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Characterization of elastic properties of pultruded profiles
using model updating procedure with vibration test data
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Abstract. In this paper, a model updating technique in dynamics is used to identify elastic properties
for pultruded GFRP-Glass Fiber Reinforced Plastic framed structural systems used in civil construction.
Traditional identification techniques for composite materials may be expensive, while this alternative
approach allows to identify several properties simultaneously, with very good precision. Furthermore, the
procedure of a non-destructive type has a relatively simple implementation. Properties describing the
mechanical behavior for beam and shell finite element modeling are identified. The used formulation is
based on the minimization of eigensolution residuals. Important points concerning model updating
procedures have been observed, such as the particular vibrational behavior of the test structure, the
modeling strategies and the optimal placement of the sensors in the experimental procedure. Results
obtained by experimental tests show the efficiency of the proposed procedure.
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1. Introduction

Used successfully in the automobile, aeronautical, naval, space and sports sectors, composite
materials are also chosen by designers and engineers of the civil construction, considering their
structural and constructive qualities. Facing more severe requirements, sometimes in aggressive
environments, composite materials are an interesting alternative solution. Either for the repairing or
design of new structures, they present some advantages with respect to the traditional materials of
the civil construction, such as low weight, high strength and anti-corrosion properties. On the other
hand, due to the great variety of materials and structural configurations, the understanding of the
mechanical behavior and the intrinsic phenomena of composites can be a complex task. 
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Currently, one of the main modalities of composite materials used in civil construction structures
consists of the pultruded profiles in Glass Fiber Reinforced Plastic (GFRP). A pultruded fiber glass
structural shape is constituted of reinforcing fibers (glass) embedded in a polymer matrix (polyester,
vinylester, epoxy or phenolic). Basically, the fiber reinforcement provides the strength and stiffness
while the resin provides the resistance to the environment. The stiffness and strength of the material
mainly depend on the type, the volume fraction and the stacking sequence of the reinforcements.
The main advantages of the pultruded profiles as compared to traditional materials of civil
construction (steel, wood and concrete) are the excellent strength and stiffness/density ratio;
lightness, reducing the assembly and transport costs; corrosion resistance and chemical inertia;
dimensional stability; reduced maintenance costs.

The anisotropic character, the diversity of the materials and the variety of the architectures make
the mechanical behavior of the pultruded profiles very particular. In this context, the elastic
characterization of the pultruded profiles can be made experimentally or by using micromechanics
approach, where the layers properties are calculated as an equivalent homogeneous material from
the constituents’ properties (fiber and matrix). The number of properties necessary to characterize
the mechanical behavior depends on the modeling technique. Considering symmetry of the layers,
this number can vary from two, for the case of modeling with beam elements based on Kirchhoff
theory, up to five, in the case of modeling with plate elements with First-order Shear Deformation
Theory. The traditional experimental identification methods of composite materials, in particular for
the pultruded profiles, are in general expensive in terms of time and required equipment. The
majority of the techniques demand the accomplishment of a specific test for each individual elastic
property. Moreover, these methods frequently exhibit precision and implementation problems. 

The objective of this work is to identify the elastic properties of pultruded profiles used in framed
structures of civil engineering. For this, a model updating technique in dynamics has been applied.
By modifying the design variables represented by the elastic properties, a problem of parametric
identification is formulated, pertaining to the class of inverse problems. From the mathematical
point of view, we are inserted in the context of an optimization problem, with the search of the
minimum of a cost function, formed by the residuals which express the distance between the
numerical model and the real structure. The used formulation is based on the minimization of
eigensolution residuals, which is a technique commonly called sensitivity method, i.e., an
optimization method that makes use of sensitivities of the eigenvalues and eigenvectors for selected
parameters.

The interest in the dynamic tests lies on the fact that several types of energy of different natures
(membrane, bending, shear) intervene in the vibratory behavior of a structure. This fact is perfectly
coherent with the character of multiaxial identification inherent to composites. It is thought that this
technique allows simultaneous identification of several properties from a single test. For traditional
techniques, the static behavior can be subject to the local phenomena, while dynamic response
(modes and frequencies) represents in general the global behavior of the structure, which is
interesting from the identification point of view. The technique can be applied to a wide range of
profiles; it is of relatively simple implementation and is of non-destructive type. 

