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Abstract. The Integrated Force Method (IFM) has been developed in recent years for the analysis of
civil, mechanical and aerospace engineering structures. In this method all independent or internal forces
are treated as unknown variables which are calculated by simultaneously imposing equations of
equilibrium and compatibility conditions. The solution by IFM needs the computation of element
equilibrium and flexibility matrices from the assumed displacement, stress-resultant fields and material
properties. This paper presents a general purpose code for the automatic generation of element equilibrium
and flexibility matrices for plate bending elements using the Integrated Force Method. Kirchhoff and the
Mindlin-Reissner plate theories have been employed in the code. Paper illustrates development of element
equilibrium and flexibility matrices for the Mindlin-Reissner theory based four node quadrilateral plate
bending element using the Integrated Force Method. 

Keywords: displacement fields; stress-resultant fields; equilibrium matrix; flexibility matrix; Integrated
Force Method

1. Introduction

The Displacement method of analysis has drawn undivided attention by researchers around the

world during the past three to four decades. During the same period, the once popular force method

met with its demise due to limitation of redundant analysis as its base. A new novel matrix

formulation of the classical force method termed “Integrated Force Method (IFM)” has been
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developed for analyzing civil, mechanical and aerospace engineering structures (Patnaik 1973). The

IFM is independent of redundants and the basis determinate structure of the classical force method.

Variational formulation for IFM has been established (Patnaik 1986). The application of the IFM to

several problems of structural analysis are reported in references (Patnaik et al. 1996, Krishnam et

al. 2000).

In the finite element method of analysis extensive research efforts and time are spent in modeling

the behavior of the elements and later deriving the matrices which represent their characteristic

behavior. The various matrices are formed with interpolation functions for displacement and

sometimes force distribution within or on the boundary of the element. Later on algebraic

manipulations, including differentiation and integration, are performed on these matrices describing

the characteristics of the element stiffness, flexibility and equilibrium etc. As the number of degrees

of freedom of the element increases, the algebraic manipulations become huge and intractable.

Therefore automatic generation of these matrices have been attempted by several researchers.

Gunderson et al. (1971) developed Element Stiffness Matrix Generator (ESMG) for 2D and 3D

problems. Luff et al. (1971) developed a software for automatic generation of finite element

matrices. Cecchi et al. (1977) developed a program INTER which generates symbolic closed form

expressions for stiffness matrix and could also produce equivalent Fortran statements. Korncoff et

al. (1979) developed code for symbolic generation of the finite element stiffness matrices. Noor et

al. (1979) summarized the status and applications of computerized symbolic manipulations to

structural mechanics problems giving importance to generation of characteristic arrays of finite

elements and evaluation of effective stiffness and mass coefficients of continuum models. Hoa et al.

(1980), have developed a computer program for automatic generation of stiffness and mass matrices

required in finite element analysis. The scope of symbolic manipulations(computer algebra) and

their applications are discussed in the references (Foster et al. 1989, Beltzer 1990). Chang et al.

(1990) have presented a symbolic manipulation procedure leading to the analytical integration of a

stiffness matrix of hybrid or mixed elements. They used symbolic manipulation package MYCSYMA

for the purpose. Closed form of stiffness matrices for a four node quadrilateral element and

commonly used hybrid finite elements are given in references (Griffiths 1994, Lee et al. 1998).

Computer algebra has been applied to classical problems in plate theory in the reference (Mbakogu

et al. 1999). A symbolic manipulation package MACSYMA is used to generate shape functions of

finite elements (Chee et al. 2000). A review article on symbolic computations in structural

engineering (Pavlovic 2003) explains background of computer algebra and its applications to

structural engineering particularly in the conversion of quasi-analytical techniques to truly closed

form solutions and to finite elements.

