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Abstract. In this study, a flexibility-based finite element method considering geometric and material
nonlinearities is developed for analyzing steel-concrete frame structures. The stability functions obtained
from the exact buckling solution of the beam-column subjected to end moments are used to accurately
capture the second-order effects. The proposed method uses the force interpolation functions, including a
moment magnification due to the axial force and lateral displacement. Thus, only one element per a
physical member can account for the interaction between the bending moment and the axial force in a
rational way. The proposed method applies the Newton method based on the load control and uses the
secant stiffness method, which is computationally both efficient and stable. According to the evaluation
result of this study, the proposed method consistently well predicts the nonlinear inelastic behavior of
steel-concrete composite frames and gives good efficiency. 

Keywords: nonlinear analysis; stability functions; beam-column element; composite structures; concrete-
filled steel tube.

1. Introduction 

Recently, researchers have focused attention on force-based and mixed formulations that permit

more accurate representation of the force distribution along the element. Since there are no

displacement interpolation functions to relate the section deformations to nodal displacements, it is

still challenging to implement the flexibility-based methods for nonlinear problems in the context of

a finite element program. Ciampi and Carlesimo (1986) proposed the consistent formulation of

force-based elements. Their procedure was improved by Taucer, Spacone, and Filippou (1991), and

Spacone, Filippou, and Taucer (1996) to develop a force-based fiber frame element for nonlinear

analysis of reinforced concrete structures. Spacone, Ciampi, and Fillipou (1996) proposed the

general formulation of a mixed approach, which points the way to the consistent numerical

implementation of the element state determination. Ayoub and Filippou (2000) presented an inelastic

beam element for the analysis of steel-concrete girders with partial composite using a two-field

mixed formulation with independent approximation of internal forces and transverse displacements.
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Ayoub (2003) extends the mixed formulation to analyze inelastic beams on foundations, where both

the beam and foundation are assumed to be inelastic. Alemdar and White (2005) developed both a

first order flexibility-based model within a corotational approach and a two-field mixed model.

Hjelmstad and Taciroglu (2002) compared the variational approaches with the so-called nonlinear

flexibility methods that have recently been reported in the literature, and conclude that these

approaches, while certainly having merit, are not variationally consistent. 

Although the geometric second-order effects are important in the frame structures and sometimes

they are quite plain, most of the force-based methods do not consider the geometric second-order

effects. The structural analysis including the second-order effects is further complicated by the fact

that the resulting equilibrium equations are differential equations instead of the usual algebraic

equations. For a slender column, buckling may occur when all fibers of the cross-section are still

elastic. Thus, the Euler load will govern the load-carrying capacity of the column. For a short

column, material yielding of the fibers in the cross-section usually occurs before buckling takes

place, so the yielding force of the section will govern the limit state of the column. In reality of

practice, some of the fibers of the cross-section may yield while some fibers still remain elastic, and

the failure may be more accurately described as combined buckling of the column and material

yielding of the section. 

In this study, a flexibility-based finite element method considering geometric second-order effects

and material inelasticity is developed to improve the common flexibility-based methods which have

been proposed up to now. The stability functions obtained from the exact buckling solution of the

beam-column subjected to end moments are used to accurately capture the second-order effects. The

proposed method uses the force interpolation functions including a moment magnification due to the

axial force and lateral displacement. Thus, only one element per a physical member can account for

the interaction between the bending moment and the axial force in a rational way. To verify the

accuracy and computational efficiency of the proposed method, the results are compared with those

obtained from the experiments, theoretical equations, and OpenSees (2008), which is a software

framework for research in performance-based earthquake engineering at the Pacific Earthquake

Engineering Research Center. The details of the proposed method are now presented. 

2. Beam-column element formulation 

2.1 The principle of virtual work 

The principle of virtual work states that external virtual work is simply the product of the

displacements and their applied virtual forces, and internal virtual work is expressed by the product

of strain resultants and their virtual stress resultants integrated over the cross-section. 

(1)

where

(2)

 (3)

 (4)

 (5)

δF x( )Td x( ) δM x( )Tϕ x( ) xd∫=

d θ1z   θ2z   θ1y   θ2y   dx{ }T
=

F M1z   M2z   M1y   M2y   P{ }T
=

ϕ φz   φy   εx{ }T
=

M Mz   My   P{ }T
=
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Fig. 1 shows that the element deformations of Eq. (2) and element end forces of Eq. (3). One

element has five degrees of freedom: an axial extension and two rotations per each node. Element

forces of Eq. (3) indicate the corresponding axial force and bending moments. Fig. 1 also shows the

section deformations of Eq. (4) and section forces of Eq. (5). Section deformations are three strain

resultants: an axial strain and two curvatures with respect to local z and y axes. Section forces

include the compressive axial force and two sectional bending moments. All of the fields given in

Eqs. (2) to (5) are functions of the axial coordinate x, which is measured from the left end of the

beam, as shown in Fig. 1. 

