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Periodic solutions of the Duffing equation
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Abstract. This paper presents a new linearization algorithm to find the periodic solutions of the
Duffing equation, under harmonic loads. Since the Duffing equation models a single degree of freedom
system with a cubic nonlinear term in the restoring force, finding its periodic solutions using classical
harmonic balance (HB) approach requires numerical integration. The algorithm developed in this paper
replaces the integrals appearing in the classical HB method with triangular matrices that are evaluated
algebraically. The computational cost of using increased number of frequency components in the matrix-
based linearization approach is much smaller than its integration-based counterpart. The algorithm is
computationally efficient; it only takes a few iterations within the region of convergence. An example
comparing the results of the linearization algorithm with the “exact” solutions from a 4th order Runge-
Kutta method are presented. The accuracy and speed of the algorithm is compared to the classical HB
method, and the limitations of the algorithm are discussed.
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1. Introduction 

One of the classical examples in nonlinear vibrations is the Duffing equation, given by

(1)

where λ is a parameter controlling the degree of nonlinearity, and ζ and ωn are the damping ratio

and the natural frequency of the corresponding linear system (λ = 0). Duffing equation describes the

response of several physical systems under harmonic input. The solution of Eq. (1) has been studied

by many researchers, and closed form solutions have been derived under certain conditions

(Caughey 1971, Iwan 1969, Nayfeh and Mook 1979, Roberts and Spanos 1986). The cubic

nonlinear term has thus far prohibited finding explicit solutions of the Duffing equation. 

The superposition principle, which is the backbone of linear vibration theory, does not represent

the behavior of nonlinear systems. However, its simplicity has led to the concept of linearization;

approaching nonlinear problems by comparing their behavior to linear models satisfying certain

resemblance criteria (Caughey 1963, Spanos and Iwan 1978). 

This paper develops a linearization algorithm to find the periodic solutions of the Duffing
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equation, under harmonic loads. Since the algorithm developed in this paper is based on the

Harmonic Balance (HB) method, Section 2 of this paper is devoted to brief discussion of the

traditional HB formulation, where specific challenges in its application are identified. Section 3

develops a linearization algorithm that overcomes the difficulty of evaluating the integrals in the HB

formulation by replacing them with triangular matrices that are evaluated algebraically. The

algorithm is flexible; it does not limit the number of frequency components to be evaluated. 

Section 4 presents a numerical example showing how the procedure modifies the natural

frequency of the system for each frequency component. The results from the linearization algorithm

are compared to the “exact” solutions obtained from a 4th order Runge-Kutta method. The

displacement of the corresponding linear system is also shown for reference. Section 5 concludes

the paper by comparing the accuracy and speed of the linearization algorithm developed in this

study with the classical HB method, and discussing its limitations. 

 

2. Harmonic balance method

The harmonic balance (HB) method is a powerful tool to explore the periodic solutions of a

system under periodic input (Krylov and Bogoliubov 1947). It is based on the assumption that the

solution to Eq. (1)  can be approximated by a truncated Fourier series

(2)

where N is the number of harmonics used in the Fourier series. The first and second derivatives of

x(t) are

(3)

and

(4)

respectively.

The cubic term in Eq. (1)  can be approximated as the following truncated Fourier series (Liu,

Thomas et al. 2006)

(5)

where

(6)

(7)
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When Eqs. (2)-(5)  are substituted into the differential equation, and the terms associated with each

frequency are balanced, a system of algebraic equations is obtained. The Fourier coefficients of the

assumed solution can then be found by solving the resulting system of equations. 

The solution of many weakly nonlinear systems under multiple-frequency input can be effectively

approximated by adding the solutions for independent frequencies, as the application of

superposition principle is not likely to introduce large errors when the nonlinearity is sufficiently

low (Tezcan and Spanos 2006). On the other hand, a truncated Fourier series assumption generally

fails to describe the response of systems with a strong nonlinearity. Since contribution from other

harmonics must be taken into account, classical HB approach will yield a large system of coupled

equations, making the solution prohibitive (Urabe and Reiter 1964). 

3. Derivation of the linearization algorithm

This section develops a new algorithm to find the periodic solutions of Duffing equation. Since

Duffing oscillator is known to be stable around the origin, zero initial conditions are assumed in the

derivation. 

Starting with the main idea of equivalent linearization, if there exists a knl satisfying

(9)

the nonlinear system in Eq. (1)  is equivalent to the following linear system 

(10)

For λ > 0, knl can be thought as the additional stiffness introduced by the nonlinearity. 

