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1. Introduction

Wang et al. (1982) developed a ‘free mode’ model for the free vibrations of delaminated beams.

The model assumed that the delaminated layers vibrate ‘freely’ and will have different transverse

deformations. Mujumdar and Suryanarayan (1988) developed a ‘constrained mode’ model, where

the delaminated layers are assumed to be ‘constrained’ to have identical transverse deformations but

are free to slide over each other in the axial direction except at their ends. Chen et al. (1995) used

the ‘constrained mode’ for prebuckled composite beams with a single delamination. Lee et al.

(2003) used the ‘free mode’ to study multiple-delamination problem, and their results showed a

linear relation between the square of the frequency of a clamped-clamped beam and the axial

compressive load. Bokaian (1988) showed that the linear relation between the natural frequency of a

simply supported perfect beam and the axial compressive load can be expressed as (ω/ω0)
2 = 1 −

P1
0/Pcr, where ω and ω0 are the natural frequency of the loaded and the unloaded beam,

respectively, P1
0 is the axial compressive load and Pcr is the buckling load of the beam. 

In this technical note, we present analytical solutions for the lower bound and the upper bound of

the free vibrations of axially compressed beams with two delaminations. The lower bound uses the

‘free mode’, whereas the upper bound uses the ‘constrained mode’. In addition, we study the linear

relation between the square of the natural frequency of a simply supported delaminated beam and

the axial compressive load. 

2. Formulation

Fig. 1 shows a homogeneous and isotropic beam with length L and thickness H1 with two

delaminations with length a and located at a distance d from the center of the beam. The

delaminated beam is analyzed as five interconnected Euler-Bernoulli beams. 
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For the ‘free mode’, the governing equations for the free vibrations of a delaminated beam under

axial compressive loading are 

(i = 1 − 5)    (1)

where EIi (i = 1 − 5) is the bending stiffness of beam i, wi(x, t) is the midplane deflection, ρi is the

mass density, Ai is the cross-sectional area, and Pi
0 is the axial load. Substituting wi(x, t) = Wi(x)

sin(ωt) in Eq. (1), we have

(i = 1 – 5)   (2)

The generalized solutions for the differential equation in Eq. (2) are

(3)

where

 (4)

and where Ci, Si, CHi and SHi (i = 1 − 5) are the 20 unknown coefficients, which can be determined

from the 4 boundary conditions and 16 continuity conditions.

The boundary conditions for a simply supported beam are  and  (i = 1, 5). The

continuity conditions for deflection, slope, shear and bending moments at delamination junction x =

x2 are
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Fig. 1 A homogeneous and isotropic beam with two delaminations under axial compressive loading 
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  (8)

The perturbed axial forces Pi (i = 2 − 4) in Eq. (8) can be solved from the compatibility between

the stretching/shortening of the delaminated layers and axial equilibrium (Mujumdar and

Suryanarayan 1988, Della and Shu 2005). The boundary conditions and the continuity conditions

provide 20 homogeneous equations. A non-trivial solution for the coefficients exists only when the

determinant of the coefficient matrix vanishes. 

The ‘constrained mode’ model assumes that the delaminated layers (beams 2, 3 and 4) are

‘constrained’ to have the same transverse deformations. The delaminated beam is then analyzed as

three beam segments I – III (Fig. 1). The governing equations are

(i = I – III)  (9)

where

 (10)

 (11)

The generalized solutions for the ‘constrained mode’ model are identical in form to that of the

‘free mode’ model. However, the unknown coefficients are reduced to 12 coefficients, which can be

determined from the 4 boundary conditions and 8 continuity conditions. 

3. Results and discussions

Fig. 2 shows the variation of the square of the fundamental frequency (ω/ωd)
2 of the delaminated

beam with the normalized buckling load (P1
0/Pd). The square of the fundamental frequency ω2 is

normalized with respect to square of the frequency of a delaminated beam ωd
2, while the
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Fig. 2 Variation of the square of the normalized fundamental frequency (ω/ωd)
2 of a simply supported beam

with the normalized compressive load P1
0/Pd for various delamination length a/L: (a) ‘Constrained

mode’; (b) ‘Free mode’ 
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normalized compressive load P1
0 is normalized with respect to the buckling load of the delaminated

beam Pd. Fig. 2(a) shows that the ‘constrained mode’ (ω/ωd)
2 varies linearly with (P1

0/Pd) and the

linear variation can be expressed as (ω/ωd)
2 = 1 − P1

0/Pd, which is identical in form to that of an

undelaminated beam (Bokaian 1988). This is because the delaminated portion of the beam is

modeled as an undelaminated beam with a reduced bending stiffness. Therefore, a delaminated

beam of ‘constrained mode’ is an undelaminated beam with a reduced stiffness at the location of the

delamination. In the ‘free mode’ model, the relation is not valid when one of the delaminated layers

is long and thin, as shown in Fig. 2(b); the variation between the ‘free mode’ (ω/ωd)
2 and (P1

0/Pd)

tends to lose its linearity as the delamination length increases. 

In this study, we have shown that for simply supported beams, the square of the ‘constrained

mode’ fundamental frequency varies linearly with the axial compressive load. Thus, once the natural

frequency and the buckling load of the delaminated beam are identified, an estimate of the

fundamental frequency of the delaminated beam under axial compressive loading can be obtained. 
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