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Exact integration for the hypersingular boundary integral 
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Abstract. This paper presents an exact integration for the hypersingular boundary integral equation of
two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables
are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary
integral equation analysis is given in a closed form. It is proven that using the exact integration for
discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular
integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two
numerical examples are implemented to verify the correctness of the derived exact integration.
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1. Introduction

The boundary value problems can be recast into either Cauchy singular boundary integral

equation or hypersingular boundary integral equation. Hong and Chen (1988) presented the

theoretical bases for the dual integral equations that combined the Cauchy singular and hyersingular

boundary integral eqution. The hypersingular boundary integral equation has been an active area

over the past few decades in various fields including degenerated boundaries (Chen et al. 2003),

error indicator in adaptive boundary element analysis (Liang et al. 1999, Paulino et al. 2001),

cracked bars under torsion (Chen et al. 1998), and symmetric Galerkin boundary element method

(Gray et al. 1995). Chen et al. (2007) have shown the advantages of the hypersingular boundary

integral equation over conventional boundary integral equation by considering free-surface seepage

problems. They found that the hypersingular boundary integral equation can accelerate the rate of

convergence for nonlinear surface problems. Chen and Hong (1999) gave a detailed review of
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hypersingular boundary integral equation. The inherent difficulty associated with the hypersingular

boundary integral equation is to effectively evaluate the singular, hypersingular and nearly singular,

nearly hypersingular integrals. Tremendous effort has been expended over the past few decades to

improve evaluation of these integrals (Singh and Tanaka 2001, Telles 1987, Chien 1997, Liu 1998,

Luo et al. 1998, Chen and Liu 2001). Among the existing methods, exact integration has been

proven to be efficient and accurate to estimate these integrals in different fields (Fratantonio and

Rencis 2000, Yoon and Heister 2000, Mera et al. 2001, Friedrich 2002, Padhi et al. 2001, Zhang

and Zhang 2003, 2004). Fratantonio and Rencis (2000) present an exact integration for two-

dimensional potential problem, considering both off- and on-element integrations; they also give an

exact integration to evaluate the flux at internal points. Yoon and Heister (2000) give an exact

integration of linear element to compute the flux at internal points for two-dimensional potential

problem using local coordinate transformation. Mera et al. (2001) consider the steady state

anisotropic heat conduction problems using the exact integration. Friedrich (2002) presented an

exact integration for linear boundary element. Zhang and Zhang (2003, 2004) derived an exact

integration for the Cauchy singular boundary integral equation and present methods to evaluate the

stresses of the two-dimensional elastostatics for discontinuous linear and quadratic elements; they

show that the displacements and stresses at boundary points can be evaluated accurately using the

exact integrations.

The discontinuous boundary element, which moves the collocation points to the interior of

element, has been successful to deal with discontinuity due to geometry and boundary conditions

(Xu and Brebbia 1986, Patterson and Sheikh 1989). The discontinuous boundary element has been

used in BEASY commercial software (Trevelyan 1992). It is also efficient to handle the ‘freedom

constraint’ in multi-region and FEM-BEM coupling (Zhang et al. 1993, Zhang and Zhang 2002).

The accuracy improvement of the discontinuous boundary elements over the continuous boundary

elements has been well established numerically in Mera et al. (2001), Florez and Power (2001) and

Tadeu and Antonio (2000). Another merit of discontinuous boundary element found by the authors

in (Zhang and Zhang 2004, Zhang and Zhang 2003, Zhang and Zhang 2004) is that the nearly

singular, logarithmic singular integrals, singular integral in Cauchy Principal Value (CPV) and

hypersingular integral in Hadamard Finite Part (HFP) can be treated in the same way as regular

integrals by the exact integration, which provides an easy and efficient way to calculate the physical

quantities on the boundary by the analytical integration.

The aim of this paper is to present an exact integration to evaluate the integrals in the

hypersingular boundary integral equation of two-dimensional elastostatics problems with the

physical quantities on the boundary approximated by discontinuous quadratic elements. It is shown

that with the exact integration, the hypersingular integrals do not need special treatment and can be

evaluated in the same way as the regular integrals for discontinuous elements. This greatly

facilitates the computer code and improves the accuracy of boundary element analysis. The derived

exact integration is validated against two numerical examples.

 

2. Hypersingular boundary integral equation for two-dimensional elastostatic

problems

The integral representation of the interior stresses in the two-dimensional elastostatics can be

written as (Brebbia 1978, Guiggiani 1995)



Exact integration for the hypersingular boundary integral equation 281

(1)

swhere P is an interior point, Q is a boundary point, and Skij and Dkij are given as follows (Brebbia

1978, Guiggiani 1995)

(2)

where  and , in which G is the shear modulus and ν is the

Poisson ratio.