As opposed to the previous studies dedicated to the subject (Deobald and Gibson 1986, Frederiksen
1994, Frederiksen 1998, Pedersen 1988, Bledzki et al. 1999, Sol 1986, Cunha and Piranda 1999, Ip
et al. 1998, Gagneja et al. 2001), in which plate-like structures are considered, the present
methodology is applied to a pultruded beam with I-shape cross-section. The identification of elastic
properties in this type of structure by model updating technique in dynamics is relatively new.
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Some theoretical and practical aspects of the model updating procedure in dynamics are
approached. A general model updating tool is presented, allowing a large number of identification
possibilities. The presented results demonstrate the efficiency of the proposed methodology. 

2. Strategies for profile modeling 

In the context of composite material theories, pultruded profiles can be considered as a laminated
structure (Davalos and Qiao 1999, Sonti 1992, Clarke 1996). Analytical or numerical modeling of
these profiles formed by unidirectional or mat plies is generally carried out by using beam or plate
elements. The theory to be used and the associated number of elastic properties necessary to
describe the mechanical behavior depend on the adopted modeling strategy. 

In this work, two strategies for profile modeling have been applied: beam and plate FEM
discretizations. These are the common approaches used for design process, considering ultimate and
serviceability limit states. For beam modeling, the resulting framed structures are used to obtain the
bending moment, shear force and normal force diagrams. For plate modeling, more detailed and
specific applications can be developed, as stress concentration, failure mechanism and criteria
analysis. 

Fig. 1 shows the geometry of the pultruded beam with the global reference system, where u, v

and w are the corresponding displacements.

2.1 Modeling with plate elements 

Assuming that the profiles are of open thin-walled cross section type, web and flange will be
under plane-stress state. In this case, the mechanical behavior is described by the Kirchhoff-Love
theory (Classical Laminated Plate Theory). Moreover, assuming that the axes of orthotropy of the
material coincide with the geometrical axis of the beam, the stress-strain relationship is reduced to 

(1)

where Qij are the reduced stiffness constants. For orthotropic and transverse isotropic materials these
constants are given by

σ11

σ22

σ12

Q11    Q12    0

Q12    Q22    0

0    0    Q66

ε11

ε22

γ12

=

Fig. 1 Configuration of the pultruded I-beam
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(2)

In this case, the elastic characterization of the pultruded profile is made by four independent elastic
properties: E1 (Young’s modulus in the longitudinal direction), E2 (Young’s modulus in the
transverse direction), G12 (In-plane shear modulus) and v12 (Poisson’s ratio). 

In the cases of thick web and/or flanges and for materials with a high Young’s modulus/shear
modulus ratio, the shear effect becomes important, which leads to the First-order Shear Deformation
Theory or a Higher-order Shear Deformation Theory. The elastic properties for this case are five: E1

(Young’s modulus in the longitudinal direction), E2 (Young’s modulus in the transverse direction),
G12 (In-plane shear modulus), G23 (Shear modulus in 23-plane) and v12 (Poisson’s ratio). 

Concerning Poisson’s ratio ν12, this property does not influence the dynamic and static behavior of
the pultruded beams used in framed structures (beams with high slenderness ratio) with respect to
the calculation of stress and moment resultants. Thus, this parameter was not considered for
identification in this study.

2.2 Modeling with beam elements 

This modeling implies the transformation of the three-dimensional structure, which can possess a
complex cross section, in a unidimensional structure with an equivalent homogeneous section. The
homogenization is carried-out at material and geometrical levels. Thus, the originally orthotropic
material is converted into an isotropic equivalent one. For the beam formulation it is usual to define
the equivalent stiffnesses. Considering the Euler-Bernoulli (without shear), Timoshenko (with shear)
and Vlasov (torsion with warping) theories, the following stiffnesses can be defined as: EA (axial
stiffness); EI (bending stiffness); kGA (shear stiffness); GJ (torsional stiffness, from the Saint-Venant
torsion solution); EIw (warping stiffness, from the Vlasov torsion solution), where A is the cross
section area, I is the moment of inertia, k is the shear correction coefficient, G is the shear modulus,
J is the Saint-Venant torsion constant (torsion moment of inertia) and Iw is the warping moment of
inertia. 