Analogous to automatic generation of stiffness matrices in the displacement based finite element

method as cited in the above para, the Integrated Force Method is also in need of the automatic

generation of element equilibrium and flexibility matrices, and compatibility conditions for

analyzing civil, mechanical and aerospace engineering structures. In this direction, Nagabhushanam,

et al. (1990), developed a general purpose program to generate compatibility matrix for the

Integrated Force Method . Automatic generation of sparse and banded compatibility matrix using

the Integrated Force Method is presented by Nagabhushanam et al. (1991). A special purpose

symbolic processor is developed by Nagabhushanam et al. (1992) in Fortran with built-in facilities

to perform most of the general symbolic manipulations needed for the generations element stiffness

and flexibility matrices. 

In this paper, a fully automated and independent general purpose code to generate the element
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equilibrium and flexibility matrices for the plate bending element is presented. The Kirchhoff and

the Mindlin-Reissner plate theories are considered in the code. Code uses the exact integration if the

geometry of the plate is square or rectangular in shape and numerical integration for triangular and

quadrilateral shapes. Use of the code is illustrated by developing element equilibrium and flexibility

matrices for the Mindlin-Reissner theory based 4-node quadrilateral plate bending element. For

completeness, brief basic theory of the IFM is given in the next section.

2. Basic Theory of IFM

In the Integrated Force Method of analysis, a structure idealized by finite elements is designated

as “structure (n,m)”, where n and m are force and displacement degrees of freedom of the discreet

model, respectively. The ‘structure (n,m)’ has m equilibrium equations (EE) and r = (n − m)

compatibility conditions (CC).

The equilibrium equation (EE) represents the vectorial summation of the internal forces {F} to the

external loads {P} at the nodes of the finite element discretization. It can be written in symbolized

matrix notation as

Equilibrium Equations (EE)

[B] {F} = {P}   (1)

where

[B] = global equilibrium matrix (m × n)

{F} = vector of internal forces of the structure (n × 1)

{P} = vector of external loads on the structure (m × 1)

The compatibility conditions (CC) are constraints on strains, and for finite element models they

are also constraints on member deformations.

In IFM St. Venant’s approach has been extended for discrete mechanics to develop the

compatibility conditions. Development of CC is briefly explained below

The Deformation-Displacement Relationship (DDR) for discrete mechanics is equivalent to the

strain-displacement relationship in elasticity. The DDR for discrete analysis was obtained during the

development of the variational energy formulation for the IFM.

According to work energy-conservation theorem, the internal energy (IE) stored in the structure is

equal to the work done by the external load (WD), that is

I E = W D

 (2)

where {X} represents nodal displacements and {β} represents member deformations. Eq. (2) can be

rewritten by eliminating the load {P} in favor of forces {F}, by using Eq. (1) to obtain the

following relation

 

 (3)

Eq. (3) can be simplified as

1

2
--- F{ }T

β{ } 1

2
--- P{ }T

X{ }=

1

2
--- F{ }T

B[ ]T X{ } 1

2
--- F{ }T

β{ }=
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Because the n forces can be arbitrary and {F} is not a null vector, its coefficient should be zero,

which yields the DDR as 

 (4)

where {β} are member deformations.

This equation represents the Deformation-Displacement Relations (DDR) for the discrete

structure. The elimination of m displacements from n deformations displacement relations given by

the above equation yields r = (n − m) compatibility conditions and the associated matrix [C]. It can

be symbolized in matrix notations as 

(5)

where [C] is the (r × n) compatibility matrix. It is a kinematics relationship, and is independent of

design parameters, material properties and external loads. This matrix is rectangular and banded.

The deformation {β} in the compatibility conditions (CC) given by the Eq. (5) represents the total

deformation consisting of an elastic component {βe} and the initial component {βo} as 

The CC in terms of elastic deformation can be written as 

where

Using element flexibility characteristics, Eq. (5) with initial deformations {δR} can be rewritten as 

 (6)

Clubbing of Eq. (1) and Eq. (6) will lead to the IFM governing equation as 

(7) 

The solution of the Eq. (7) yields n forces {F}. The m displacements {X} are obtained from the

forces {F} by back substitution as 

where [J] = m rows of [[S]−1]T.

3. Formulation of element equilibrium and flexibility matrices for plates 

The general formulation steps involved in the development of equilibrium and flexibility matrices

of the plate bending elements using the IFM are given below. 

