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Abstract. A mathematical model for the nonlinear dynamics of a rotating beam with flexible root attached
to a rotating hub with elastic foundation is developed. The model is developed based on the large planar and
flexural deformation theory and the potential energy method to account for axial shortening due to bending
deformation. In addition the exact nonlinear curvature is used in the system potential energy. The Lagrangian
dynamics and the assumed mode method is used to derive the nonlinear coupled equations of motion hub
rotation, beam tip deflection and hub horizontal and vertical displacements. The derived nonlinear model is
simulated numerically and the results are presented and discussed for the effect of root flexibility, hub
stiffness, torque type, torque period and excitation frequency and amplitude on the dynamic behavior of the
rotating beam-hub and on its stability.
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1. Introduction

Mathematical modeling and dynamic analysis of rotating elastic structures has been the subject for

many researchers and much research has been devoted to study the vibrations and dynamic analysis of

such structures. A common particular interest of this engineering field is to understand its vibrational

and dynamical behavior to help engineers in design, control, precise positioning, and performance

evaluation in many applications such as: robotic manipulators, helicopter blades, turbomachinery

blades and space applications.

The effect of attached masses and inertias, inclination angles, hub radius and beam length on natural

frequencies and mode shapes have been studied thoroughly and a lot of investigations can be found in

the open literature, also the problem of mathematical modeling and dynamic analysis of rotating beam-

hub systems has attracted many researchers.

(Baruh and Tadikonda 1989) reported issues associated with modeling and control of robots with

elastic arms. They showed that the centrifugal stiffening effect is the dominating factor for the

system behavior; also they studied the effects of flexibility on the response and on the closed-loop

control.
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(Yigit et al. 1990) presented a model for the dynamics of a radially rotating beam with impact to

predict the rigid body motion and the elastic motion before and after impact. The effect of axial

shortening resulted from bending deformation and stiffening of the beam was considered in the

governing equations. The presented model yielded nonlinear-coupled set of ordinary differential

equations for the rigid body rotation and elastic deformation.

(Haering et al. 1994) developed a flexible body formulation called augmented imbedded

geometric constraint for beam structures undergoing large overall motion. The formulation is

problem independent and it is applicable to beam problems where the dominant stiffness effects are

not known beforehand. (Tadikonda and Chang 1995) studied the effect of interbody forces on the

flexible body dynamics in a multi-body chain undergoing large overall motions. (El-Absy and

Shabana 1997) studied the effect of geometric stiffness forces on the stability of elastic and rigid

body modes. The effect of longitudinal deformation due to bending is introduced to the dynamic

equations using the principle of the virtual work method.

(Al-Bedoor and Hamdan 2001) developed a geometrically nonlinear model for a rotating flexible

arm undergoing large planar flexural deformations. The effect of axial shortening due to bending

deformation is included in the model. The developed model is simulated numerically and the effect

of flexible arm length on the dynamic response is presented.

(Al-Qaisia 2004) extended the analysis (Al-Qaisia 2002), to study the nonlinear dynamic behavior

of a rotating cantilever beam clamped with an attachment angle. Results were obtained and

presented for the effect of: attachment angle; rotational speed; torque type; torque period; attached

inertia element; and beam length on the dynamic behavior of the rotating beam–mass–hub.

(Al-Bedoor and Al-Qaisia 2002) studied the steady-state bending vibration and stability of a

rotating blade, excited by shaft torsional vibrations using the harmonic balance method. Results

were obtained analytically for small amplitude torsional excitations and compared with the

numerical solutions. Also, they (Al-Bedoor and Al-Qaisia 2005), extended the analysis with no

restrictions, neither on the strength of the torsional vibration nor on the torsional vibration excitation

frequency to study the stability of bending vibration due to torsional excitations. The generalized

method of harmonic balance is employed in finding the steady-state solutions in which the

considered assumed solution contains integers and sub frequencies. The coefficient matrix

eigenvalues of the steady-state solution are found for stability purposes. Stable and unstable regions

as function of operational and design parameters are found and presented in map format. Numerical

integration is used to check the predicted harmonic balance solution.

