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Elastic analysis for a strip weakened by periodic holes
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1. Introduction

Many researchers studied the problem for the elastic plane medium containing the holes (Savin

1961, Atsumi 1956, Chen 1983, Chen and Lee 2002a, 2002b, Wang and Chen 1989, Dong 2006,

Dong and Lee 2006, Wang et al. 2003, Legros et al. 2004, Dejoie et al. 2006). In this paper, elastic

analysis for a tension strip weakened by the periodic holes is studied. The problem is solved by

analyzing a rectangular cell with hole from the strip. For the rectangular cell, a solution is obtained

by using the eigenfunction expansion variational method (EEVM). Furthermore, from the elastic

response in the solution, the notched strip can be equivalent to an orthotropic strip without holes. 

2. Analysis and the numerical results

The complex variable function method in plane elasticity is used in the present study
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Fig. 1 (a) A finite plate with a circular hole, (b) Loading condition for a strip with the periodic holes, (c)
Boundary value condition for the rectangular cell.
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(Muskhelishvili 1953). The traction free condition along the circular hole may be expressed as

(1)

where CR denotes the circular hole boundary (Fig. 1(a)). The definition for the functions φ(z) and

ψ(z) can be referred to Muskhelishvili (1953).  

For a cell cut from a weakened strip shown in Fig. 1(b), (c), from condition (1) one obtains the

following eigenfunction expansion form 

(2)

where Xk are some undetermined coefficients and 

 (k=1,2,..2M) (3)

The mixed boundary conditions for a notched region can be expressed as (Fig. 1(a))

 (on Cp)      (on Cu) (4)

where Cp is the portion of boundary where the tractions “ ” are given, and Cu is the portion of

boundary where the displacements “ ” are assumed.

It is proved that (Chen 1983, Chen and Lee 2002a, 2002b, Hu 1954, Washizu 1975), under the

condition (4), the actual solution of the boundary value problem can be obtained from the stationary

condition of a functional Π defined as

(5)

where A(eij) is the strain energy, and Σ is the region of integration. 

In this case, one needs to cut a rectangular cell with hole from the strip (Fig. 1(c)). Clearly, the

boundary condition for the cell can be written as

 (6a)

 (6b)

In Eq. (6a) vb is an undetermined value, which will be determined by

(7)

Clearly, the boundary value condition (6a) is the complex mixed one. It was proved that the EEVM

could also be used to the case that the boundary condition is complex mixed one (Chen and Lee

2002a, 2002b).

After letting the functional Π take a stationary value, the undetermined coefficients xk

(k=1,2,3..2M) can be obtained and the stress field for the notched strip is finally obtained  (Chen

and Lee, 2002a, 2002b).

Clearly, from the deformation response of the strip weakened by holes, an orthotropic strip

without holes can model the weakened strip. It is known that the constitutive equation in the

orthotropic medium takes the form (Lekhnitsky 1963)

(8)

In Eq. (8) there is a relation as follows

φ z( ) zφ′ z( ) ψ z( )+ + 0=      z CR∈( ),

φ z( ) Xkφ
k( )

z( )

k 1=

2M

∑=      ψ z( ) Xkψ
k( )

z( )

k 1=

2M

∑=,

φ
k( )

z( ) z
2k 2M– 1–

=   ψ
k( )

z( ) R–
4k 4M– 2–

z
2k– 2M 1+ +

= 2k 2M– 1–( )R
2
z
2k 2M– 3–

–, ,

σijnj pi= ui ui=

pi

ui

Π A eij( )dF
Σ
∫∫ piuids

C
p

∫– σijnj ui ui–( )ds
C
u

∫–=

σxy 0=      v v vb±      b– x b≤ ≤   y h±=,( )= =,

σx 0=      σxy 0=      x b±=   h– y h≤ ≤,( ),

σy x h,( )dx
0

b

∫ bp=

εx
1

E1

-----σx

v21

E2

------σy–=      εy
v12

E1

------– σx
1

E2

-----σy+=      γxy
1

G12

--------σxy=, ,



Elastic analysis for a strip weakened by periodic holes 649

(9)