1

2
--- F{ }T

B[ ]T X{ } β{ }–[ ] 0=

β{ } B[ ]T X{ }=

C[ ] β{ } 0=

β{ } βe{ }= βo{ }+

C[ ] β{ } C[ ] βe{ } C[ ] βo{ }+=

C[ ] βe{ } δR{ }=

δR{ } C[ ]– βo{ }=

C[ ] G[ ] F{ } δR{ }=

B[ ]

C[ ] G[ ]
F{ }

P

δR⎩ ⎭
⎨ ⎬
⎧ ⎫

=

S[ ] F{ } P
*{ }=

X{ } J[ ] G[ ] F{ } βo{ }+{ }=



Automatic generation of equilibrium and flexibility matrices for plate bending elements 391

The strain energy for the plate in general is written as 

 (8)

where {k} = vector of curvatures

      {M} = vector of stress resultants

For the Kirchhoff plate theory the vectors {k} and {M} are described as 

 (9)

  

(10)

For the Mindlin-Reissner theory the vectors {k} and {M} are described as

(11)

  (12)

where w, θx, θy are the transverse displacement and rotations about x and y axes, respectively.

For a discrete plate bending element, the stress-resultants {M} and curvature {k} can be expressed

in terms of assumed stress-resultant and displacement fields respectively. They can be written in the

matrix notations as

(13)

 (14)

where 

[ψ] = matrix of polynomial terms for stress-resultant fields 

{Fe} = vector of force components of the discrete element 

[Φ1] = matrix of polynomial terms for displacement fields 

[Φ] = [Φ1][A]−1 

[A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of

displacement fields 

{α} = coefficients of the displacement field polynomial 

{Xe} = vector of displacements of the discrete element 

[Dop] = Differential operator matrix. For the Mindlin-Reissner plate theory it can be expressed as

Up 1 2⁄ k{ }T
M{ }dxdy∫∫=

k{ } ∂2
w

∂x
2

---------   
∂2

w

∂y
2

---------   2
∂2

w

∂x∂y
------------

T

=

M{ } Mx   My   Mxy[ ]T=

k{ }
∂θx

∂x
--------  

∂θy

∂y
--------  

∂θx

∂y
--------

∂θy

∂x
--------  θy

∂w

∂y
-------  θx

∂w

∂x
-------––+

T

=

M{ } Mx  My  Mxy  Qy  Qx[ ]T=

M{ } ψ[ ] Fe{ }=

k{ } Dop[ ] φ1[ ] α{ } Dop[ ] φ[ ] Xe{ }= =

Dop[ ]

0     
∂
∂x
-----     0

0     0     
∂
∂y
-----

0     
∂
∂y
-----     

∂
∂x
-----

∂
∂y
-----     0     1

∂
∂x
-----     1     0

=
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And for Kirchhoff plate theory the differential operator matrix becomes

The curvature moment relations for the plate bending element can be written as 

 (15)

where [H] is the matrix relating curvatures to stress-resultants and it can be written for the Mindlin-

Reissner plate with Reissner's shear correction factor of 5/6 as

(16a)

where ; E = Young’s modulus;  t = thickness of the plate; ν = Poisson’s ratio

And for Kirchhoff plate element, the [H] can be expressed as

(16b)

where D1 is same as above

Substituting Eqs. (13) and (14) into the Eq. (8), the strain energy for the discrete element can be

expressed as

Up = 1/2{Xe}
T[Be]{Fe} (17)

where [Be] represents the element equilibrium matrix and is given by

 (18)

Using the Eq. (16), the complementary strain energy for the element is expressed as

(19)

where [Ge] represents the element flexibility matrix and is given by

 (20)

The Eqs. (18) and (20) are used to obtain element equilibrium and flexibility matrices [Be] and [Ge]

respectively. These element equilibrium matrix [Be] and element flexibility matrix [Ge] of all

elements are assembled to obtain the global equilibrium matrix [B] and global flexibility matrix [G]

of the structure and they are used to setup the IFM governing equation to analyze the structure by

IFM.
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Ge[ ] ψ[ ]T H[ ] ψ[ ] xd yd∫∫=
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4. About the Code

General purpose code for automatic generation of element equilibrium and flexibility matrices for

plate bending element accounting shear and non-shear deformation theories is developed in

FORTRAN-90. Code requires the element geometry, structural and material parameters and data

describing the displacement and stress-resultant fields as the input. All the symbolic manipulation

needed for the development of element equilibrium and flexibility matrices are built into the

program and hence code does not need any assistance from other symbolic pre-processors.

