a single-degree-of-freedom (SDOF) system with a damping ratio ζ = 0.01, Te needs

to be as 200 times as the natural period TN to achieve four significant figures (digits) of peak

displacements. The lighter of the damping, and the longer TN, the larger Te is needed, which entails

a heavy computation burden. Moreover, even in theory, it can not work for the undamped case,

since it necessitates an infinite Te  (Kausel and Roeosset 1992).

Empirical criteria to choose Te for an SDOF system were suggested by several authors. The

criteria proposed by Humar et al. (1993) is equivalent to

 (9)

where ζ is the damping ratio, TN, the natural period, and . Rule of thumb is that Te has to

be longer than the summation of two durations, the duration covering excitation, and the duration

covering the significant non-zero part of a UIRF (2006), where the significant degree depends on

the final accuracy and experience. 

To reduce Te, Veletsos et al. superimposed two correction functions onto the approximate results

from Eq. (8). By this technique, Te can be reduced dramatically. The closed-form correction

functions for the SDOF case can be found in Veletsos and Ventura (1984). For the system with

multiple degrees of freedom, these authors also provided numerical methods to construct correction

functions.

2.2 Artificial damping and laplace transform

The critical issue of Te is that UIRFs may be too long, which is also reflected by Eq. (9).

Specifically, a light damping necessitates a long Te. This inspires some authors to add an artificial

damping to UIRF (Humar and Xia 1993, Hall and Beck 1993), which is also termed the exponential

window method (Wang et al. 2001). This justifies the concept of the Laplace Transform. The

Laplace Transform is a classical approach to analyze a transient response, especially in the case of

seeking a closed-form solution. 

The numerical Laplace Transform and its inversion are preferred by computers, since the closed-

form solution is not feasible in a complex case. Several approximate approaches had already been

proposed to implement the numerical Laplace Transform. Initially, the intimate relationship between

the numerical FT and Laplace Transform was not much emphasized (Historically, Laplace

Transform approaches to transient analysis numerically were developed independently of the FT

approaches). This relationship was not recognized until the FFT was invented (Cooley and Tukey

1965) and applied to the numerical Laplace Transform (Durbin 1974, Yonemoto et al. 2003).

Currently, the numerical Laplace Transform has found wide application in many engineering

problems, e.g., crack and fracture analysis (Wang et al. 2001, Maeso et al. 2004), magneto (or

electro)-thermoelasticity, material properties, transient analysis, heat transfer, thermal stress,

chemical engineering and probability analysis, etc. 

In the Laplace Transform expression Eq. (8), the role of the parameter c is the artificial damping.

Empirical criteria to choose this parameter was suggested by Humar (1993) as 

, by Hall (1993) as , and by Beskos (1983) as .

Te β 2πTN× /ζ ln10×=

2 β 4≤ ≤

c ln100/Te=

4.61/Te≈ c ln1000/Te 6.91/Te≈= c 5/Te 10/Te≈=
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3. FDM based on Duhamel’s integral

3.1 Applying laplace transform to Duhamel’s integral

Introducing a  vector , then Eq. (1) can be read as

(10)

Here , . The mass, damping and stiffness matrices in

Eq. (1) are assumed to be constant, therefore Eq. (10) is the mathematical representation, in the state

form, of a linear time invariant (LTI) system. In light of the property of the LTI system, the solution

of Eq. (10) under zero initial conditions is

 (11)

Here  is the exponential matrix as follows

 

(12)

It can be argued that integral bounds of Eq. (11) can be extended as follows (see appendix)

(13)

Applying the Laplace Transform to both sides of Eq. (13) leads to

(14)

Here  is the Laplace Transform of . It is easy to verify that

 (15)

Substituting Eq. (15) in Eq. (14), the lower half of  is exactly the Eq. (4). This is taken

for granted, since the Duhamel’s integral Eq. (11) is simply another way to describe the identical

system.

 

3.2 Differences between two methods 

There are some differences about the premises and resulted computational procedures between

algorithms based on the ODE and the Duhamel’s Integral. The premises of Eq. (8) include all the

nodes in the system, that is, all the system matrices  must be provided, and the

outputs cover the  displacement trajectories at all nodes.