2.2 Displacement-based and flexibility-based formulations 

In the displacement-based formulation (usually called the stiffness method), the displacement

fields are approximated by displacement interpolation functions as 

ϕ = A(x)d (6)

where A(x) contains the derivatives of the displacement interpolation functions as

(7)

where 

(8)

(9)
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Fig. 1 Forces and deformation at the element and section levels 
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(10)

The main shortcoming of the stiffness method is that the predefined displacement interpolation

functions do not correspond to the exact solution of the beam problem except for in special cases.

Since the assumption of cubic interpolation functions gives a linear curvature distribution along the

element, a highly refined mesh is needed to accurately capture the response of the regions with

highly nonlinear curvature distribution. Also, equilibrium is satisfied only in an integral sense over

the element, but not locally at each section along the beam. 

The principal of virtual work and Taylor’s series expansion give a linear algebraic problem as

follows

(11)

where MR is the section resisting force vector, and k is the section stiffness matrix. The left hand

side term in Eq. (11) is the unbalance force given as the difference between the external element

force and the element resisting force, and is a function of the deformed configuration. The solution

of this nonlinear problem by Newton’s method involves iteratively solving the system of Eq. (11). 

In the force-based formulation (usually called the flexibility method), the force fields are

expressed as a function of the element nodal forces

M = B(x)F (12)

where B(x) is the force interpolation functions that enforce a linear bending moment distribution

along the element and a moment magnification due to the axial force and lateral displacement: 

(13)

where δy and δz are the lateral displacements for the local y and z axes, respectively. The terms of δy
and δz in Eq. (13) are newly added ones in this study. Since the curvature can be approximated by

the second derivative of the lateral displacement, δy and δz are obtained from solving the differential

equations as (Chen and Lui 1987) 

(14)

(15)

where  and . 

Since the section flexibility relates the strain resultants to the section moments, and the element

stiffness relates the element end forces to the element end displacements, the strain resultants are

given as 

ϕ = fB(x)Kd (16)

where f is the section flexibility matrix and K is the element stiffness matrix. Comparing Eq. (6)

and Eq. (16) expresses the displacement interpolation function A(x) as
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A(x) = fB(x)K (17)

From Eq. (17), A(x) and B(x) are dependent upon each other, and this property is shown in general

flexibility-based formulations. 

The main advantage of the flexibility methods is that force interpolation functions inside the

element are better suited to describe the nonlinear behavior of structural members. In the absence of

element loads, a linear bending moment distribution along the element satisfies equilibrium in a

strict sense. Accordingly, it provides the benefit of computing the exact element flexibility matrix. 

2.3 Element stiffness accounting for P − δ effect 

To capture the effect of the axial force acting through the lateral displacement of the beam-column

element relative to its chord (P − δ effect), the slope-deflection equations for a beam-column were

presented by Chen and Lui (1987). Generally only one element per a physical member can

accurately account for the P − δ effect. The element end forces and the element end displacements

are related as 

(18)

where szii, szij, syii  and syij are the stability functions with respect to the local z and y axes, and are

given as 

(19a)

(19b)

where the subscript n represents for z or y The three-dimensional slope-deflection equations for a

beam-column that is not subjected to transverse loadings and relative joint translation can be

expressed in symbolic form as 

M = Ked  (20)

For members subjected to an axial force that is tensile rather than compressive, the stability

functions in Eq. (19) are redefined as 

(21a)

(21b)

For a pinned-ended perfectly straight column subjected to a compressive axial force, the theoretical

load-deflection curve of the column bifurcates into stable and unstable equilibrium branches at the

point when sii is equal to sij. 
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2.4 Element stiffness accounting for P − Δ effect

The P − Δ effect is the effect of member forces acting through the relative transverse displacement

of the member ends. If the member is permitted to sway, an additional axial and shear force will be

induced in the member. We can relate this additional axial and shear force due to a member sway to

the member end displacements as 

(22)

where {FL}s and {dL} are end force and displacement vectors, and {K}s is the element stiffness

matrix given as (Kim et al. 2006)

(23)

where

(24)

and 

(25)

Using equilibrium and kinematic relations, the transformation matrix is given as

(26)

The total element stiffness matrix is now given by 

(27)

The use of Eq. (27) requires iterative solution techniques since the section forces in a member

change during the iteration process. Excessive P − Δ effects will eventually introduce singularities

into the solution, indicating physical structural instability. Such behavior is clearly indicative of a

poorly designed structure that is in a need of additional stiffness. 