Differently from thin-walled isotropic beams, for composite material beams, bending and torsional
vibrations can be coupled due to material anisotropy, even for profiles with double symmetry. The
equations of motion can be obtained from Hamilton’s principle. If the shear effect is considered
(Timoshenko theory), the equations of motion for a free isotropic I-beam expressed in function of
the displacements u, v and w and rotations θx, θy and θz are

(3)

where superscript primes and dots denote the differentiation with respect to axial coordinate x and
time, respectively. This set of differential equations allows describing the general vibrational
behavior of I-beams with relatively low slenderness ratio, including shear and warping effects. Thus,
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in the general case of beam vibration modeled with beam elements, two elastic properties are
necessary to describe the mechanical behavior: E (Young’s modulus) and G (Shear modulus,
associated with shear correction coefficients ky and kz).

In the context of model updating technique, in the transition from plate modeling (Kirchhoff-Love
theory) to beam modeling (Timoshenko theory), shear correction coefficients ky and kz can assume
values which do not have necessarily the physical sense which characterizes them. In this case,
these coefficients act simply as updating parameters to obtain the equivalent beam model.

3. General formulation of the eigensolution sensitivity method

The sensitivity method consists in the minimization of a residual based on eigensolutions, which
are considered as output quantities (Fig. 2). In elastodynamics, the advantages of the sensitivity
method when compared to other updating methods are, in a general sense, the following: neither
expansion nor condensation are required; it is exploitable when the number of sensors is reduced
and is therefore well adapted to large systems; it is robust with respect to the measurement noise; it
enables to ensure physical meaning to the updating. Its disadvantages are related to the difficult
convergence or the possibility of reaching local minima, thus requiring an initial finite element
model which represents quite well the dynamic behavior of the real structure; the necessity of
pairing modes; the utilization of generalized masses and the numerical problems in the presence of
multiples or quasi-multiple eigenvalues. Nevertheless, most of these disadvantages can be dealt with
using ad-hoc procedures (Cunha and Piranda 1999).

In the updating procedure, corrections ΔK and ΔM for the stiffness and mass matrices of the
model (a) related to the experimental (ex) are determined

Fig. 2 General flowchart of the sensitivity method
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K(ex) = K(a) + ΔK      M(ex) = M(a) + ΔM (4)

To do so, we suppose that the finite element model is composed by sub-domains called macro-

elements which comprise elements depending on the same parameters

(5)

where r is the number of elements in the macro-element, Ke and Me are respectively the stiffness
and mass matrices associated with the element e. The corrections are made by acting on the p

stiffness macro-elements and q mass macro-elements as follows

(6)

where ki and mj are unknown correction coefficients, K(a) and M(a) are the assembled stiffness and
mass matrices. The residual is formed from the distances between the measured eigensolutions of
the structure and those calculated from the finite element model evaluated on the c instrumented
coordinates

(7)

In the sensitivity method, differences between the eigensolutions (eigenmodes y and eigenvalues λ)
are expressed as functions of the increments of correction parameters. To do so, first order Taylor
series expansions in the vicinity of paired eigensolutions of the model are used

(8)

In matrix form we have
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where L is the number of measured eigensolutions; c is the number of measured degrees of freedom
(DOF). In the sensitivity matrix S, expressions of the first derivatives of eigensolutions with respect
to the stiffness and mass parameters are obtained by deriving the modal equilibrium equation of the
model and by taking into account the orthonormality relations (Cunha and Piranda 1999)

(10)

(11)

with

(12)

 (13)

where  is the sub-base formed by SB eigenvectors of the model.
The optimization method used to calculate the solution Δp in Eq. (9) is of the gradient type with

inequality constraints. The cost function is formed by the weighted differences between the
eigensolutions

(14)

subject to inequality constraints  and lateral constraints , where Δy

= y(ex) − y(a) ∈ RLc,1 is the vector of eigenvector differences; Δλ = λ(ex) − λ(a) ∈ RL,1 is the vector of
eigenvalue differences; Wy ∈ RLc, Lc, Wλ∈ RL, L and Wp ∈ Rp+q, p+q are weighting matrices chosen
according to the specificity of the problem. In this work, weighting values for eigenvectors are same
than for eigenvalues.