Structured and modular programming techniques are adopted in the code and hence it is amenable

for modification and further developments as and when the need arises.

The data describing displacement and stress-resultant fields with coefficient number, numerical

part of the term, power of x and power of y of each polynomial term are stored in separate arrays.

The differentiation of the polynomial terms specified in the displacement and stress-resultant fields

are carried out with built-in code symbolically. Curvatures are developed and stored in the arrays.

Multiplication of vector of curvatures and stress-resultant fields is done through implicit symbolic

and numerical computations. Further if the element geometry is square or rectangular the product

terms of curvatures and stress-resultant fields are integrated exactly over the domain of the plate to

obtain the element equilibrium matrix. In triangular or quadrilateral elements the numerical

integration is carried out for the product terms of curvatures and stress-resultant fields to obtain the

element equilibrium matrix. The matrix [H] which relates the curvatures to stress-resultants is

formed using structural and material parameters of the element. The product of [H] and the stress-

resultant fields is carried out using both numerically and symbolically. Similar integration schemes

are used to obtain element flexibility matrix also. The flowchart to obtain the element equilibrium

and flexibility matrices for two dimensional plate bending elements is shown in the Fig. 1. This

code runs on personal, mini or mainframe computers with DOS or Unix operating system.

5. Numerical tests and discussions

The Mindlin-Reissner theory based 4-node plate bending element (MQP4) is considered to

illustrate the code developed here. This elements considers three degrees of freedom namely a

transverse displacement w and two rotations θx, θy at each node. The displacement fields for w, θx

and θy of MQP4 element are assumed in terms of generalized coordinates α1, α2 …… α12 as

w = α1 + α2x + α3y+ α4xy;   θx = α5 + α6x + α7y + α8xy;   θy = α9 + α10x + α11y + α12xy (21)

and the assumed stress-resultant fields in terms of polynomials with independent generalized force

parameters F1, F2 ……… F9 are given as

Mx = F1 + F2x + F3y + F4xy; My = F5 + F6x + F7y + F8xy;

Mxy = F9;   Qy = F7 + F8x;   Qx = F2 + F4y (22)

The coordinates of the element and three degrees of freedom considered at each node i.e.,

transverse displacement (w), and two rotations θx and θy are shown in the Fig. 3. Parameters of this

example problem are : thickness of the plate t = 1; Young’s modulus E = 200000; Poisson’s ratio ν =

0.3 and coordinates of nodes are as shown in the Fig. 2.

Considering the displacement and stress-resultant fields as given in the Eqs. (21) and (22)



394 H.R. Dhananjaya, J. Nagabhushanam and P.C. Pandey

respectively and Eq. (16), element equilibrium and flexibility matrices for the Mindlin-Reissner

theory based 4 node quadrilateral plate bending element (MQP4) are obtained using Eqs. (18) and

(20) and they are shown in Tables 1 and 2 respectively.

Following example problem has been solved using the equilibrium and flexibility matrices

developed by this code for four node plate bending element MQP4 and the results are compared

with similar displacement based elements 4-node plate bending elements available in the literature

(Chen and Cheung 2000) 

Fig. 1 Flow Chart for the generation of equilibrium and flexibility matrices for plate bending elements
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1. A square thin/thick plate with simply supported/clamped boundary conditions subjected to

uniform load. The parameter of the problem are: size of the plate = 100 × 100, t = 1 or 20,

E = 1092000, ν = 0.3, q = 1 (Chen and Cheung 2000)

Because of the symmetry of the geometry, loading and boundary conditions of the plate in the

above example problems 1, one quadrant of the plate is considered for the analysis. The typical (4 ×
4) mesh considered in one quadrant is as shown in the Fig. 5. 