Taking the interior point P in Eq. (1) to the boundary as an example and considering the

asymptotic analysis given in Guiggiani (1995), we have the boundary integral representation for the

stresses on the boundary as follows

(3)

where the free term C(P) = 0.5 for smooth boundary, a case for discontinuous boundary element

analysis, and Dkij and Skij are integrals existing in the Cauchy Principal Value (CPV) and the

Hadamard Finite Part (HFP) respectively. The traction and stresses are related as follows

(Timoshenko and Goodier 1987)

(4)

where the Einstein summation convention is used, and nj(P) (j = 1, 2) is the jth components of the

unit outward normal at point P.

Substituting (3) into (4) gives the hypersingular boundary integral equation for the two-

dimensional elastostatics:

(5)

where C(P) = 0.5 for smooth boundary and nj(P) ( j = 1, 2) is the jth components of the unit outward

normal at source point P.

Eq. (5) can be recast into the following matrix form

(6)

Discretizing Eq. (6) gives the following algebraic equation for the hypersingular boundary integral

equation

σij P( ) Dkij P Q,( )uk Q( ) Γd
Γ

 

∫ Skij P Q,( )tk Q( ) Γd
Γ

 

∫–=

Skij

k5

r
2

---- 2
∂r

∂n
------ 1 2ν–( )δijr, k ν δikrj, δjkr, i+( ) 4r, ir, jr, k–+[ ]

⎩
⎨
⎧

=

 2ν nir, jr, k njri, r, k+( ) 1 2ν–( ) 2nkrir, j njδik niδjk+ +( ) 1 4ν–( )nkδij–+ }+

Dkij

k3

r
---- 1 2ν–( ) δkir, j δkjr, i δijr, k–+( ) 2 rir, jr, k( )+[ ]–=

k3 1/4π 1 ν–( )–= k5 G/2π 1 ν–( )=

C P( )σij P( ) Dkij P Q,( )uk Q( ) Γd
Γ

 

∫ Skij P Q,( )tk Q( ) Γd
Γ

 

∫+=

ti P( ) σij P( )nj P( )=

C P( )ti P( ) Dkij P Q,( )nj P( )[ ]uk Q( ) Γd
Γ

 

∫ Skij P Q,( )nj P( )[ ]tk Q( ) Γd
Γ

 

∫+=

C P( )
t1 P)( )

t2 P)( )⎩ ⎭
⎨ ⎬
⎧ ⎫ D111n1 D112n2+( )  D211n1 D212n2+( )

D121n1 D122n2+( )  D221n1 D222n2+( )

t1

t2⎩ ⎭
⎨ ⎬
⎧ ⎫

Γd
Γ

 

∫=

 
S111n1 S112n2+( )  S211n1 S212n2+( )

S121n1 S122n2+( )  S221n1 S222n2+( )

u1

u2⎩ ⎭
⎨ ⎬
⎧ ⎫

Γd
Γ

 

∫+
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 (7)

Imposing the boundary conditions, the unknown displacement and traction on the boundary can

be obtained. The exact integration for the coefficient matrix [H] and [G] in Eq. (7) is derived in the

following section. 

3. Exact integration for the hypersingular boundary integral equation

The boundary is discretized into straight segments. The field points on the straight segments can

be defined using the following geometric shape function:

(8)

where  and ,  and  are the Cartesian coordinates of the

two nodes of a straight segment.

The displacement and traction, which may become discontinuous at the mesh points of adjacent

elements, are assumed to be quadratic

 (9)

where  is the unit matrix,  and  are the displacement and traction vectors respectively

of the jth collocation point. In Eq. (9) the interpolation functions for the discontinuous quadratic

elements are 

, , (10)

where α is called collocation factor.

As shown in Fig. 1, for the collocation point P, the following geometric relationship can be

obtained

, (11a)

(11b)

, (11c)

where ,  in which the

H[ ] u{ } G[ ] t{ }=

xi Nj ξ( )xi

j

j 1=

2
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coordinates with superscript P represent the coordinates of the source collocation point and those

with superscripts k and k + 1 represent the coordinates of the field element’s two nodes, respectively,

J0 is the Jacobian of the transformation given in Eq. (8).

To evaluate the coefficient matrix, the following integrals must be performed:

(12)

It should be noted that the term nj(P) in Eq. (12) is the unit outward normal of the source

collocation point, and the integration is performed on the field elements. Thus nj(P) can be taken as

a constant in the integrals.