3.1 Optimal placement of sensors in view of model updating

The selection of sensor placements is a particularly important issue in model updating procedures.
Indeed, although the finite element model possesses a large number of DOF’s, in practice only a
limited number of coordinates can be instrumented, hence the necessity of choosing adequately the
location of the sensors in the structure. The optimal selection of sensors pursues one of the
following objectives: improved of the structure’s vibration modes, minimal errors in response
expansion or model condensation, improved capability of structural modification localization,
maximization of the numerical conditioning of the sensitivity matrix, etc (Foltête and Piranda 2001).

In this work, the objective of DOF’s sensors selection is to obtain a projection basis that is the
most orthogonal as possible, which will allow a matching between calculated and identified
eigenvectors. In view of the model updating procedure, this goal can be considered as a technique
for planning the experimental test. The method consists in exploiting the modal matrix with a
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vectors, the displacement vectors of each DOF i on n modes are formed as

(15)

where  is the displacement of the DOFi for the mode j. The first retained DOF (y1
(a)) has to

maximize the norm of yi
(a). Then we construct all matrices  with all j (j ≠ 1) retained

DOF’s
(16)

The rank and the condition number of all matrices  are determined. The second selected DOF
maximizes the rank and minimizes the condition number of . Finally, all matrices ,
with K ≠ 1, K ≠ 2, ... are constructed

(17)

The conditioning and the rank of the matrices  are evaluated. The p DOF’s which maximize the
rank and minimize the condition number of  are selected. In the condition number minimization
method, the selected DOF’s depend on the choice of the first DOF or the imposed DOF’s that can
generate several families of solutions. Thus, the selection technique remains sub-optimal. This
aspect reveals the essentially numerical character of the method. There are no explicit physical
considerations which allow, for example, an interpretation in terms of kinetic or potential energies.

4. Vibrational behavior of the test structure 

The studied pultruded profile has a cross section ‘I’ 150 × 74.5 × 5.5 mm, fabricated by Exel
Composites (Utilo standard profile), according to E23 grade of EN 13706. The profile is constituted
by polyester resin and glass fibers (continuous roving and continuous strand mat), with a polyester
surface veil. The Young’s modulus supplied by the manufacturer is E = 28.6 GPa. The measured
density is 1860 kg/m3. The calculated geometrical properties are: A = 1.720 × 10-3 m2; Iy = 5.98 × 10-6

m4; Iz = 4.09 × 10-7 m4; J = 2.42 × 10-8 m4; Iw = 2.11 × 10-9 m6; ky = 0.48; kz = 0.43.
Characterization of dynamic behavior of test structure is made by performing FE computations.

The free-free boundary condition is adopted for identification of elastic properties. Assuming that
the principal directions of orthotropy coincide with the beam reference system, which actually is the
case of pultruded profiles formed by continuous roving and continuous strand mat plies, modeling
of the laminated structure layer to layer is not necessary. As depicted in Fig. 3, only a correct
positioning of the local reference systems of the material in web and flange components is
necessary. In this case, the profile is considered as an orthotropic material at a macroscale level.

The tested I-beam exhibits double cross-sectional symmetry. Moreover, elastic and geometric
symmetry with respect to the layer stacking are present. For this type of section, the shear center
and the centroid are coincident, thus bending and torsional motions are uncoupled. For model
updating procedure, it is important that mode shapes are uncoupled, because the torsional motion
will not be observed by vibration sensors. Only bending modes about y and z axis will be used to
form the experimental modal basis. 

For thin-walled profiles, local bending deformations of web and flanges occur, especially for
modes about z axis. From a model updating point of view, this behavior can generate difficulties in
the model-test comparison. Indeed, when the structure is modeled by beam elements, local
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deformations of the profile are not reproduced. Local effects are more significant for higher
frequencies, which reduces the modal basis to be used in model updating. Moreover, considering
that the number of sensors is limited, presence of local deformations makes more difficult the
pairing between measured and calculated modes.

Besides the bending mode shapes, which will be those effectively used in model updating,
torsional and cross-sectional opening type modes are present in the beam dynamic behavior, even
for lower frequencies. From a model updating point of view, these configurations are undesirable,
because such modes will not be experimentally identified. Thus, they must be eliminated in the
process by an adequate pairing technique. The different typical mode shapes of the test structure are
shown in Fig. 4.