2.5 Fiber model 

The resultant force and moment can be calculated by integrating the tractions over the cross-

sectional area, as shown in Fig. 2 (Hjelmstad 1997), 
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(28)

(29)

where t(x) is traction vector acting on a plane perpendicular to the longitudinal axis and p(z,y) is the

position vector of this traction vector in the plane. Using a one-dimensional version of the Cauchy

formula relating stress to tractions, Eqs. (28) and (29) can be rewritten as 

(30)

(31)

(32)

In the fiber model, the element is subdivided into a number of longitudinal fibers. The center

coordinates in the local z − y reference system, and the fiber areas are used in formulating the

element stiffness matrix. The constitutive relation of the section is now expressed from the uniaxial

response of the fibers

(33)

The M and ϕ are duals of each other, in the sense that they are meant to represent exactly the same

constitutive relation. In a flexibility-based method, the section deformations is determined from the

given section forces. 
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Fig. 2 Traction vector acting on a plane 
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3. Constitutive relationships 

Concrete-filled steel tubes (CFT) are becoming increasingly popular in recent decades due to their

excellent performance such as high ductility and improved strength without increasing the size of

the column. Also, using CFT members makes the construction easier by eliminating the

arrangement of formwork and reinforcement. When CFT members are subjected to compressive

strains, both the steel tube and the concrete core experience a lateral expansion. The lateral

expansion of concrete core gradually becomes greater than the steel tube due to the change of the

Poisson ratio of the concrete. At this stage, a radial pressure develops between the two media, and

the steel tube restraints the concrete core to expand laterally. The effect of confinement on the

concrete core primarily depends on the lateral pressure provided by the steel tube. Susantha et al.

(2001) has performed extensive parametric analyses to propose mathematical equations for the

average maximum lateral pressure, frp in the box and octagonal shaped CFT columns. For box

shaped CFT column, frp is as follows: 

(34)

(35)

where frp is the lateral confining pressure, R is the width-to-thickness ratio parameter, b is the width

of the section, t is the thickness of the steel tube, and v is the Poisson ratio of the steel. The

compressive strength of confined concrete is given as 

(36)

where β is the strength enhancement factor. The Fig. 3 shows the strength enhancement factors with

respect to  ratios that depend on the geometry and material properties. 

The compressive stress-strain curve for the confined concrete is defined for the pre-peak region as

frp 6.5R
fc'( )1.46

fy
----------------– 0.12 fc'( )1.03+=

R
b

t
---

12 1 v
2

–( )

4π2
-----------------------

fy

Es

-----=

fcc fc'= 4.0frp+ βfc'=

Rfc' fy⁄

Fig. 3 Strength enhancement factor 
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(Popovics 1973; Mander et al. 1988)

(37)

(38)

(39)

where εcc is the compressive strain corresponding to the peak strength fcc. The slope, Z of the post-

peak behavior proposed by Susantha et al. (2001) is expressed as 

(40)

(41)

According to the Eqs. (40) and (41), thick-walled steel tubes with low-strength filled-in concrete

provide higher ductility capacity than the thin-walled tubes with high-strength filled-in concrete. For

low B/t ratios, local buckling usually takes place in the post-peak region of the load-deflection curve

of the column (Tort and Hajjar 2004). This type of response is ductile and it can be ensured by

specifying a maximum allowable B/t value according to the AISC Specification (2005). 

Concrete strength between cracks is generally modeled to reduce gradually after a crack forms

based on tension stiffening. In this study, a linear tension softening model is applied. The

compressive and tensile stress-strain relationships of unconfined and confined concrete are shown in

Fig. 4. The stress-strain relationship for a reinforcement bar is assumed to be tri-linear. It consists of

an initial linear elastic region, a yield plateau, and a linear strain-hardening phase. 

4. Current design codes 

Design methods for CFT columns are available in various major design codes such as the AISC

(2005), the ACI 318-05 (2005), the Architectural Institute of Japan (1997), the European Code EC 4

(2004). The design methods of AISC and ACI codes are briefly summarized below. 
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4.1 American Institute of Steel Construction (2005)

The 2005 AISC (2005) now uses a cross-sectional strength approach for column design consistent

with that used in reinforced concrete design (ACI 2005). The available axial strength, including the

effects of buckling, and the available flexural strength can be calculated using either the plastic

stress distribution method or the strain-compatibility method. The simplified approaches can be

applied to take advantage of strength determination using a limited number of cases and

interpolation for all other cases on the points of interaction diagram. The nominal compressive

strength of rectangular CFT column is given as 

  for  (42)

  for  (43)

where 

(44)

(45)

where is the effective stiffness of composite section given as 

(46)

(47)

The maximum B/t ratio for a rectangular CFT column shall be equal to .

4.2 American Concrete Institute (2005) 

The design concept of a CFT column is essentially the same as that of an ordinary reinforced
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Fig. 4 Stress-strain relationships of concrete 
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concrete column. To apply strain compatibility method, a continuous steel tube in a CFT is

converted into equivalent reinforcing bars around the filled-in concrete. It assumes that the concrete

has reached its crushing strength in compression at a strain of 0.003 with a rectangular stress block.

However, the ultimate stress is taken as  instead of  to reflect that concrete inside tubes

does not split with providing high ductility and improved strength. 