To illustrate the basic idea used in the linearization procedure developed in this paper, Fig. 1

shows two block diagram representations of the Duffing system. The function H is the complex

frequency response function of the linear time invariant (LTI) system with damping ratio ζ and
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Fig. 1 Two block diagram representations of the Duffing system
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natural frequency ωn, given by

(11)

Note that Fig. 1(a) corresponds to the feedback form

(12)

while Fig. 1(b) represents the linearized form to be obtained through the iterative algorithm

developed in this paper. 

Note that the right hand side of Eq. (12)  can be thought of the input excitation to the LTI system

with the complex frequency response function given in Eq. (11). To recast Eq. (12)  in matrix form,

g(t) and x(t) must be expressed as vectors of the same size, where each row corresponds to a

discrete frequency. 

Consider a case where the periodic solutions can be calculated with sufficient accuracy, using Nf

discrete frequencies, where Nf is chosen to include the input frequencies, as well as the frequencies

where nontrivial solutions are expected. Then the input g(t) can be rewritten to include Nf

components as follows

(13)

Note that except under special conditions, Nf will exceed the number of frequencies necessary to

define g(t), and it will be necessary to add frequency components with er = fr = 0 to the input signal.

Although this process might seem an unnecessary burden, it leads to an algorithm that is more

accurate and significantly faster than the classical HB formulation, as will be discussed in the

conclusion part. 

The periodic solutions of Eq. (10)  when subjected to g(t) take the form

(14)

where

(15)

and

(16)

respectively. For a linear system, the sine and cosine coefficients are obtained by substituting knl = 0

in Eqs. (15) and (16), respectively. 

For harmonic input and response, the orthogonality of sine and cosine functions can be utilized to

define the knl in Eq. (9). Substituting x(t) and g(t) in Eq. (9), multiplying both sides with ω0/πxr(t)

and integrating the resulting expression from t = 0 to t = 2π/ω0 yields a value of knl that satisfies Eq.

(9). The resulting knl value is frequency dependent, since its value changes with the response

component xr. This paper uses the notation knl,r , to represent the knl corresponding to the rth

frequency component, which is given by the equation
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(17)

where

(18)

and

(19)

The term knl,r  in Eq. (17) can be simplified as

(20)

where cr is a frequency dependent constant defined as 

(21)

Irc and Irs functions in Eq. (18)  and Eq. (19) can be written as

(22)

and

(23)

respectively. In Eq. (22) and Eq. (23), {a} and {b} are row vectors containing the cosine and sine

coefficients of x(t), respectively. If the number of frequency components being computed is Nf, the

{a} and {b} will be vectors of size 1 × Nf. The matrices [Cr1], [Cr2], [Sr1], [Sr2] are frequency

dependent upper triangular matrices of size Nf × Nf. Through algebraic manipulation, the elements

of these four matrices are found to be
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In Equations (24)-(27), δ (x) is the discrete unit impulse function defined as

(28)

Through algebraic manipulation and simplification, knl,r  in Eq. (20) becomes 

(29)

Note that, the Eq. (29) involves the sine and cosine coefficients of the response, which are

unknown. An iterative scheme can be used to calculate the knl,r values, where the response of the

linear system (λ = 0) is used as the initial estimate of the nonlinear response. Using Eqs. (24) to

(29), the frequency dependent stiffness terms (knl,r) are calculated, and the natural frequency of the

corresponding system is updated as 

(30)

The updated system, then, enables computation of an improved response estimate. The algorithm is

repeated until the solution converges.

Fig. 2 depicts the idea used in the linearization algorithm described in this paper. When the

algorithm converges, the rth component of the response of the nonlinear system is given by the

response of the linear system with damping ζ and natural frequency . Note that although

the final xr(t) appears to be a direct mapping from the rth component of the input, the knl,r term

accounts for the contribution from other frequencies as well. 
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The matrix-based linearization procedure can be summarized as follows

Step 1: Find er and fr satisfying Eq. (13)

Step 2: Initialize the ar and br values by assuming linear response, using Eqs. (15) and (16).

Step 3: For all r, calculate [Cr1] and [Sr1] matrices using Eqs. (24) and (25), respectively.

Step 4: For all r, calculate [Cr2] and [Sr2] matrices using Eqs. (26) and (27), respectively.

Step 5: For all r, calculate the knl,r values using Eq. (29), and update the natural frequency using

.