5. Experimental procedure

The experimental modal basis has been identified on the tested specimen by using MIMO
measurements associated to a specific identification technique called “Simulated Mode
Appropriation” (Foltête and Piranda 2001). In classical MIMO measurements, the structure is
excited by several forces produced by shakers connected to the chosen excitation DOF’s, while the
responses are recorded by a set of accelerometers mounted on the selected observation DOF’s. The
main advantages of this technique are: the use of stationary random forces allowing to record and
average a large number of samples of the data, thus, minimizing the measurement noise; the control
of the force amplitudes; the reliability of the measured DOF’s (location and direction). Nevertheless,
it presents also some disadvantages: structural perturbations introduced by shakers and accelero-
meters; force distortions caused by misalignments of the shakers or some parasite vibrations of the
stingers connecting the shakers to the structure; the high number of recording channels.

In this study, the MIMO technique consists in mounting some accelerometers at the excitation

Fig. 3 Elastic and geometrical reference system for material modeling
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DOF’s and successively exciting the structure at the observation DOF’s with an impact hammer.
Once all measurements have been made, data are equivalent to those obtained by the classical
MIMO measurements previously described. The main disadvantages of this alternative technique are
inherent to the hammer excitation: uncertainties on the location and direction of the observation
DOF’s, no control of the excitation amplitude, small number of averages. On the other hand, it
presents some interesting advantages: low number of accelerometers, minimization of the structural
perturbation; the cost of the experiment and the time for its preparation; possibility of using a large
number of observation DOF’s; opportunity to apply MIMO identification techniques which are more
reliable in particular when the structure exhibits coupled modes.

The used identification theory is derived from the “normal mode testing” techniques which were
developed in the 1960’s. The main idea is to calculate from MIMO FRF’s the forces which would
lead to the optimal phase resonance at each eigenfrequency of the analyzed band. It presents two
important advantages: a phase resonance parameter allows a quasi-automatic selection of the modes
(playing the same role as the stabilization diagram) even for strongly coupled modes; the method
estimates the real eigenvalues and eigenvectors associated to the conservative associated system
even if the damping is non proportional.

Before carrying-out the experimental measurements, optimal placement of sensors procedure has

Fig. 4 Different mode shapes in vibrational behavior of the pultruded beam
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been performed, according to the technique described in section 3.1. Fig. 5 shows the results
obtained. 

Figs. 6 and 7 show the studied specimen and the experimental apparatus. Three lightweight
accelerometers are mounted on the profile and connected to a four-channel acquisition system. The first
channel is dedicated to the hammer force measurement. The studied frequency band is [0-1200 Hz]
with 3200 spectral lines. The “Simulated Mode Appropriation” technique led to the identification of
12 modes in this band.

6. Identification of elastic properties

The identification of stiffness properties of composite materials by typical model updating

Fig. 5 Optimal placement of sensors and excitation points on the free-free beam

Fig. 6 Scheme of the experimental set-up Fig. 7 Test structure and experimental apparatus
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methods in dynamics is relatively new. Some authors model the structure as global homogeneous,
identifying the laminate engineering constants - Ex, Ey, Gxy and vxy (Deobald and Gibson 1986,
Frederiksen 1994, Frederiksen 1998, Pedersen 1988, Bledzki et al. 1999). This is, in fact, a sort of
simplification of the problem and does not allow access to the layer engineering constants. On the
other hand, layer engineering constants can be directly identified. In this case, the constants would
be strongly nonlinear with respect to the eigenvectors and eigenvalues. Another approach consists in
the identification of stiffness constants derived from the constitutive equation which expresses the
resulting forces and moments as functions of extension and shear deformations and curvatures -
matrices A, B and D (Sol 1986, Cunha and Piranda 1999, Ip et al. 1998, Gagneja et al. 2001). 