Slenderness effect should be considered in the following cases 

  for non-sway case (48)

  for sway case (49)

where klu is the effective length, M1 and M2 are smaller and larger end moments, respectively, and r

is a radius of gyration. The moment amplified for the effects of member curvature is given as 

(50)

(51)

where Cm is a correction factor relating the actual moment diagram to an equivalent uniform

moment diagram, and M1/M2 is positive if the column is bent in single curvature, and negative if the

member is bent in double curvature. The beam-column analysis using strain compatibility method

can be readily implemented in a spreadsheet. 

5. Numerical examples

To verify the accuracy of the proposed method, the 116 rectangular CFT columns tested to failure,

five end-restrained steel columns, and a 3-dimensional CFT frame structure are analyzed. Failure

strengths of the 116 rectangular CFT columns are predicted by the AISC, ACI 318-05, and the

proposed method, and the results are compared with those obtained from the experiments of the

following 6 investigations: Tomii and Sakino (1979), Liu (2004), Liu, Gho, and Yuan (2003), Lue,

Liu, and Yen (2007), Liu (2005), and Liu (2006). The details of the test specimens and strength

ratios (Ptest/Pn or Mtest/Mn) are given for each group of test results in Tables 1-6 and collectively in

Fig. 5. A brief description of each testing program from which the test results were extracted is

presented below. 

Tomii and Sakino (1979) tested 36 rectangular CFT specimens which are composed of 8

concentrically loaded columns and 28 columns subjected to axial load and bending moments. After

the constant axial load was applied, a monotonic increasing moment was applied to the specimens.

The rotation, deflections and strains were recorded between load applications. The deflections were

held constant during this time. This resulted in a decrease of bending moment due to creep, but

since the readings were performed relatively quickly, it was assumed that the creep effects on the

measurements were probably unimportant. They reported that the magnitude of constant axial load

and B/t ratio had a significant effect on an inelastic behavior, especially on the descending branch of

the moment-curvature relationships. 
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Table 1 Analysis results for test data 1 (Tomii and Sakino 1979)

Specimen
B, H
(mm)

t
(mm)

L
(mm) (MPa)

fy
(MPa)

Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

I-A 100 2.29 300 31.97 194.2 497.2 0 1.07 1.18 1.02

I-B 100 2.29 300 31.97 194.2 498.2 0 1.07 1.19 1.02

II-A 100 2.2 300 21.38 339.3 510.9 0 1.05 1.12 0.96

II-B 100 2.2 300 21.38 339.3 510.0 0 1.05 1.12 0.96

III-A 100 2.99 300 20.59 288.3 528.6 0 1.02 1.08 0.93

III-B 100 2.99 300 20.59 288.3 527.6 0 1.02 1.08 0.93

IV-A 100 4.25 300 19.81 284.4 666.9 0 1.06 1.11 0.97

IV-B 100 4.25 300 19.81 284.4 665.9 0 1.06 1.11 0.97

I-0 100 2.29 300 24.03 194.2 0 7.2 0.96 0.96 1.00

I-1 100 2.29 300 38.25 194.2 76.5 10.2 1.08 1.08 1.12

I-2 100 2.29 300 38.25 194.2 157.9 11.2 1.09 1.09 1.09

I-3 100 2.29 300 38.25 194.2 191.2 11.2 1.09 1.09 1.08

I-5 100 2.29 300 38.25 194.2 267.7 11.5 1.25 1.25 1.15

I-6 100 2.29 300 36.68 194.2 330.5 8.9 1.28 1.28 1.10

I-6' 100 2.29 300 36.68 194.2 330.5 8.2 1.18 1.18 1.06

II-0 100 2.27 300 21.57 305 0 11.0 0.99 0.99 1.05

II-1 100 2.27 300 21.57 305 46.1 12.4 1.05 1.05 1.09

II-2 100 2.2 300 21.57 339.3 92.2 12.9 1.03 1.03 1.01

II-3 100 2.2 300 21.57 339.3 138.3 12.7 1.03 1.03 0.98

II-4 100 2.22 300 21.57 289.3 184.4 11.8 1.17 1.17 1.03

II-5 100 2.22 300 21.57 289.3 231.4 10.7 1.25 1.25 1.02

II-6 100 2.22 300 21.57 289.3 277.5 9.1 1.31 1.31 1.01

III-0 100 2.98 300 20.59 289.3 0 14.0 1.05 1.05 1.10

III-1 100 2.98 300 20.59 289.3 51.0 14.6 1.06 1.06 1.06

III-2 100 2.98 300 20.59 289.3 102.0 15.2 1.1 1.1 1.06

III-3 100 2.99 300 20.59 288.3 153.0 14.5 1.09 1.09 1.01

III-4 100 2.99 300 20.59 288.3 204.0 13.3 1.11 1.11 0.97

III-5 100 2.99 300 20.59 288.3 255.0 12.5 1.21 1.21 0.98

III-6 100 2.99 300 20.59 288.3 306.0 10.8 1.26 1.26 0.98

IV-0 100 4.25 300 18.63 284.4 0 18.3 1.04 1.04 1.06

IV-1 100 4.25 300 18.63 284.4 61.8 19.0 1.06 1.06 1.05

IV-2 100 4.25 300 18.63 284.4 123.6 18.8 1.06 1.06 1.02

IV-3 100 4.25 300 18.63 285.4 185.4 18.2 1.08 1.08 1.00

IV-4 100 4.25 300 19.81 285.4 251.1 17.4 1.16 1.16 0.99

IV-5 100 4.25 300 19.81 285.4 313.8 15.8 1.24 1.24 0.99

IV-6 100 4.26 300 19.81 288.3 375.6 14.0 1.31 1.31 1.00

Average 1.11 1.13 1.02

Coefficient of variation 0.08 0.08 0.05
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Table 2 Analysis results for test data 2 (Liu 2004)

Specimen
B

(mm)
H

(mm)
t

(mm)
L

(mm) (MPa)
fy

(MPa)
Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

E01 150 150 4.18 870 60.8 550 1678 50.3 1.09 1.09 0.95 

E02 150 150 4.18 870 72.1 550 1850 55.5 1.13 1.13 0.97 

E03 150 150 4.18 2170 60.8 550 1330 39.9 1.21 1.21 0.92 

E04 150 150 4.18 2170 72.1 550 1020 61.2 1.22 1.22 0.98 

E05 120 180 4.18 1040 60.8 550 1950 58.5 1.68 1.68 1.06 

E06 120 180 4.18 1040 72.1 550 1140 79.8 1.02 1.02 0.87 

E07 80 120 4.18 1740 60.8 550 660 13.2 0.86 0.86 0.78 

E08 80 120 4.18 1740 72.1 550 855 17.1 1.51 1.51 0.96 

E09 100 200 4.18 1150 60.8 550 1310 78.6 1.23 1.23 1.00 

E10 100 200 4.18 1150 72.1 550 1800 72 1.37 1.37 1.06 

E11 80 160 4.18 2310 60.8 550 670 40.2 1.35 1.35 0.98 

E12 80 160 4.18 2310 72.1 550 1020 30.6 1.61 1.61 1.00 

Average 1.02 1.27 0.96

Coefficient of variation 0.23 0.19 0.08

Table 3 Analysis results for test data 3 (Liu, Gho, and Yuan 2003)

Specimen
B

(mm)
H

(mm)
t

(mm)
L

(mm) (MPa)
fy

(MPa)
Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

C1-1 98.2 100.3 4.18 300 60.8 550 1490 0 1.10 1.17 0.96 

C1-2 100.6 101.5 4.18 300 60.8 550 1535 0 1.10 1.18 0.97 

C2-1 101.1 101.2 4.18 300 72.1 550 1740 0 1.17 1.25 1.01 

C2-2 100.4 100.7 4.18 300 72.1 550 1775 0 1.20 1.29 1.04 

C3 181.2 182.8 4.18 540 60.8 550 3590 0 1.04 1.14 0.95 

C4 180.4 181.8 4.18 540 72.1 550 4210 0 1.12 1.24 1.02 

C5-1 80.1 120.7 4.18 360 60.8 550 1450 0 1.07 1.14 0.95 

C5-2 80.6 119.3 4.18 360 60.8 550 1425 0 1.06 1.13 0.96 

C6-1 80.6 119.6 4.18 360 72.1 550 1560 0 1.08 1.16 0.95 

C6-2 80.6 120.5 4.18 360 72.1 550 1700 0 1.17 1.26 1.03 

C7-1 121.5 179.7 4.18 540 60.8 550 2530 0 1.01 1.1 0.93 

C7-2 120.5 181.4 4.18 540 60.8 550 NA NA - - -°°

C8-1 119.8 180.4 4.18 540 72.1 550 2970 0 1.10 1.2 1.01 

C8-2 121.3 179.2 4.18 540 72.1 550 2590 0 0.95 1.04 0.88 

C9-1 81.4 160.2 4.18 480 60.8 550 1710 0 0.99 1.06 0.91 

C9-2 80.5 160.7 4.18 480 60.8 550 1820 0 1.06 1.13 0.96 

C10-1 81.0 160.1 4.18 480 72.1 550 1880 0 1.02 1.1 0.93 

C10-2 80.1 160.6 4.18 480 72.1 550 2100 0 1.14 1.23 1.04 

C11-1 101.2 199.8 4.18 600 60.8 550 2350 0 0.98 1.06 0.92 

C11-2 98.9 200.2 4.18 600 60.8 550 2380 0 1.00 1.08 0.94 

C12-1 102.1 199.2 4.18 600 72.1 550 2900 0 1.11 1.21 1.04 

C12-2 99.6 199.8 4.18 600 72.1 550 2800 0 1.09 1.18 1.01 

Average 1.02 1.16 0.97

Coefficient of variation 0.23 0.06 0.05
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Liu (2004) performed the experimental study on the behavior of 12 high strength rectangular CFT

columns subjected to eccentric loading. The axial load was slowly applied to the specimen by

careful manipulation of the loading and unloading values. During the test, the longitudinal and the

transverse strains as well as the in-plane and out-plane deflections of the specimen were recorded at

a load increment of 50 kN. The out-plane deflection of the specimen was less than 1 mm, thus the