Recently, (Al-Qaisia and Al-Bedoor 2005) addressed the problem of rotating beams stiffening and

developed different methods/models for accounting the rotating beam axial shortening due to

bending deformations. In their study, they reported thorough analysis for the natural frequencies and

fast Fourier Transform (FFT) of the system response and compared them with those obtained from

four different models; (1) the potential energy model (PM), (2) kinetic energy model (KM), (3)

kinetic and potential energy model (KPM), (4) Consistent model (CM) which does not account for

the axial shortening. The potential energy model accounts for the axial shortening in the form of

added elastic potential energy that results from the virtual work done by the centrifugal force, and

the kinetic energy model includes the shortening effect in the velocity vector and the corresponding

kinetic energy and finally the kinetic and potential energy model combines both approaches. Results

of analysis showed that the approach that handles both the effect of rotating speed and the effect of

vibration amplitude for all modes correctly is the potential energy model (PM).

The objective of this work is to study the dynamic response of a rotating beam with flexible root
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attached to hub with elastic foundation using the potential energy model (PM) presented in (Al-

Qaisia and Al-Bedoor 2005) to account for the axial shortening due to bending deformation. The

Lagrangian dynamics in conjunction with the assumed mode method is used in the derivation of

governing equations of the considered system for the four degrees of freedom; hub rotation θ, beam

deflection q and hub horizontal and vertical displacements x and y. The response of the system was

simulated numerically for different values of physical parameters and different torque profiles, and

then the mathematical model is reduced to study effect of base excitation on the beam deflection

and hub angular position and on their stabilities.

2. Equations of motion

2.1 System description

A schematic of the rotating beam-hub under consideration and the coordinate systems being used are

shown in Fig. 1a XYZ coordinates are the inertial system, which is fixed in space. xyz frame rotates

with the hub and its origin is fixed at the root of the beam. The hub is assumed to be flexible with

stiffnesses Kx and Ky. Also, the hub has a radius RH and rotating about the global Z-axis. The beam is

attached to the hub through a rotational spring with constant Kt. The beam is considered to be uniform

of constant length l, cross-sectional area A, flexural rigidity EI and mass per unit length ρ. The

thickness of the beam is assumed to be small compared to its length, i.e., slender, so that the effects of

shear deformation and rotary inertia can be neglected. Such slender beam systems may undergo large

planar flexural vibration without a significant axial deformation and therefore are assumed to be

inextensible and the natural frequencies of the axial motion are much higher than those of the bending

motion. The effect of axial shortening due to the beam transverse deformation, as shown in Fig. 1b, is

considered as an added elastic potential energy that results from the virtual work done by the

centrifugal force, as proposed by (Al-Qaisia and Al-Bedoor 2005). In addition, the exact nonlinear

curvature is susbstituted in the system potential energy.

Fig. 1 (a) A Schematic of the flexible beam-hub and elastic foundation and (b) The deformed inextensible
beam and the axial shortening u due to bending deformation
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2.2 Kinetic and potential energies

The global position vector of an arbitrary point P, in the XY inertial coordinates, Fig. 1, on the

beam can be written as

(1)

where rp is the position vector of the point P in the rotating body coordinate system xy, A[(v́ )] is

the rotational transformation matrix due to the flexibility of the rotational spring at the beam root,

A[(θ)] is the rotational transformation matrix from the body coordinate xy system to the inertial

coordinates XY, θ is the hub rotation, RH is the hub radius, X and Y are coordinates of the origin of

rotating hub in the inertial coordinate XY.

The rotational transformation matrices, for the planar motion corresponding to the hub rotation

A[(θ)] and beam root flexibility A[(v́ )], can be expressed respectively as

(2)

(3)

where v´ is the slope of the beam transverse deflection at the root. It worth mentioning that the

transformation matrix A[(v́ )]. Based on analysis conducted in this regard and for the same physical

parameter of the beam-hub system considered in (Al-Qaisia 2004), and regardless the value of Kt ,

the calculated beam root flexibility transformation matrix A[(v́ )] is of the order

(4)

Consequently, and for all forthcoming formulation, the transformation matrix A[(v´ )] will not be

considered in the mathematical modeling and the derivation of the governing equations of the

system. Because it will have no effect neither on the qualitative nor on the quantitative dynamical

behavior of the beam-hub system.