More recently, new identification procedures have been proposed in order to improve the
precision and the robustness of the results. Cugnoni et al. 2007 and Matter et al. 2007 utilize a
measurement system with a contact-free excitation and a higher order composite plate/shell finite
element model, assuring a better quality of the numerical and experimental responses. Daghia et al.
2006 use a modified strategy of identification, where the influence of the parameters on the natural
frequencies is explicited, improving reliability and convergence of the estimation process. In this
work, a higher order theory is used to model the thick plate. Baere et al. 2007 examine a fabric-
reinforced composite material with a very small value of Poisson’s ratio. The accurateness of the in-
plane elastic properties is validated with static tensile tests. In addition to the in-plane properties,
Shi et al. 2004 present identification of transverse shear moduli based on Timoshenko beam theory.
In the same context, to facilitate the physical interpretation of the dynamic response, Lauwagie et

al. 2008 identify elastic properties from the beam shaped layered specimens. Finally, as opposed to
the traditional free boundary conditions, Lee and Kam 2006 propose identification of elastic
properties in laminated composite plates supported by elastic restraints at both the edges and centers
of the structure, which provides a large experimental data set.

In this work, the used model updating tool, named AESOP®-Analytical/Experimental Structural
Optimization Platform (AESOP 2005), allows a general and flexible procedure of identification
under several aspects (Fig. 8). AESOP interfaces with the external programs including finite
element codes MSC NastranTM and ANSYS®. Therefore, the used theory and the elastic constants to
be identified depend only on the laminated theories available in these programs. In this work, elastic
properties E1, E2 and G12 have been directly identified. It is considered that the flanges of the
pultruded profile posses the same elastic properties as the web.

AESOP is built on the MATLAB® environment. The purpose of AESOP is to solve general
optimization and finite element model updating problems and to offer the user a large variety of
algorithms, including both local (conjugate gradient, constrained leas squares) and global (design of
experiments, Monte Carlo simulation, genetic algorithms, neural networks, multiobjective
optimization) methods. Furthermore, AESOP is designed to drive external analysis codes and to
import the data necessary for evaluating a specified objective function. At the present time, AESOP
benefits from as extensive interface with MSC Nastran and sophisticated management tools are
provided to handle multiple solution sequences and superelement analyses (AESOP 2005). AESOP
offers a wide range of features allowing to understand, predict and improve the behavior of the
model, such as localization of dominant modeling errors, approximate reanalysis methods for model
behavior and robustness analysis. 

The main phases of the applied model updating procedure in AESOP are: 
(a) Numerical modeling of the test structure: use of available theory in the commercial FEM

codes. For plate modeling, a Kirchhoff-Love element type has been used - Nastran/CQUAD4 -
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Quadrilateral Plate Element. For beam modeling, a Timoshenko theory element type has been used -
Nastran/CBEAM - Beam Element;

(b) Computation of dynamic responses by solving eigenvalue problem; 
(c) Test preparation with the optimal placement of sensors and excitation points: as shown in

section 3.1; 
(d) Modal identification and importation of experimental data using an universal file: as described

in section 5. The universal file is formed by measured frequencies, mode shape amplitudes and
damping; 

Fig. 8 Flow diagram of the model updating procedure by AESOP program



494 Jesiel Cunha, Emmanuel Foltête and Noureddine Bouhaddi

(e) Linking between numerical and experimental models: model linking, as the name implies,
establishes the geometrical transformations between two models, in order to compare them. Linking
comprises two distinct transformations - one involving the difference in the global coordinate
systems of each model and the other involving the differences in meshes; 

(f) Correlation between the two sets of data by automatic matching of the modes: use of a MAC

matrix, where MAC indicates the Modal Assurance Criterion, defined between two modes yν and zμ
by

(18)

(g) Definition of the design variables (parameters to be updated/identified): possibility of choice
any parameter present on the numerical FEM model; 

(h) Definition of control parameters for optimization algorithm (inequality and lateral constraints,
cost function): as shown in section 6.1; 

(i) Choice of the results to explore during and after updating process: several tools are available -
evolution of errors, parameters, cost function, etc; 

(j) Setting of the control parameters for iterative algorithm (number of iterations, convergence
criterion, local or global optimization algorithm): as shown in section 6.1; 

(k) Analysis of results. 