Exact displacements and moments for this plate bending problem with various boundary

conditions and loadings are calculated from reference (Timoshenko and Krieger 1959, Jane et al.

2000).

 Tables 3-6 summarize central deflections and moments of the square thin plate (t/L = 0.01) of the

example problem 1 for various mesh sizes. Central deflections and moments for square moderately

thick plate (t/L = 0.2) of the example problem 1 for various mesh sizes are given in the Tables 7-10.

In order to study the shear locking behavior using equilibrium and flexibility matrices developed

by the code for the element MQP4, a simply supported square plate subjected to uniform load is

analyzed via IFM considering various thickness-span ratios for the mesh size 10 × 10 in one

quadrant of the plate to estimate the central deflections and moments. The parameters of the

problem considered are: L = 50, B = 50, t = 5, 0.5, 0.05, 0.005, 0.0005 and 0.00005, E = 200000, ν

Fig. 2 A typical 4 - node quadrilateral plate bending element
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Table 1 Equilibrium Matrix [B] for the Mindlin-Reissner theory based 4-node quadrilateral plate bending element

0.0000E+00 0.8051E+01 0.0000E+00 0.5740E+02 0.0000E+00 0.0000E+00 0.1368E+02 0.1743E+03 0.0000E+00

-0.8051E+01 0.6143E+01 -0.5740E+02 -0.4721E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -0.1368E+02

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -0.1368E+02 -0.1743E+03 0.1442E+02 0.2573E+02 -0.8051E+01

0.0000E+00 0.8594E+01 0.0000E+00 0.1004E+03 0.0000E+00 0.0000E+00 -0.1294E+02 -0.1348E+03 0.0000E+00

-0.8594E+01 -0.1288E+02 -0.1004E+03 -0.6470E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1294E+02

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1294E+02 0.1348E+03 0.2432E+03 0.2719E+04 -0.8594E+01

0.0000E+00 -0.1042E+02 0.0000E+00 -0.1290E+03 0.0000E+00 0.0000E+00 -0.1815E+02 -0.4115E+03 0.0000E+00

0.1042E+02 0.2718E+03 0.1290E+03 0.3250E+04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1815E+02

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1815E+02 0.4115E+03 0.2649E+03 0.5848E+04 0.1042E+02

0.0000E+00 -0.6223E+01 0.0000E+00 -0.2873E+02 0.0000E+00 0.0000E+00 0.1740E+02 0.3719E+03 0.0000E+00

0.6223E+01 0.2225E+03 0.2873E+02 0.1237E+04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -0.1740E+02

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -0.1740E+02 -0.3719E+03 -0.3503E+02 -0.6557E+03 0.6223E+01

Table 2 Flexibility Matrix [G] for Mindlin-Reissner theory based 4-node quadrilateral plate bending element

0.2925E-01 0.4762E+00 0.2625E+00 0.4214E+01 -0.8775E-02 -0.1429E+00 -0.7875E-01 -0.1264E+01 0.0000E+00

0.4762E+00 0.9973E+01 0.4214E+01 0.8546E+02 -0.1429E+00 -0.2990E+01 -0.1264E+01 -0.2562E+02 0.0000E+00

0.2625E+00 0.4214E+01 0.3033E+01 0.4693E+02 -0.7875E-01 -0.1264E+01 -0.9098E+00 -0.1408E+02 0.0000E+00

0.4214E+01 0.8546E+02 0.4693E+02 0.9144E+03 -0.1264E+01 -0.2562E+02 -0.1408E+02 -0.2741E+03 0.0000E+00

-0.8775E-02 -0.1429E+00 -0.7875E-01 -0.1264E+01 0.2925E-01 0.4762E+00 0.2625E+00 0.4214E+01 0.0000E+00

-0.1429E+00 -0.2990E+01 -0.1264E+01 -0.2562E+02 0.4762E+00 0.9966E+01 0.4214E+01 0.8539E+02 0.0000E+00

-0.7875E-01 -0.1264E+01 -0.9098E+00 -0.1408E+02 0.2625E+00 0.4214E+01 0.3040E+01 0.4705E+02 0.0000E+00

-0.1264E+01 -0.2562E+02 -0.1408E+02 -0.2741E+03 0.4214E+01 0.8539E+02 0.4705E+02 0.9162E+03 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.7605E-01
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Fig. 3 A typical (4 × 4) mesh in one quadrant of the rectangular plate