In the Duhamel’s integral,  can be any function, and can be of arbitrary dimensions, so

2n 1× φ{ }
x·{ }

x{ }⎩ ⎭
⎨ ⎬
⎧ ⎫

=

φ
·{ } Ψ[ ] φ{ } r t( ){ }+=

Ψ[ ] M
1–
C–   M

1–
K–

I  0

= r t( ){ } M[ ] 1–
f{ }

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

φ t( ){ } Ξ t τ–( )[ ] r τ( ){ } τd
0

t

∫=

Ξ t( )[ ]

Ξ t( )[ ] e
Ψ[ ]t

exp M
1–
C–   M

1–
K–

I  0

t
⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

φ t( ){ } Ξ t τ–( )[ ] r τ( ){ } τd
∞–

∞

∫=

Φ s( ){ } sI Ψ[ ]–( ) 1– M[ ] 1–

0⎩ ⎭
⎨ ⎬
⎧ ⎫

F s( ){ }=

Φ s( ){ } φ t( ){ }

sI Ψ[ ]–( ) s H s( )[ ] M[ ]  H s( )[ ] K[ ]–

H s( )[ ] M[ ]  s H s( )[ ] M[ ] H s( )[ ] C[ ]+

I  0

0  I
=

Φ s( ){ }

M[ ] C[ ] K[ ], ,

Ξ t τ–( )[ ]



216 Kui Fu Chen, Qiang Zhang and Sen Wen Zhang

is Eq. (4). The purpose of correlating  with  via Eq. (12) is only for

showing that two approaches of deriving the FDM are consistent. However,  may not be

of  dimensions. In addition, it may have not explicit relationship with system parameters as

Eq. (12). For example, the response can be computed from Eq. (12) or Eq. (4) without resorting to

all the system parameters, if only the transfer function from the driving point to the interested node,

along with the excitation, are provided. This is applicable to the single-input-single-output case of a

system with multiple degrees of freedom, that is, a system is excited at only one point, and only the

response on one point is interested.

There is no doubt, if the system parameters are provided, the transfer function is determined.

However, the transfer function can be derived via other ways, such as, modal experiment analysis,

or theoretical extension. 

3.3 Achieving transfer function and UIRF

The modal experiment analysis is feasible if the original structures or laboratory models are

available. Many approaches have already been developed to identify modal parameters. In the

modal analysis community, much effort is cast on the parameter identification. Concerning the

transient response from Eq. (12) or Eq. (4), a nonparametric UIRF or transfer function is sufficient.

The transfer function can also be derived from theoretical analysis, e.g., structures with

unbounded media, including those that involve wave motion in reservoirs of large extent and

unbounded solid media, and cracks development. For soil-structure interaction analysis, very often,

soil is modeled as a homogeneous component with infinite boundary, or the spatial distribution of

the material property is described by a simple expression with a few indexes. The interested

structure above ground is discretized by a finite element method. The interaction between the

infinite boundary component and interested structure can be described relatively easily by the

transfer function in the frequency domain, because of the simple expression of the material property,

and infinite boundary. This transfer function can be achieved by the boundary element method

(olyzos et al. 2005, Liu and Huang 2003, Dumont and Oliveira 2001, Humar et al. 1998), or more

specifically, scaled boundary finite-element method, or infinite element (Kim and Yun 2003, Song

and Wolf 2000, Yan et al. 2004, Genes and Kocak 2005). Another highlighted approach to achieve

the transfer function is the transfer matrix method, which is appropriate for structures containing

repeated substructures (Xue 1997, Aleyaasin et al. 2001).

Theoretical extension of a transfer function usually involves the damping contribution. Very likely,

this is due to the sophisticated damping mechanism. From the theory of classical mechanics, we

know why the inertia and elastic forces are as they are, but the same is not exactly true for

damping. Unlike the inertia and elastic forces, it is not much clear how the relevant state variables

affect the damping forces (Adhikari 2002). A physically realizable system must be real and causal.

The real requirement can be achieved by requiring that the extended frequency response function

(the transfer function along the imaginary axis) must be conjugate symmetrical to the origin.

However, the causal condition is not easily satisfied, such as the frequently cited hysteretic damping

(Barkanov 1999, Inaudi and Kelly 1995, Makris and Zhang 2000, Tsai and Lee 2002, Chen and

Zhang 2008). This argument is also applicable to models with frequency-dependent parameters,

which frequently occur in soil-structure and fluid-structure interaction systems.

Obviously, the nonparametric transfer function derived from the experiment modal analysis

necessitates a high order ODE to approximate it. Moreover, the transfer function derived from

Ξ t τ–( )[ ] M[ ] C[ ] K[ ], ,
Ξ t τ–( )[ ]

2n 2n×
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theoretical analysis, or modification may have not a corresponding LTI system with a finite order

(The modified transfer function may look simple, and have only tiny difference from the original

ones, for example the hysteretic damping (Barkanov 1999, Inaudi and Kelly 1995, Makris and

Zhang 2000, Tsai and Lee 2002, Chen and Zhang 2008)). Finite numerical operations are difficult,

if not impossible, to solve an infinite order ODE.