6.1 Results for modeling with beam elements 

The elastic properties to be identified for modeling with beam elements are: E, G, ky and kz. As
explained in section 2.2, in reality the equivalent shear stiffness kGA will be identified. Some
important parameters used in the updating procedure are: interval of lateral constraints of parameters
p: E, G = [0.1;10]; kyGA, kzGA = [0.05; 2.5]; inequality constraints for each iteration: Δp ≤ 0.01; cost
function: frequencies and modes error (Eq. 14); automatic mode matching criteria: MAC = 0.70;
number of sensor points: 11 (4 in z direction and 7 in y direction); local optimization method:
Constrained Linear Least Squares; FE model: 200 elements of CBEAM - Nastran, resulting in 1413
DOF’s. The lateral constraints of the parameters were chosen simply on the basis that the limits
represent a large search space, where the physical sense remains. The choice of their initial values is
based on the currently practical values provided by designers and manufacturers.

In order to better understand the influence of each property on eigenfrequencies in the model
updating process, a Monte Carlo simulation has been performed. To obtain a set of parameters close
to the updated solution it was assumed that the behavior of the system could be described by a
uniform probability density function, which guarantees a convenient exploitation of the search
space. Latin hypercube sampling has been applied with a sample size of 400. Correlation
coefficients were the parameters used to indicate if variations of the eigenfrequencies are due to
design variables with which eigenfrequencies have a linear relation. They are mathematical
representations of clouds of points, indicating the normalized slope of the least square straight line.
The correlation coefficient between the parameter p and the frequency f is defined by

(19)

where σpf is the covariance between the parameter p and the frequency f and σp and σf are the
corresponding standard deviations. The values of the correlation coefficients range between-1 and 1.

MAC v μ,( )
yv
T zμ×( )

2

yv 2
2 zμ 2

2×
----------------------------=

rpf
σpf

σpσf

----------=



Characterization of elastic properties of pultruded profiles using model updating procedure 495

A value near zero indicates that there exists no correlation between the variables.
Thus, considering that the correlation coefficients can be used to express the sensitivity of the

eigenfrequencies with respect to the parameters, Fig. 9 shows that the lower frequencies are very
sensitive to the Young’s modulus, while the higher frequencies are more sensitive to the shear
modulus. Therefore, the modal basis to be used in the model updating procedure should necessary
consider lower and higher frequencies. 

The chosen experimental basis has 6 bending modes of “beam type”, i.e., when the local
deformation effects in web and flanges become significant, the mode is discarded. These effects are
particularly present for the bending modes about z axis. Fig. 10 and Tables 1 and 2 show that the
results of the updating procedure are satisfactory. A good convergence of the cost function and
elastic properties is observed. The final MAC values are close to 100% and the frequency errors are
almost zero. The sensitivities of the eigenfrequencies and eigenvectors with respect to the elastic
properties are globally balanced, with a more significant value for the Young’s modulus. Instabilities
in the evolution of sensitivities can be explained by the instabilities present in the pairing process.
The large number of iterations required up to convergence can also be explained by this fact and by
the intentional choice of a low increment of the solution in optimization procedure. 

A greater experimental modal basis would allow a more confident identification, validating the
updated model. In this case, only bending modes about y axis would be used, because higher
bending modes about z axis present pronounced local effects.

6.2 Results for modeling with plate elements 

The elastic properties to be identified for modeling with plate elements are: E1, E2 and G12.
Important parameters used in the updating procedure are: lateral constraints: p = E1, E2, G12 =
[0.1;10]; inequality constraints for each iteration: Δp ≤ 0.1; cost function: frequencies and modes
error (Eq. 14); automatic mode matching criteria: MAC = 0.70; number of sensor points: 11 (4 in z
direction and 7 in y direction); local optimization method: Constrained Linear Least Squares; FE
model: 4400 elements of CQUAD4 - Nastran, resulting in 27738 DOF’s.

Fig. 9 Correlation between elastic properties and frequencies
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Fig. 10 Evolution of model updating parameters versus iterations - beam modeling

Table 1 Identified elastic properties using beam modeling

Property Initial values Updated values

E (N/m2) 4 × 1010 2.988 × 1010

G (N/m2) 5 × 109 2.901 × 109

kyGA (N) 4.30 × 106 3.59 × 106

kzGA (N) 4.30 × 106 6.54 × 105

Table 2 Frequency errors for beam modeling

Mode shape
 (nb of nodes)

Measured
frequency (Hz)

Model
frequency (Hz)

Model error
(%)

Updated
frequency (Hz)

Error after
updating (%)