Step 6: Calculate ar and br values using the updated natural frequency in Eqs. (15) and (16). 

Step 7: If the solution has not converged, go to step 3. 

Step 8: Calculate the response using 

(31)

It is very important to note that, although the method developed in this paper expresses the response

of the Duffing equation as a sum of components representing each frequency, this summation

should not be confused with linear superposition, as the components are not independent of each

other. That is, while xr(t) represents the rth frequency component in the solution, the effects from

other frequencies are introduced through the [Cr1], [Cr2], [Sr1] and [Sr2] matrices. Hence, xr(t) does

not model the response of the system when subjected to a harmonic force of frequency rω0. 

4. Application

In this section, we demonstrate how the linearization procedure scales the response amplitudes by

using modified natural frequencies for each component. The system and load parameters are

deliberately chosen such that the nonlinear response can be approximated by adjusting two natural

frequency terms that match the frequency content of the input (Nf = 2). Primary and secondary

resonances are eliminated by defining the natural frequency away from the frequency content of the

applied load. Consider the system 

        (32)

Let λ = 5 and g1(t) = 50cos(t) + 10sin(t) + 20cos(2t) + 30sin(2t). 

The load and the response of the linear system (λ = 0) are shown in Fig. 3.

The knl,r and ωn,r values resulting from the first five iterations of the linearization algorithm are

presented in Table 1. As the table shows, convergence was achieved within a few iterations.

The time domain representations and the power spectra of the linear system response (λ = 0), the

“exact” response as calculated from the 4th order Runge-Kutta algorithm, and the result of the

linearization procedure described in this paper are presented in Fig. 4. The top row corresponds to

the linear system (λ = 0), and has been provided as a tool to measure the deviation of the Duffing

system from its linear counterpart. The second row represents the “exact solution calculated using a

fourth order Runge-Kutta (RK4) algorithm. Comparison of the “exact” solution with the linear

solution shows that, for this specific example, the effect of the nonlinearity manifests itself as an

amplitude reduction, while the phase remains unaffected. Also, the relative strength of the frequency

components is similar. The third row shows the “linearized” solution, at the end of the five

iterations. Note that the “linearized” solution and the “exact” solution almost overlap after about 5
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Fig. 3 Applied load and linear response for the example application

Table 1 knl,r and ωn,r values from the first five iterations

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

knl,1 127.1190 49.5494 59.0641 57.1040 57.4799

knl,2 70.4833 104.4850 98.2742 99.4863 99.2512

ωn,1 16.8829 14.4036 14.7302 14.6635 14.6763

ωn,2 15.1128  16.1987 16.0059 16.0437 16.0364

Fig. 4 Displacement response and power spectra for the example application (after 5 iterations)
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seconds, and the power spectra of the two are almost the same.

5. Conclusions 

This paper introduces a linearization algorithm to find the periodic solutions of Duffing’s equation

around the origin. The new algorithm replaces the integrals appearing in the HB method with

triangular matrices. An example application of the proposed method has been presented. The

example shows how the method scales the response amplitudes by using modified natural

frequencies for each component when the natural frequency of the system is away from the

frequency content of the applied load. 

The triangular matrices used in the algorithm lead to an increased efficiency when compared to

calculating the integrals that appear in the classical HB formulation. Five iterations of the example

presented above, required only 0.05 seconds of CPU time, whereas the classical HB method took

4.25 sec. The difference becomes more critical with increasing number of frequencies, since the

number of terms in the cube of the response function for Nf frequencies is (8Nf 3 + 12Nf 2 + 4Nf )/6,

whereas the number of operations in the matrix-based linearization increases only linearly with Nf,

due to the triangular form of the matrices used.

The mean squared error, as measured from the steady-state part of the Runge-Kutta solution, is

smaller for the matrix based linearization than the classical HB method, although the two responses

are virtually indistinguishable when plotted on the same graph. The accuracy of the classical HB

method, relative to the matrix-based linearization, decreases with increased number of iterations. We

believe this is direct result of the increased round-off errors, that accumulate faster in the classical

HB method, rather than a difference caused by the formulation of the two methods. 

It should be noted that the linearization algorithm developed in this paper, although being

computationally efficient and flexible, is subject to the limitations inherent in all linearization

algorithms and it only gives the stable periodic solutions of the Duffing equation. Therefore, the

result obtained from this algorithm should not be treated as the total solution of the Duffing

equation, which can exhibit several nonlinear phenomena that cannot be captured through

linearization. 
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