However, the Duhamel’s integral can circumvent these issues, because, firstly, just as

aforementioned, the transfer functions may be concise. Secondly, from an engineering view, very

often, the responses at some crucial points (not the entire system) are interested. For example, in the

soil-structure interaction problem, the responses interested are the displacements and the stresses in

the structure. The ODE approaches need all the system parameters, and yield the responses at all

entire nodes in the system. In contrast, the Duhamel’s integral is more specific, and only the transfer

functions or the UIRFs between the excited points and interested points are necessary.

3.4 Truncating infiniteness

Examining Eq. (11), we can see that, for a specified t0,  depends explicitly on  on

the period [0, t0], but not . In theory, for a linear structure,  on  is

determined by the value on [0, t0]. But, from the view of computing  only, these two

intervals can be manipulated independently. This is a very important property. Very often, from an

engineering view, we are not so much interested in  on the whole time interval, for example,

for the SDOF system, the maximum displacement occurs between the excitation beginning and one-

half natural period TN after the excitation stops, thus the interested interval is 

(Veletsos and Ventura 1984, 1985).

Assuming that [0, TI] is the period of interest, we can set  arbitrarily in  without

influencing the computational value  over [0, TI]. A long Te is due to the long-lasting UIRF.

But, in light of the above property, we can set  beyond [0, TI] as zero to reduce the Te. This

is just like the damping effect of the parameter c. Moreover, this perfect artificial damping just cuts

down the UIRF piece over [0, TI] simply. In particular, this can be even applied to the extreme case,

the undamped system.

The integral bounds of Eq. (8) are infinite, and must be truncated too. Assuming that both the

excitation and UIRF are sampled uniformly with the sampling interval Δt. This discretization results

in approximate versions to  and , which are periodic functions with a period

. Obviously, Δt must be small enough, so that the fundamental period  can

accommodate the principal spectrum parts, both for {f(t)} and truncated UIRF [h(t)]. Under these

assumptions, the infinite bounds of Eq. (8) are truncated to . 

In brief, the equations involving in computation can be summarized as follows
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Ĥ jω( )[ ] h t( )[ ]e jω t–

td
0

T
I

∫=
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where  is the FT of the truncated UIRF matrix . Eq. (16) and Eq. (17) are the

forward transforms, and Eq. (19), the inverse transform, and all their numerical version can be

speeded up by the FFT (Cooley and Tukey 1965). If the  is not provided, it must be retrieved

from  through the inverse Laplace Transform. 

Such kind of truncating the UIRF is equivalent to substituting the system with an artificial system.

This artificial system has the UIRF with a finite duration TI. Thus, under an excitation with a

duration Td, the response duration of this artificial system is at most Td + TI. The essence of the

discretization in the FD is periodically extending in the time domain, which correlates to the Fourier

series analysis. To obtain the response accurately, the fundamental frequency, that is, the lowest

frequency to mimic the response, must be not greater than . Otherwise, the responses

can not be constructed accurately from its harmonics. This requires that , that is,

 should be satisfied, though we are only interested in the response on [0, TI]. If either

the truncated URIF, or the excitation, or both, approaches zero at their ends, then the time-limited

artificial response at ends of the extended period is close to zero, which makes the artificial

computational response shorter. As a consequence, Te can be shorter than Td + TI.

4. Numerical examples

4.1 Model and computational parameters

The following SDOF system has been discussed extensively in literature 

or equivalently .

Here, m = 1 kg, ωn = 2πrad/s, (TN = 1s) are used. The excitation  is as follows (Td = 1.25s).

Here, α controls the excitation wave number. Three cases of α as α = 0.2, 0.8, 1.4, and two cases

of the damping ratio ζ = 0.01, and ζ = 0.05 are considered.

The number of the force sampling points is selected as Nd = 64, as a result, Δt = Td/Nd = 1.25/64 s.

Because the maximum displacement can occur only before Td + TN /2 for an SDOF system, NI=90

is selected. This number just ensures that the period of interest is TI = NI Δt = 1.773 > Td + TN/

2 = 1.75 s. We introduce the symbol δN = NI + Nd +1- Ne, which is the paramount index to indicate

wraparound interference (Chen and Zhang 2006). Eight cases of δN = 8k, k = 0~7 were examined.

All the three integrals (Eq. (16), Eq. (17) and Eq. (19)) are solved using the composite rectangle

rule, and speeded up by the FFT (Cooley and Tukey 1965). The closed-form UIRF is used. The

exact transient response is
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The free response after Td is 

(21)

B and ϕ in Eqs. (20) and (21) are

,  (22)

4.2 Results and discussion

Fig. 1 shows the computational results of the case: α = 0.2 and ζ = 0.01. Fig. 1(a) outlines the

excitation, which is a quarter of a sine wave. The eight cases of δNs are presented in Fig. 1(b)~

Fig. 1(i) sequentially, where the dot and thin continuous line stand for the exact solution and

computational results, respectively. The responses shown in (b)~(i) are normalized by a factor

xst = P/k, where xst stands for the static displacement occurring when the constant force P, the peak

force of the sinusoidal excitation, acts on the system. 