Table 3 Central deflection for a simply supported square plate with uniform load (t/L = 0.01)

Wc (10-5qL4/D) (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  1.1  319.2 378.5  319.1  378.7 496.5

2 × 2  4.5  397.1 404.6  397.1  404.8 440.9

4 × 4  17.3  404.4 406.0  404.4  406.2 415.5

6 × 6  36.9  405.5 406.1  405.5  406.3 409.9

8 × 8  61.3  405.9 406.2  405.9  406.3 408.8

10 × 10  88.3  406.1 406.2  406.1  406.4 407.9

Exact = 407

Table 4 Central moment for a simply supported square plate with uniform load (t/L = 0.01)

Mc (Example Problem 1)

Elements Q4 Q4-R DKQ MITC4 RDKQM MQP4

1 × 1  0.833 331.6 603.1 331.6  603.6  899.3

2 × 2  5.119 477.0 501.0 477.1  501.5  580.7

4 × 4  20.81 479.0 483.9 479.0 484.2  502.4

6 × 6  44.74 478.9 405.5 478.9 481.4  488.7

8 × 8  74.38 478.9 480.1 478.9 480.4  484.6

10 × 10  107.0 478.9 479.6 478.9 480.0  482.6

Exact = 479

Table 5 Central deflection for a clamped square plate with uniform load (t/L = 0.01)

Wc (10-5qL4/D) (Example Problem 1)

Elements Q4  Q4-R  DKQ MITC4 RDKQM MQP4 

1 × 1  0.3  0.4 156.2 0.3 156.5 182.0

2 × 2  1.0  121.4 146.1 121.3 146.3 158.3

4 × 4  3.7  125.3 131.9 125.3 132.2 135.3

6 × 6  7.8  126.1 129.0 126.1 129.2 130.5

8 × 8  13.2  126.4 127.9 126.4 128.1 129.0

10 × 10  19.5  126.6 127.4 126.5 127.6 128.2

Exact = 126.6
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Table 6 Central moment for a clamped square plate with uniform load (t/L = 0.01)

Mc (Example Problem 1)

Elements Q4 Q4-R  DKQ MITC4 RDKQM MQP4 

1 × 1  0.0  0.0  487.5 0.0 487.6 566.8

2 × 2  1.57  251.4  287.3 251.7 287.7 324.6

4 × 4  6.90  232.9  243.3 233.1 243.6 255.7

6 × 6 15.44  230.7  235.4 230.9 235.6 240.7

8 × 8 25.62  230.0 232.6 230.1 232.9 235.7

10 × 10 37.71  229.7 231.3 229.7 231.6 233.3

Exact = 231

Table 7 Central deflection for a simply supported square plate with uniform load (t/L = 0.2)

Wc(10-5qL4/D) (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4

1 × 1  267  461.7 378.5 426.0  468.6  612.8

2 × 2  411  492.1 404.6 485.5  485.8  541.2

4 × 4  468  490.5 406.0 489.4  488.9  506.7

6 × 6  480  490.5 406.1 490.0  489.7  497.5

8 × 8  485  490.4 406.2 490.2  490.0  495.1

10 × 10  487  490.4 406.2 490.3  490.2  493.5

Exact = 490 

Table 8 Central moment for a simply supported square plate with uniform load (t/L = 0.2)

Mc (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  166  331.6 603.1 331.6  685.5 884.7

2 × 2  386  471.1 501.0 475.0  543.0 586.9

4 × 4  454  479.0 483.9 478.9  497.3 507.2

6 × 6  468  478.9 481.1 478.9  487.3 491.6

8 × 8  473  478.9 480.1 478.9  483.7 486.4

10 × 10  475  478.9 479.6 478.9  482.0 483.7

Exact = 479

Table 9 Central deflection for a clamped square plate with uniform load (t/L = 0.2)