Table 4 Analysis results for test data 4 (Lue, Liu, and Yen 2007)

Specimen
B

(mm)
H

(mm)
t

(mm)
L

(mm) (MPa)
fy

(MPa)
Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

C4 4-1-4 150 100 4.5 1855 29 380 1328.5 0 1.11 1.43 1.05 

C9 6-1-6 150 100 4.5 1855 63 380 1722.3 0 1.06 1.46 1.00 

C10 6-1-6 150 100 4.5 1855 70 380 1885.5 0 1.09 1.53 1.04 

C12 6-1-6 150 100 4.5 1855 84 380 2089.8 0 1.1 1.58 1.08 

Average 1.13 1.50 1.04

Coefficient of variation 0.08 0.05 0.03

Table 5 Analysis results for test data 5 (Liu 2005)

Specimen
B

(mm)
H

(mm)
t

(mm)
L

(mm) (MPa)
fy

(MPa)
Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

R1-1 120 120 4 360 60 495 1701 0 1.03 1.11 0.91 

R1-2 120 120 4 360 60 495 1657 0 1 1.08 0.88 

R2-1 100 150 4 450 60 495 1735 0 1.01 1.09 0.91 

R2-2 100 150 4 450 60 495 1778 0 1.03 1.11 0.93 

R3-1 90 180 4 540 60 495 1773 0 0.95 1.03 0.88 

R3-2 90 180 4 540 60 495 1795 0 0.96 1.04 0.90 

R4-1 130 130 4 390 60 495 2020 0 1.08 1.17 0.95 

R4-2 130 130 4 390 60 495 2018 0 1.08 1.17 0.95 

R5-1 110 160 4 480 60 495 1982 0 1.02 1.1 0.93 

R5-2 110 160 4 480 60 495 1923 0 0.99 1.07 0.90 

R6-1 100 190 4 570 60 495 2049 0 0.97 1.06 0.92 

R6-2 100 190 4 570 60 495 2124 0 1.01 1.09 0.95 

R7-1 106 106 4 320 89 495 1749 0 1.06 1.16 0.93 

R7-2 106 106 4 320 89 495 1824 0 1.11 1.21 0.97 

R8-1 90 130 4 390 89 495 1752 0 1.02 1.12 0.92 

R8-2 90 130 4 390 89 495 1806 0 1.05 1.15 0.95 

R9-1 80 160 4 480 89 495 1878 0 1 1.09 0.93 

R9-2 80 160 4 480 89 495 1858 0 0.99 1.08 0.93 

R10-1 140 140 4 420 89 495 2752 0 1.05 1.17 0.94 

R10-2 140 140 4 420 89 495 2828 0 1.08 1.2 0.98 

R11-1 125 160 4 480 89 495 2580 0 0.97 1.07 0.90 

R11-2 125 160 4 480 89 495 2674 0 1 1.11 0.93 

Average 1.02 1.11 0.93

Coefficient of variation 0.04 0.05 0.03
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specimen was conformed to be under compression combined with uniaxial bending. For specimens

with slenderness ratio of 20, crushing of concrete and local buckling of steel tube were observed.

For specimens with slenderness ratio of 50, the failure loads were reached followed by local

buckling of steel tube at the mod height of the specimen. 

Liu, Gho, and Yuan (2003) investigated the ultimate capacity of 22 high-strength rectangular CFT

columns with cross-sectional aspect ratio of 1.0, 1.5, and 2.0. The main parameters of the test

specimens are the strengths of concrete and steel, cross-sectional aspect ratio, and volumetric steel-

to-concrete ratio. The two horizontal flat plates welded at both ends of the specimen were to ensure

that the steel hollow section and the core concrete were simultaneously loaded during the test. In

addition, local yielding at both ends of the steel hollow section could be avoided. The specimens

were tested to failure under axial concentric loading. The failure mechanism was identified as the

material yielding of steel hollow sections and the crushing of core concrete. 

Lue, Liu, and Yen (2007) tested twenty four 1855 mm long rectangular CFT columns of

150 × 100 × 4.5 mm. The specimens were divided into four groups, and the sections in each group

are filled with approximate concrete strength  of 29, 63, 70, and 84 MPa, respectively. Two

bearing plates (340 × 340 × 20 mm) were welded at the top and bottom ends of each specimen with

eight spot-welded stiffeners to provide the rigidity plane at the ends of the specimen when the

rotation occurs at the onset of buckling. Most of the specimens with normal-strength concrete failed

fc'

Table 6 Analysis results for test data 6 (Liu 2006)

Specimen
B

(mm)
H

(mm)
t

(mm)
L

(mm) (MPa)
fy

(MPa)
Ptest

(kN)
Mtest

(kN·m)