The whole period of interest covers the expiation duration 0~Td. and free response segment Td.~
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Fig. 1The Influence of δN (α = 0.2 and ζ = 0.01). (a) outlines the excitation. (b)~(i) correspond to the 8
cases of δNs, where the dot and thin continuous lines stand for the exact solutions and computational
results, respectively. Computational parameter δN influences computational responses dramatically. 
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TI.. The left sides to the vertical dash line are the forced responses, and the right sides, the free

responses. We can see the computational responses of eight graphs match the exact solution over

the free response segment. However, the forced responses are not always consistent. For δN = 0 of

the graph (b), the computational result overlap with the exact response over all the period of

interest. As δN increases, the former deviates from the latter at some point. 

To argue more generally, the eight cases of computational responses of Figs. 1(b)~(i) are stacked

in Fig. 2(a). Here markers at the left ends of the stubbed computational responses depict different

cases of δN. Similarly, the results of other computational conditions are organized into

Figs. 2(b)~(f). The figurine at the top of each column in Fig. 2 stands for the excitation waveform.

All these graphs show that free vibration responses are consistent among all the simulated δN cases,

overlap with the exact solution. The largest δN is Nd + 1, which occurs when NI equals to Ne. That

is, the extended period is equal to the period of interest. Even for this extreme case, simulation

shows that the free response is still coincident with the exact version.

Fig. 2 Comparison between exact and computational displacements. For nonnegative δNs, the deviating
positions of computational responses from the exact are depicted by dots along exact trajectory. For the
sake of clarity, front parts of some computational responses are trimmed off.
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In contrast, the computational forced responses depend on the paramount index δN. The dots

along the exact trajectories depict the distinct deviation instant of computational results from the

corresponding exact responses. These deviating instants depend exclusively on δN. As δN decreases,

the deviation positions move leftward, till δN = 0. When δN is zero, computational results on the

whole period of interest overlap with the exact responses. If Ne is increased further, resulting in a

negative δN, the computational results do not vary any longer on the period of interest. 

Thus, δN = 0, that is, Ne = NI + Nd + 1 is a reasonable solution to the extended period. It must be

pointed out that NI and Nd are the sampling interval numbers on the period of interest, and

excitation periods, respectively. Their lengths are NI + 1 and Nd + 1, respectively. In other word,

δN = 0 requires that the extended interval number Ne equal to one less than the length summation of

the excitation series and the truncated UIRF series. This agrees with qualitative analysis in Chen

and Zhang 2006).

In the left column graphs, the abscissas of deviation points can be quantitatively expressed as (NI +

Nd + 1 − Ne)δt = δN Δt. The computational responses lying right to this position match with the exact

ones, but not to the left. That is to say, computational results on the right side is reliable, and on the

left, unreliable. The most significant contribution to the computational error of the left side is due to

the wraparound inference (Chen and Zhang 2006). If we do not concern about the wraparound error

occurring at the initial portion of , Ne can be less than NI + Nd + 1. For example, in an SDOF

system with zero initial conditions, the maximum displacement can not appear at the very beginning,

thus we can ignore the initial portion without causing eminent errors on the maximum displacement.

Nonetheless, the duration of this initial portion need be selected judiciously.

In the central and right column graphs, we can see that computational responses deviate from the

exact ones tangentially, which is contrast to the intercept-like way in the first and second columns.

Tangential-like way renders the deviation positions ambiguously, particularly at the rear segment of

the period of interest. 

5. Conclusions

Frequency domain methods can be built on either the ordinary differential equation (ODE), or the

Duhamel’s integral. Two methods are equivalent, provided that all the system parameters are

known, and the responses at entire nodes in the studying system are required. But there are several

factors which make the Duhamel’s integral method advantageous over the ODE method. 

With the Duhamel’s integral method, to shorten the extended period, the ever-lasting UIRF can be

substituted by a truncated version, which is identical to the original version on the period of interest,

and is zero beyond the period of interest. This approach, in theory, reduces the critical extended

period to the summation of the period of interest and the excitation duration.

This criterion was confirmed by numerical examples. If the critical extended period is not long

enough, then the front portion of the period of interest is more sensitive to the wraparound error

than the rear portion, and the free vibration segment is free of wraparound error. 
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Appendix: Proof of Eq. (13)

1) If , then derivation from Eq. (11) to Eq. (13) is obvious, for  is nonzero only on .
Thus, expanding the integral bound does not change , that is

 (A1)

2) If  then Eq. (11) can be rewritten as 

For a causal system, due to , the second term  at the right is zero. Therefore, the above

equation is exactly Eq. (A1).
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