In the condition of using 2M = 16 in Eq. (2), computation is performed. The calculated elastic

constants are expressed as 

     (where c = min (b,h)) (10)

     (where c = min (b,h)) (11)

     (where c = min (b,h)) (12)

where vo, Go, Eo denote the elastic constant for the strip. The calculated f1(h/b,R/c), f2(h/b,R/c) and

E1v21( ) E2v12( )⁄ 1=

E1 f1 h b⁄ R c⁄,( )Eo=

E2 f2 h b⁄ R c⁄,( )Eo=

v21 E2⁄ v12 E1⁄ f3 h b⁄ R c⁄,( ) vo Eo⁄( )= =

Table 1 Normalized elastic constant f1(h/b,R/c) for a strip weakened by periodic holes (for E1, see Fig. 1(c)
and Eq. (10)) 

R/c= 0.1 0.2 0.3 0.4 0.5 0.6

h/b=0.2 .9953 .9814 .9585 .9269 .8851 .8309

h/b=0.4 .9907 .9635 .9204 .8635 .7940 .7113

h/b=0.6 .9860 .9460 .8845 .8069 .7173 .6180

h/b=0.8 .9814 .9284 .8484 .7503 .6418 .5281

h/b=1.0 .9767 .9099 .8084 .6851 .5526 .4199

h/b=1.5 .9843 .9367 .8570 .7478 .6164 .4754

h/b=2.0 .9881 .9516 .8880 .7955 .6756 .5357

Table 2 Normalized elastic constant f2(h/b,R/c) for a strip weakened by periodic holes (for E2, see Fig. 1(c)
and Eq. (11)) 

R/c= 0.1 0.2 0.3 0.4 0.5 0.6

h/b=0.2 0.9954 0.9826 0.9642 0.9431 0.9212 0.8994

h/b=0.4 0.9908 0.9653 0.9288 0.8869 0.8435 0.8005

h/b=0.6 0.9862 0.9479 0.8931 0.8300 0.7646 0.6996

h/b=0.8 0.9815 0.9302 0.8561 0.7704 0.6814 0.5929

h/b=1.0 0.9768 0.9119 0.8169 0.7061 0.5912 0.4773

h/b=1.5 0.9844 0.9382 0.8641 0.7668 0.6532 0.5313

h/b=2.0 0.9882 0.9529 0.8943 0.8135 0.7130 0.5971

Table 3 Normalized elastic constant f3(h/b,R/c) for a strip weakened by periodic holes (for v21/E2, see Fig. 1(c)
and Eq. (12)) 

R/c= 0.1 0.2 0.3 0.4 0.5 0.6

h/b=0.2 1.0051 1.0189 1.0377 1.0568 1.0735 1.0876

h/b=0.4 1.0102 1.0382 1.0771 1.1187 1.1563 1.1868

h/b=0.6 1.0154 1.0586 1.1213 1.1930 1.2647 1.3326

h/b=0.8 1.0208 1.0815 1.1774 1.3018 1.4507 1.6324

h/b=1.0 1.0265 1.1092 1.2575 1.4859 1.8234 2.3572

h/b=1.5 1.0180 1.0784 1.2023 1.4302 1.8331 2.5401

h/b=2.0 1.0135 1.0591 1.1537 1.3311 1.6529 2.2371
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f3(h/b,R/c) values are listed in Tables 1, 2 and 3, respectively. The relevant circumference stresses at

the points “E” (x = R, y = 0) and “F” (x = 0, y = R), are expressed as

σt,E = g1(h/b,R/c)p,  (where c = min (b,h)) (13)

σt,F = g2(h/b,R/c)p, (where c = min (b,h)) (14)

The calculated g1(h/b,R/c) and g2(h/b,R/c) values are plotted in Figs. 2 and 3, respectively. 
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Fig. 3 Normalized circumference stress g2(h/b,R/c)
(=σt,F/p)

Fig. 2 Normalized circumference stress g1(h/b,R/c)
(=σt,E/p)