We consider the geometric relationship for straight-segment discretization of the geometry and

take ΨS = Ψ1 as an example. The integrals in Eq. (12) can be obtained as

(13)

where the terms  and  are given in the Appendix. 

4. Evaluating the singular and hypersingular integrals in hypersingular boundary

integral equation

The following integrals must be evaluated to analyze the hypersingular boundary integral equation

(14a)

Dkij P Q,( )nj P( )ΨS Γd
Γ

 

∫ ; Skij P Q,( )nj P( )ΨS Γd
Γ

 

∫

Dkij P Q,( )nj P( )Ψ1 Γd
Γ
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1
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1
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Γ
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2
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ξ

α
---

ξ
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1
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2
αSkij

1
–[ ]nj P( )= =

Dkij

s
Skij

s

r, i

r
----Ψs Γd ,

r, ir, jr, k

r
---------------Ψs Γd

Γj
∫

Γj
∫

Fig. 1 Geometric relationship of the source point P and the field element Γk
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(14b)

where r is the radial distance between the source and field points, r
, i denotes the derivative of r

with respect to the coordinate xi of the field points, Ψs is the interpolation function given in Eq. (9). 

The integrals in Eq. (14a) and Eq. (14b) exist in the CPV and HFP sense respectively for the

source points on the field element. In what follows we will prove that using the exact integration

for the discontinuous boundary elements, the singular and hypersingular integrals in the CPV and

HFP can be evaluated in the same way as for the non-singular integrals. 

We consider the case where the collocation Point 2 shown in Fig. 2 is the source point; Γk is the

field element on which the integrals are performed. The integral is singular, and the geometric

quantities in Eqs. (10), (11) for the singular integral take the following form:

(15)

where α is the collocation factor as given in Eq. (9), and Lk is the length of the straight field

element.

From Eq. (15), we have the following relationship for the singular integral

(16)

The singular integral in the CPV given in Eq. (14a) can be evaluated by the exact integration (see

1
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∫
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Fig. 2 Geometric relationship of the source point P on the field element Γk
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the Appendix for details) as follows without special treatment

(17a)

(17b)

where D1, D2, Lk and a, b, c are those given in Eq. (15), α is the collocation factor given in Eq. (9),

Fi (i = 0, 1) and Gi(i = 0, 1, 2, 3) are given in the Appendix, and  is the Jacobian determinant of

the transformation from global to local coordinates as given in Eq. (8).

The hypersingular integrals in the HFP sense given in Eq. (14b) can be evaluated by the exact

integration (see the Appendix for details) as follows without special treatment:

(18a)

(18b)

(18c)

where F0, Gi (i = 1, 2, 3) and Ki (i = 1, 2, 3, 4) are the exact integrations given in the Appendix.

It can be proven by using the Principle of Mathematical Induction that other singular and

hypersingular integrals in the CPV and HFP sense of the hypersingular boundary integral equation

analysis can be evaluated in the same way as in the nonsingular integral. We consider the following

singular integral in the CPV sense

r, 1

r
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Γ
∫

D1 ξ α–( )

aξ
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bξ c+ +( )
---------------------------------- J0 ξd J0 D1 F1 αF0–( )=
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a b– c+
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∫=

 J0 D1

2
D2 G3 3αG2– 3α

2
G1 α

3
G0–+( )=

 J0 D1

2
D2

16

Lk

4
------ln

1 α–( )
1 α+( )

----------------=

J0

1

r
2

---- Γd
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⎛ ⎞
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(19)

where  for discontinuous boundary element. With special treatment, the singular integral

in the CPV sense of Eq. (19) can be evaluated from

(20)

In the hypersingular boundary integral equation, the singular integrals in the CPV sense take the

following form as shown in Eq. (1) 

(21)

where F1, F0 are given in the Appendix assuming a = 1, b = −2α, c = α2. From Eqs. (20) and (21) we

can see that the CPV of the singular integral Eq. (19) can be obtained analytically once the anti-

derivative of the integrand is known. With the Principle of Mathematical Induction, it is assumed that

(22)

where  is the anti-derivative of the integrand , and the following relationship can

be proven to be correct

(23)

where  is the anti-derivative of the integrand . Subtracting and adding a same

term  to the numerator of the integrand in Eq. (23) gives

(24)

It is easy to prove Eq. (23) using Eqs. (22) and (24).

In what follows we will prove that with the exact integration, the evaluation of the hypersingular

integrals in HFP sense does not need special treatment. 

Notice that the following hypersingular integrals in HFP sense can be obtained with the special

treatment as follows

(25)

Similarly as in Eq. (19), the hypersingular integrals in the HFP sense of Eq. (25) can be evaluated

using the exact integration for discontinuous boundary elements without special treatment.