To develop the kinetic energy expression the velocity vector  can be represented as follows

   (5)

where Aθ(θ)=[dA/dθ], rp = si + vj and .

Now the kinetic energy of the beam-mass-hub system under consideration can be expressed as

                          (6)

where mb = ρl is the constant mass of the beam, ς =s/l is dimensionless position of the material

point, IH is the mass moment of inertia of the hub  and mH is the mass of the hub.

Upon substituting for rp, , [A(θ )] and [Aθ (θ )]into Eq. (6), the kinetic energy of the considered
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(7)

where  is given by

(8)

The system potential energy is constituted from; the elastic beam strain energy VE, the potential

energies stored in the rotational springs VS at the beam root Kt and the two linear springs attached to

the hub in the vertical and horizontal directions Kx and Ky, and the potential energy VA of the axial

shortening u “see Fig. 1b” due to transverse deformation and the generated inertial force.

The elastic beam nonlinear strain energy for the beam due to nonlinear curvature is given by

(9)

where λ = 1/l, and v is the beam bending deflection

The elastic potential energy stored in the springs is given by

(10)

The inertial force on the material point P of the beam results from the rotational motion can be

expressed in the form

(11)

Upon evaluating the integral given in Eq. (11), the inertial force is given by

(12)

The virtual work that results from the axial shortening u under the effect of the inertial forces of Eq.

(12) can be called the axial shortening potential energy VA and can be written as

(13)

The axial shortening u due to the flexural bending v of the beam can be derived by imposing the

inextensibility condition which has been used in previous studies (Al-Bedoor and Hamdan 2001, Al-

Qaisia 2004) allows one to relate, through a consistent geometric consideration, axial displacement

(shortening) u due to the flexural bending v

(14)

Substituting the inertial force Fp (12) and the axial shortening u (14) into the integral of Eq. (13) yields

(15)
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Now the system potential energy becomes

PE = VE + V3 + VA (16)

2.3. Assumed mode method

Using Eqs. (17) and (18) for the kinetic and potential energies respectively, and as one can see the

system energies is a function of the transverse deflection only, v and , the Lagrangian of the

system L can be obtained as

L = KE – PE (17)

The Lagrangian of the system L (L = KE – PE) can be discretized by using the assumed mode

method and substituting   in the system Lagrangian.

where φ i (ζ ) is the normalized, self-similar assumed mode shape of the beam-mass and q(t) is an

unknown time modulation of the assumed deflection mode φ i (ζ ). In the present work the beam-

mass mode shape φ i (ζ ) is assumed to be that of the non-rotating linear beam which can be written

in the form

(18)

where A, B, C and D are arbitrary constants to be determined by using the following four boundary

conditions

 and 

where St = Ktl/EI.

2.4. Equations of motion

Using the expression of the kinetic energy, potential energies of the beam-hub system and the

assumed mode method the Lagrangian L, can be written in the form
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(20)

Using the virtual work method, the external torque T applied at the hub can be represented in the

form:

(21)

Applying Euler-Lagrangian method, the system equations of motion are obtained for θ, q, x and y as

follows

(22)
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(23)

(24)

(25)

Eqs. (22-25) represent the system mathematical model, which consists of four nonlinear-coupled

differential equation for the four degrees of freedom. The first equation represents the rigid body

motion θ, the second represents the elastic deflection of the beam q and the third and fourth

equations represent the horizontal and vertical motion of the hub x and y, respectively.

By examining the equations of motions of the flexible beam-hub system, one can note the presence

of nonlinear terms due to; the curvature q3, inertia  and , coriolis acceleration q3  and other

terms. These terms will have a dominant role in the dynamic behavior of the system due to the

interaction between the degrees of freedom of the system, as one can see from the simulation results

of the dynamic response of the beam-hub in the next section.

3. Results and discussion

The nonlinear response of the rotating beam–hub system, was calculated numerically by solving

the coupled nonlinear differential equations of motion (22-25), for various values of physical

parameters Κ t, Κx, Ky and external torque T, using a variable step predictor–corrector algorithm

“MATLAB software”. The system parameters βi, i=1,.......,15 given in Eq. (20) are evaluated

numerically.