Ptest/Pn or Mtest/Mn

ACI 05 AISC 05 Authors

S1 120 120 4 360 60 495 1294 19.4 1.11 1.11 0.91 

S2 120 120 4 360 60 495 1125 28.1 0.96 0.96 0.93 

S3 120 120 4 360 60 495 949 28.5 0.97 0.97 0.84 

S4 120 120 4 360 60 495 810 36.5 1.1 1.1 0.85 

S5 100 150 4 450 60 495 1422 21.3 1.18 1.18 0.94 

S6 100 150 4 450 60 495 1190 35.7 1.23 1.23 0.95 

S7 100 150 4 450 60 495 964 43.4 1.17 1.17 0.93 

S8 100 150 4 450 60 495 763 45.8 1.05 1.05 0.85 

S9 90 180 4 540 60 495 1491 29.8 1.17 1.17 0.97 

S10 90 180 4 540 60 495 1319 39.6 1.14 1.14 0.95 

S11 90 180 4 540 60 495 1208 48.3 1.21 1.21 0.97 

S12 90 180 4 540 60 495 1051 52.6 1.14 1.14 0.93 

S13 130 130 4 390 60 495 1472 22.1 1.04 1.04 0.90 

S14 130 130 4 390 60 495 1305 32.6 1.17 1.17 0.92 

S15 130 130 4 390 60 495 1022 40.9 1.1 1.1 0.88 

S16 130 130 4 390 60 495 789 43.4 0.99 0.99 0.80 

L1 100 150 4 2600 60 495 1130 17.0 1.99 1.99 0.98 

L2 100 150 4 2600 60 495 884 26.5 1.55 1.55 0.99 

L3 100 150 4 2600 60 495 711 32.0 1.31 1.31 0.96 

L4 100 150 4 2600 60 495 617 37.0 1.28 1.28 0.98 

Average 1.19 1.19 0.92

Coefficient of variation 0.19 0.19 0.06

f
c
'



778 Jung-Woong Park and Seung-Eock Kim

in global buckling. Pure local buckling cases were not detected, and the failure modes are either

global buckling or mixed global-local buckling. 

Liu (2005) tested 22 high-strength rectangular CFT columns under concentric loading. The test

variables include the material strengths (  and 89 MPa), cross-sectional aspect ratio (1.0-2.0)

and volumetric steel-to-concrete ratio (0.13-0.17). Concrete was then vertically cast into the steel

hollow section in three layers. Each layer of concrete was compacted by a poker vibrator. Then the

concrete was cured inside the steel hollow section with top open to the air for two weeks until a 10-

mm-thick flat plate was welded to the top to form a complete specimen. It was reported that the

ductility enhancement was significant due to the confinement by the steel section. 

Liu (2006) tested 16 short and 4 slender CFT columns under eccentric loading about major axis.

The CFT specimen was cured in the laboratory with top open to the air for 14 days for the concrete

to set. High-strength cement mortar was subsequently infilled to flush the concrete core with the

steel tube. Finally, the top cap plate was welded to form a complete specimen. It was observed that

the short CFT columns with load eccentricity ratio with 0.10-0.42 cannot fully develop material

plasticity at the failure load. Hence, plastic assumptions will not be suitable for the numerical

analysis on them. The four slender columns performed in a much similar failure mode to each other,

and the failure was characterized as overall buckling. 

Fig. 5 shows that the predictions by the ACI 318-05 and AISC are generally conservative with

fc' 60=

Fig. 5 Ratio of measured-to-calculated strengths by different methods 
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mean values of 1.12 and 1.17, respectively, and coefficients of variation of 0.14 for both methods.

For slender columns, the predictions by the two code methods are more conservative and scattered

with mean values of 1.30 and 1.43, and COVs of 0.21 and 0.18, respectively. The main cause of

this scatter may be the difficulty in evaluating the geometric second-order effects for slender

columns subjected to axial load and bending moments using the simplified equations in the code

practices. The calculated capacities by the proposed method are significantly accurate with little

scatter or trends for rectangular CFT columns over a wide range in concrete strengths, various

combinations of loading, and various width-to-thickness ratios (B/t) and column lengths. It would be

useful to expand this evaluation to include even more test data and other code provisions such as

Eurocode 4 and Architectural Institute of Japan code. 

The 102 specimens are short columns in which the slenderness effects can be neglected when the

ACI code is applied for column design. The other 15 specimens are slender columns, therefore, the

second-order effects must be considered by increasing the moment. For a slender column, buckling

may occur when all fibers of the cross-section are still elastic. Thus, the Euler load will govern the

load-carrying capacity of the column. For a short column, material yielding of the fibers in the

cross-section usually occurs before buckling takes place, so the yielding force of the section will

govern the limit state of the column. For a medium length column, some of the fibers of the cross-

section may yield while some fibers still remain elastic. In this case, the failure may be more

accurately described as combined buckling of the column and material yielding of the section. 