1 bending/z(2) 52 63 22 53.63 3.13

2 bending/z(3) 138 172 24 137.83 0.12

3 bending/y(2) 198 225 14 196.30 0.86

4 bending/z(4) 244 329 35 246.29 0.94

5 bending/y(3) 467 523 12 462.55 0.95

6 bending/y(5) 1050 1183 13 1063.36 1.27
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Fig. 11 Evolution of model updating parameters versus iterations - plate modeling

Table 3 Identified elastic properties using plate modeling

Property Initial values Updated values

E1 (N/m2) 5 × 1010 2.860 × 1010

E2 (N/m2) 2 × 1010 1.105 × 1010

G12 (N/m2) 4 × 109 6.105 × 109

Table 4 Frequency errors for plate modeling

Mode shape
(nb of nodes)

Measured
frequency (Hz)

Model
frequency (Hz)

Model error
(%)

Updated
frequency (Hz)

Error after
updating (%)

1 bending/z(2) 52 70 35 53 1.92

2 bending/z(3) 138 182 32 141 2.17

3 bending/y(2) 198 237 20 192 3.03

4 bending/z(4) 244 304 25 246 0.82

5 bending/z(5) 326 380 17 323 0.80

6 bending/z(6) 383 428 12 380 0.92

7 bending/z(7) 435 474 9 434 0.23

8 bending/y(3) 467 508 9 462 1.07

9 bending/z(8) 486 513 6 487 0.21

10 bending/z(9) 533 573 8 535 0.38

11 bending/z(10) 590 631 7 593 0.51

12 bending/z(11) 644 699 9 653 1.40
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The used experimental basis has the first 12 bending modes. Differently from the beam modeling,
all bending modes (about y and z axis) will be used to constitute the modal basis, because plate
modeling can reproduce local deformation effects. Fig. 11 and Tables 3 and 4 show that the results
of the updating procedure are very satisfactory. A good convergence of the cost function and elastic
properties is noticed. MAC’s are values close to 100% and the frequency errors are between 0 and
3%. Elastic properties sensitivities are balanced. As explained previously, instabilities in the
evolution of the sensitivities are due to the variations in the pairing of modes.

7. Conclusions

The evolution of the composite material applications is largely dependent, among other aspects,
on the accurate knowledge of the phenomena governing their mechanical behavior. In this sense,
this study contributes to develop standard test methods and design recommendations to the overall
characterization of the mechanical behavior of pultruded framed structures.

The employed model updating technique showed to be very interesting for identification of elastic
properties of pultruded profiles. Obtained results for a real structure show the effectiveness of the
sensitivity method. For all procedures, different starting points have been chosen (initial numerical
models). For all the cases, a same final solution was observed (Cunha 2005). 

Identification of the elastic properties using plate modeling allows us to consider a larger modal
basis, which is important in the model updating process. The numerical modeling of the structure by
plate and beam elements was important to understand the complex vibrational behavior of the
pultruded profile. In reality, pultruded beams present a mechanical behavior of three-dimensional
nature. For beam modeling, local deformation effects present on the mode shapes are not
reproduced, reducing the modal basis to be considered.

It is important to understand that in a model updating process, the variables to be identified
assume the necessary values to obtain equivalent responses for experimental and numerical models.
They act as parameters to adjust the mathematical model. Thus, a comparison between identified
values obtained from the two modeling strategies (beam and plate) is not obvious, because
mathematical requirements can prevail over the physical sense of the problem. For this kind of
problem, the assertion “identified parameters” must be understood in a large sense. 

The identification technique from dynamic tests is very interesting, because it can be applied to a
wide range of structures. This procedure of a non-destructive type has a relatively simple
implementation. Only three accelerometers have been used in the experimental setup. The used
approach is well adapted to the anisotropic character of the composite materials. As compared to
other identification techniques, the method has the advantage of considerably simplify the tests since
several different properties are identified simultaneously. The computational time used in the
algorithm of identification was on the order of 30 minutes for plate modeling. Another advantage
lies in the fact that the identification procedure can be applied directly to the structure (plates,
profiles, tubes or more complex geometrical shapes). 

The consideration of different practical aspects of the model updating technique allowed an
efficient approach of the problem. Some details of the procedure have been intentionally omitted.
The main objective of this work has been to show the feasibility and efficiency of the proposed
methodology. 
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