The physical properties of the beam and hub were chosen to be the same properties considered in

(Al-Qaisia 2003, Al-Qaisia 2004) which are given in Table 1.

To calculate the nonlinear response of the rotating beam–hub system, the inverse dynamics was used

to design an open-loop maneuver, which is similar to the procedure used in (Al-Qaisia 2004), which

accounts for the rigid body rotation, such that, θ (0) = 0 and θ (τ ) = θτ , where τ is the time of the

maneuver and θτ is the target position. Here, also and for the sake of comparison, two torque profiles

are used, linear and sinusoidal, and they are given, respectively, by Eqs. (26) and (27)
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Table 1 Beam-Hub properties

Property Value

Beam length,  L 2.0 m

Beam flexural rigidity, EI 756.65 N m2

Beam mass per unit length, ρ 4.015 kg/m

Hub radius, RH 0.2 m

Hub mass, MΗ 50.0 kg
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(26)

(27)

where Jtot is the total mass moment of inertia of the system. Figs. (2-4) shows the two types of

torque profiles that are used to rotate the system an angle of θτ = 300(π / 6), τ = 2s and the

corresponding angular positions and velocities. The nonlinear dynamic behavior of the beam-hub

system was first simulated for relatively high values of Kt = Kx = Ky = 106 and for two types of

torque profiles. For the linear torque, the beam tip deflection of the first mode is shown in Fig. 5,

the angular position of the hub is shown in Fig. 6 and the corresponding deflections of the hub in x

and y directions are shown in Figs. 7 and 8, respectively. Same results were obtained for the system

but for a sinusoidal torque and presented in Figs. 9-12. It is clear that for the sinusoidal torque, the

nonlinear response of the system is smooth and the hub reaches its prescribed target position

θτ = 300 (π/6), on the other hand for the linear torque, the hub reaches the target position but with

some damping effects and this due to the presence of nonlinear interaction between the degrees of

freedom of the system, (θ, q, x and y), and consequently some of the energy fed to the system is

transferred from one degree to another.
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Fig. 2 Torque profiles used to rotate the system
30o (π/6) in 2 sec
─ linear torque profile, ─ ·─ sinusoidal
torque profile

Fig. 3 Angular velocities correspondening to ─
linear and ─ · ─ sinusoidal torque profiles
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The nonlinear response of the beam-hub system is studied and simulations results were obtained

for different values of Kt , Kx, Ky, torque profiles, maneuver time τ and for different modes of the

beam.

In Figs. 13 and 14, the hub angular position θ and x deflection are shown respectively for K t = 107,

Kx = 103, Ky = 103 and linear torque profile with τ = 2s. The response exhibits a beating phenomenon

in both Figures and this due to the fact that, the frequency of the input torque, i.e. (1/τ), is very

Fig. 4 Angular positions correspondening to ─ 

linear and ─ · ─ sinusoidal torque profiles
Fig. 5 Beam tip deflection for Kt = Kx = Ky = 106

N/m and linear torque profile, θ τ = π /6
and τ = 2 sec

Fig. 6 Hub angular position for Kt = Kx = Ky =
106 N/m and linear torque profile and θ τ =
π /6 and τ = 2 sec

Fig. 7 Horizontal Hub displacement x for Kt = Kx =
Ky = 106 N/m and linear torque profile and θτ
= π /6 and τ = 2 τ = 2 sec
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close to the first natural frequency of the system.

The system is then simulated but for Kt = 106, Kx = 104 and Ky = 103, as shown in Fig. 15, the hub

reaches its target position at the end of maneuver period but it continue to increase by time. Other

results, but not shown, for the hub deflections and beam tip deflation indicate that this case is

Fig. 8 Vertical Hub displacement y for Kt = Kx =
Ky = 106 N/m and linear torque profile and
θτ = π /6 and τ = 2 τ = 2 sec

Fig. 9  Beam tip deflection for Kt = Kx = Ky = 106 N/
m  and sinusoidal torque profile, θτ = π /6 and
τ = 2 τ = 2 sec

Fig. 10 Hub angular position for Kt = Kx = Ky =
106 N/m and sinusoidal torque profile
and θτ = π /6 and τ = 2 τ = 2 sec

Fig. 11 Horizontal Hub displacement x for Kt = Kx

= Ky = 106 N/m and sinusoidal torque profile
and θτ = π /6 and τ = 2 τ = 2 sec



438 A. A. Al-Qaisia

resonance and the system becomes unstable due to the high amplitude of the hub deflections and

due to the build up in the angular position magnitude.