To investigate the capability of the proposed method for capturing the elastic buckling or critical

load, five end-restrained steel columns with different end conditions as shown in Fig. 6 are

analyzed. The analysis of steel columns concentrates on the buckling behavior as a result of

geometric second-order effects while the material is in the range of linear elastic. The columns are

subjected to small end moments or lateral end forces in addition to axial compressive force to

initiate the desired buckling mode. The exact value of Euler load or critical load can be obtained

from the effective length factor that is dependent on the support condition of the column. The

effective length factors for the pinned-ended, one end fixed and one end free, one end fixed and one

end hinged, one end fixed and one end guided, and one end hinged and one end guided columns are

1.0, 2.0, 0.7, 2.0, and 1.0, respectively. 

From Fig. 7 to Fig. 11, the theoretical critical loads are compared collectively with the results

Fig. 6 End-restrained beam-columns 
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obtained from the proposed method and OpenSees (2008). The buckling load is not given directly

in the nonlinear finite element analysis, but rather a complete load-deformation response is obtained

from the two methods. Fig. 7(a) to Fig. 11(a) show the relationships between compressive axial

forces and lateral displacements according to the different end moments or lateral end forces. The

“nonlinearBeamColumn” element object based on a force-based formulation with five integration

points along the element is used in the OpenSees analysis. The proposed method accurately

calculates the elastic buckling loads for the various beam-columns with different end conditions

even using one beam-column element. However, the OpenSees overestimates the critical loads by

34% for one end hinged and one end fixed member, and by 20% for all other cases. Fig. 7(b) to

Fig. 11(b) show the load-displacement responses by the proposed method and OpenSees with

respect to the number of elements in OpenSees analysis model. As the number of elements

increases, the OpenSees result becomes closer to those of the proposed method, and using eight

beam-column elements in the analysis by OpenSees gives very similar results to the proposed

method. 

A three-dimensional CFT portal frame as shown in Fig. 12 is analyzed by the proposed method

Fig. 7 Pinned-ended column Fig. 8 One end fixed and one end free column 
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and OpenSees. The section of each integration point is divided by 100 rectangular fiber segments.

The frame structure is subjected to horizontal force at node 10 to impose the torsion as well as

gravity loads. It is assumed that steel tube and concrete are fully constrained, and the local buckling

can be avoided by using the CFT section with B/t ratio within the range specified in the AISC

specification (2005). The “nonlinearBeamColumn” element object based on a force-based

formulation with five integration points along the element is used, and each member is modeled by

ten beam-column elements in the OpenSees. Fig. 13 shows the deformed shape obtained from the

proposed method in exaggerated scale. The load-displacement responses for the direction of x-axis

at node 5 and node 10 are shown in Fig. 14 with respect to the number of elements. The response

for the direction of z-axis at node 10 is shown in Fig. 15. The responses of the proposed method

using one and four elements are in good agreement with those obtained from the four nonlinear

beam-column elements of OpenSees, as shown in Fig. 14 and Fig. 15. The critical load calculated

by using one nonlinear beam-column element of OpenSees is about 10% higher than that obtained

by four elements of the same element object. The stresses of concrete and steel fibers still remain

elastic. According to the analysis results, a good accuracy is obtained by the proposed method with

Fig. 9 One end fixed and one end hinged column Fig. 10 One end fixed and one end guided column 
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reduced computational cost. Present work can be considered as a progressive contribution for

engineering design and performance evaluation (Chen 2008). 

6. Conclusions 

In this study, a flexibility-based finite element method has been developed for nonlinear inelastic

analysis of steel-concrete composite frames in the context of a standard finite element analysis

program. From the results of this study, the following conclusions can be made: 

1) ACI 318-05 and AISC give reasonably conservative estimates for short CFT columns.

However, for slender columns, the predictions by the two code methods become more

Fig. 11 One end hinged and one end guided column

Fig. 12 3-dimensional CFT frame structure 
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Fig. 13 Deformed shape of the 3-D frame

Fig. 14 Load-displacement relationships for the direction of x-axis 

Fig. 15 Load-displacement relationships at node 10 for the direction of z-axis 
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conservative and scattered due to the difficulty in evaluating the geometric second-order effects

for slender columns subjected to axial load and bending moments using the simplified

equations in the code practices. 

2) The proposed method can account for the interaction between the bending moment and the

axial force in a rational way using the stability functions obtained from the exact buckling

solution of a beam-column. Thus, using only one element per a physical member provides

most accurate strength predictions for the 116 rectangular CFT columns tested to failure.

3) The proposed method accurately capture the elastic buckling or critical loads for the five end-

restrained beam-columns with different end conditions even using one beam-column element.

The analysis results using one element by the proposed method for the three-dimensional CFT

frame structure are in good agreement with those obtained from the four nonlinear beam-

column elements of OpenSees. 

4) Good accuracy can be obtained by the proposed method with reduced computational cost. The

method can provide valuable insight into the design and behavior of CFT beam-columns. 
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