Wc(10-5qL4/D) (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  107.1 147.2 156.2 107.1  260.4 289.9

2 × 2  175.7 217.7 146.1 209.4  235.0 247.5

4 × 4  204.7 217.4 131.9 215.7  221.7 224.4

6 × 6  211.4 217.3 129.0 216.6  219.2 220.4

8 × 8  213.9 217.2 127.9 216.9  218.3 219.1

10 × 10  215.1 217.2 127.4 217.0  217.9 218.4

Exact = 217



Automatic generation of equilibrium and flexibility matrices for plate bending elements 399

= 0.3, q = 1. The exact central displacements and moments are calculated from the Kirchhoff theory

(Timoshenko and Krieger 1959) and the Mindlin plate theory (Jane Liu et al. 2000) solutions for

thin and moderately thick plate problems respectively. These results are shown in the Figs. 4 and 5.

These Figs. indicate that there is no shear locking behaviour using equilibrium and flexibility

matrices developed by the code for the element MQP4. 

Above results indicate that equilibrium and flexibility matrices developed by the code for the 4-

node element MQP4 can be used for the analyzing thin and moderately thick plate bending

elements using Integrated Force Method.

 
Table 10 Central moment for a clamped square plate with uniform load (t/L = 0.2)

Mc (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  0.00  0.00  487.5 0.00  524.7 555.8

2 × 2  158.2  213.8  287.3 220.1  316.7 326.7

4 × 4  215.9  235.4  243.3 235.1  256.5 258.0

6 × 6  226.8  235.7  235.4 235.5  245.0 245.3

8 × 8  230.7  235.7  232.6 235.6  241.0 241.2

10 × 10  235.7  235.7  231.3 235.7  239.1 239.3

Exact = 231

Fig. 4 Normalized central deflections for simply supported plate with uniform load (t/L = 0.1, 0.01, 0.001,
0.0001, 0.00001, 0.000001)
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6. Conclusions

Fully automated and independent general purpose code for the generation of element equilibrium

and flexibility matrices of the plate bending elements using Integrated Force Method has been

developed in FORTRAN-90. The Kirchhoff and the Mindlin-Reissner plate theories have been used

in the formulation while developing the code. Structured and modular programming techniques are

adopted. Results indicate that element equilibrium and flexibility matrices obtained from code can

be used for analyzing thin and moderately thick plate bending problems using Integrated Force

Method. 

Notations

[A] = matrix relating nodal degrees of freedom and coefficients of the polynomial
[B] = global equilibrium matrix (m × n)
[Be] = element equilibrium matrix (me × ne)
[C] = compatibility matrix (r × n)
[Dop] = differential operator matrix
E = Young's modulus
{F} = vector of internal forces of the structure (n × 1)
{Fe} = vector of internal forces of the discrete element (ne × 1)
[G] = global flexibility matrix (n × n)

Fig. 5 Normalized central moments for simply supported plate with uniform load (t/L = 0.1, 0.01, 0.001,
0.0001, 0.00001, 0.000001)
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[Ge] = element flexibility matrix (ne × ne)
[H] = matrix relating the curvatures to stress-resultants
[J] = deformation coefficient matrix (m × n)
L, B = Length and breadth of the plate
Mc = central moment of the plate
{M} = vector of stress – resultants 
P = point load at the center or tip of the plate
{P} = vector of external loads (m × 1)
q = uniform load over the plate
[S] = IFM governing matrix (n × n)
Wc = Central deflection of the plate
{X} = vector of displacements of the structure (m × 1)
{Xe} = vector of displacements of the discrete element (me × 1)
a, b = length and breadth of the plate bending element
{k} = vector of curvatures
n, m = force and displacement degrees of freedom of the structures respectively
ne, me = element force and displacement degrees of freedom respectively
t = thickness of the plate
{α} = generalized coordinates of the polynomial in the displacement field.
{β} = vector of elastic deformations
{βo} = vector of initial deformations
ν = Poisson's ratio
[Φ1 ] = matrix of polynomial terms for displacement fields
[Ψ] = matrix of polynomial terms for stress-resultants fields
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