Other simulations but for different values Kt , Kx, Ky, are shown in Figs. 16 and 17, in which the

hub deflection in the x direction show a beating phenomenon, which is similar to the case presented

previously in Figs. 13 and 14, at which the amplitude of the of motion builds up and then diminishes

in a regular pattern.

Fig. 12 Vertical Hub displacement y for Kt = Kx =
Ky = 106 N/m and sinusoidal torque profile
and θτ = π /6 and τ = 2 τ = 2 sec

Fig. 13 Hub angular position for Kt =107, Kx = Ky

= 103 N/m and linear torque profile

Fig. 14 Horizontal Hub deflection x for Kt =107, Kx

= Ky = 103 N/m and linear torque profile
Fig. 15 Hub angular position for Kt =106, Kx =104,

Ky = 103 N/m and linear torque profile
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Results were obtained also for law values of stiffness, Kt =104, Kx = 103 and Ky = 102 , and presented in

Figs 18-20, for the first three modes of the beam. Here the amplitude of the beam non-dimensional tip

deflection of the first mode is relatively large when compared to those of the second and third modes.

This indicate that the first mode of vibration is more important than the higher modes, because when

exciting the system with a frequency close to the fundamental one, the amplitude of the first mode is

higher and more dangerous than the other ones.

Fig. 16 Horizontal hub deflcetion for Kt =106, Kx

=105, Ky = 104 N/m and linear torque profile

Fig. 17 Horizontal hub deflcetion for Kt = Kx = Ky =
105 N/m and linear torque profile

Fig. 18  Beam tip deflcetion for Kt =104, Kx =102,
Ky = 102 N/m and linear torque profile (first
mode)

Fig. 19 Beam tip deflcetion for Kt =104 , Kx =102 ,
Ky = 102 N/m and linear torque profile (second
mode)
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3.1 Reduced model

In ceratin situations, the system under consideration may get excited from its base, i.e. from the

coordinated x and y. And this is a practical case when, for example, the system is excited from an

unbalance force due to eccentricity (R) in the driving motor which rotates at a speed (Ω). In such

cases, the order of the system can be reduced and one can assume that

x = R cos(Ωt) (28)

y = R sin(Ωt) (29)

where R and Ω are the excitation amplitude and frequency, respectively.

Upon substituting Eqs. (28) and (29) into the first two equations of the mathematical model, Eqs. (30)

and (31), one obtains

(30)

(31)

Eqs. (30) and (31), represent a reduced order mathamtical model of the system under consideration. In

order to select the right excitation frequencies, the linear natural frequencies of the hub-beam can be

written in the form

(32)

The values of the natural frequencies calculated for some values of Kt , of the beam-hub and for the

first three modes are presented in Table 2.
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Fig. 20  Beam tip deflcetion for Kt =104 , Kx =102 , Ky = 102 N/m and linear torque profile (third mode)
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To have and idea about the system response under excitation from the base, results were obtained

for different excitation frequencies and excitation amplitudes and for different modes of vibration. 

In Fig. 21, the FFT of the beam tip deflection of the first mode is shown for Kt = 104 , Ω = 30 rad/

sec, R = 0.1. The spectrum show frequencies with large amplitudes not only at the excitation

frequencies but also at multiples of the excitation frequency, and this due to the nonlinearities present

in the system which can excite the sub and/or super harmonics of different orders.

The FFT of the beam tip deflections of the second mode is shown in Figs. 22 and 23 for the same

parameters but with different excitation frequencies Ω = 35 rad/sec , and Ω = 70 rad/sec respectively.

The spectrum in Fig. 22 has, relatively, two peaks only at Ω = 40,70. While the results obtained in

Fig. 23 show a spectrum that covers the whole frequency range. i.e. most of the frequencies and

thier sub and super harmonics are excited. A typical spectrum is obtained for the third mode, Fig.

24, i.e. one peak with high amplitude at the excitation freqeuncy Ω = 196 rad/sec , this indicate that

the natural freqeuncies calculated from Eq. (32) are approximate ones.

The natural frequencies of the beam-hub system depends on physical properits of the beam EI, beam

mass per unit length ρ, Hub radius RH, Hub mass MH and torsional spring constant St. And this indicate

that the system may lose its stabilty for ceratain combination of physical parameters and this can be

proved by calculating the equiliprim point of the beam-hub system and evaluating the Jacobian of the

Table 2 Beam-Hub natural frequencies

k t ωn1 ωn2 ωn3

107 35.22 77.08 212.47

106 35.19 77.00 212.25

106 35.19 77.00 212.25

105 34.99 76.22 210.17

104 33.05 70.28 196.27

Fig. 21 Beam tip deflection spectrum (first mode)
for R = 0.1, Ω = 30 rad/sec and Kt = 104

Fig. 22 Beam tip deflection spectrum (second mode)
for R = 0.1, Ω = 35 rad/sec and Kt = 104
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system., which can be obtained by firstly writting the system Eqs. (30 and 31) in a matrix form

(33)

where x1 = θ, , x3 = q and . For simplicity, the system equations can be represented in

the following matrix form

(34)

where M is the coefficeint matrix and  is the sate space vector whicg contains   and .

The equilibrium points of the system can be calculated by setting  and solving for

x1, x2, x3 and x4, such thats

x2 = 0

x4 = 0

(35)

It worth mentioning here that x1 doesnot appear in Eq. (33), because the degree of freedom θ

doesnot appear explicitly in system Eqs. (22-25), and consequently the solutions obtained for the

singular points (x2, x3, x4) are valid for any value of x1.

The jacobian of the system can be written in the form
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Fig. 23 Beam tip deflection spectrum (second mode)
for R = 0.1, Ω = 70 rad/sec and Kt = 104

Fig. 24 Beam tip deflection spectrum (third mode)
for R = 0.05, Ω = 196 rad/sec and Kt = 104
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(36)

The stabilty of the system near the equilibrium points can be examined by evaluating the

eigenvalues of the Jacobian matrix J.

For different values of St, the eigen values of the Jacobian matrix were calculated and all them were

a pair of complex conjugate and this indicate that the sytem might undegor a Hopf Bifurcation when

the eigenvalues crosses the imaginary axis and their real parts change sign, i.e positive values. As an

example, for Kt = 106 the values of the singular points and the corresponding eigenvalues are given in

the Table 3.

As indicated previously in the results obtained in Fig. 15, the angular system loses its stability,

and the angular position continue to increase even after the end of the maneuver. This indicate that

further analysis is needed to study the extact nonlinear natural frequencies and stability conditions

of the system, which is beyond the scope of the present work.

4. Conclusions

The nonlinear dynamic model and behavior of a rotating beam with flexible root attached to a

rotating hub with elastic foundation is developed and studied. The coupled nonlinear equations of

motion were obtained using the Lagrangian dynamics and the assumed mode method. The

numerical simulations have shown that the root flexibility and hub stiffness have a noticeable effect

on beam tip deflection, hub angular position and hub horizontal and vertical displacements.

Results of the numerical simulations have shown some damping effect and hub may not reach its

prescribed angular position due to the nonlinear interaction and energy transfer between different

degrees of freedom. It can be concluded that the stiffness of the hub has a critical value below

which the hub has a destabilizing effect of the dynamic behavior of the system. In addition and in

light of the presented results and analysis, and as indicated by the numerical simulations, the beam-

hub system may loses its stability when; 1) the frequency of the input torque and/or the excitation

frequency is close to one of the beam-hub natural frequencies, or when the system operates under

certain conditions and/or with a combination physical parameters. To have a clear and global picture

on the qualitative analysis of the dynamical behavior stability, further investigations are highly

recommended.
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Table 3 Singular points and eigenvalues of the system Jacobian

No. Singular Point
Eigenvalues

λ 1 λ 2 λ 3 λ 4

1 -1. 22827 (0,25.3588) (0,42.5217) (0,0) (0,0)

2 -2.17512 (0,-25.3588) (0,-42.5217) (0,0) (0,0)
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