Therefore, the HFP of the hypersingular integrals given in Eq. (25) can be obtained analytically

once the anti-derivative of the integrand is known. 

With the Principle of Mathematical Induction, it is assumed that the following formula is true

(26)

1

ξ α–
----------- ξd
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+1

∫
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1

ξ α–
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+1

∫ ln
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∫ F1 αF0– ln
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1 α+
------------= =

ξ
n

ξ α–
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∫ Pn 1( ) Pn 1–( )–=

Pn ξ( ) ξ
n
/ ξ α–( )

ξ
n 1+

ξ α–
----------- ξd
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+1

∫ Pn 1+
1( ) Pn 1+

1–( )–=

Pn 1+
ξ( ) ξ

n 1+

/ ξ α–( )
αξ

n

ξ
n 1+

αξ
n

– αξ
n

+

ξ α–
---------------------------------------- ξd

1–
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∫ ξ
n

ξd
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+1

∫
αξ

n

ξ α–
----------- ξd

1–

+1

∫+=

1

ξ α–( )2
------------------ ξd

1–

+1

∫
1

1 α+
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1

1 α–
-----------–=

ξ
n

ξ α–( )2
------------------ ξd

1–

+1

∫ Sn 1( ) Sn 1–( )–=
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where  is the anti-derivative of the integrand . It can prove that the following

relationship is true 

(27)

where  is the anti-derivative of the integrand . Subtracting and adding a same

term  to the numerator of the integrand in Eq. (27) gives

(28)

From Eqs. (26) and (28), it is easy to prove Eq. (27). 

5. Numerical examples

Two examples are implemented to verify the derived exact integration. The first example is a

parallelogram plate under linear displacement, and the second example is the shear lag analysis of a

rectangle plate under shear loading. 

5.1 Parallelogram plate under linear displacement 

This is a benchmark problem and Fig. 3 shows the geometry. The displacement field derived and

applied to a patch test of FEM-BEM coupling procedure in Lu et al. (1991) is given as follows

(29)

The plate is assumed to be in the state of plane stress condition. The mechanical properties of the

material are: the elastic modulus E = 211 × 109 Pa and Poisson ratio ν = 0.3. The stresses associated

with the displacement can be obtained from the strain-displacement relationship and the constitutive

equation as follows

 (30)

The problem is solved with the integrals being estimated using the derived exact integration. Four

discontinuous quadratic elements are used to discretize the boundary, and the collocation factor in the

discontinuous linear element is taken as α = 0.5. The boundary conditions at the collocation points are

prescribed displacements, which are calculated from Eq. (29). The coordinates of the point C shown in

Fig. 2 are (4, 6). The coefficients of the matrix [H] and [G] for the hypersingular and Cauchy singular

boundary integral equations are given in Table 1 and Table 2, respectively.
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n
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ξ
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n

ξ
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αξ
n
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n

+

ξ α–( )2
---------------------------------------- ξd
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+1

∫
ξ
n

ξ α–
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αξ

n
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∫+=
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1

5
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1

2
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σx
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σxy⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

E

1 ν
2

–( )
-----------------

1 ν 0

ν 1 0

0 0 
1 ν–

2
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εx
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γxy⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ 0.4985164836

0.2550549451

0.2028846154⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

10
9

Pa( )×= =
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In both the Cauchy singular and hypersingular boundary integral equations, the traction along the

boundary can be obtained from Eq. (7) by enforcing the prescribed displacement boundary

condition calculated by Eq. (29). The stresses in interior points can be obtained using Eq. (1)

assuming C(P) = 1 with the obtained traction and the prescribed displacement boundary condition.

The stresses evaluated at several internal points by the hypersingular and Cauchy singular

boundary integral equations are given in Table 3. Comparing with the analytical values given in

Eq. (31), the results obtained by the hypersingular boundary integral equation and Cauchy singular

boundary integral equations are both in high precision. The hypersingular boundary integral

equation is accurate to the 7th decimal, while the Cauchy singular boundary integral equation is

accurate to 5th decimal. This might be due to the improvement of condition number of matrix in

hypersingular boundary integral equation as given in Chen et al. (2007).

We change the coordinates of the Point C (x3, y3) shown in Fig. 3 to verify the correctness of the

exact integration for arbitrary quadrilateral. The displacements calculated from Eq. (29) are used as

prescribed displacement boundary condition, and the results (not presented) also show good

agreement with the exact solution.

5.2 Shear lag of plate under varying shear load

The shear lag phenomenon is intensively studied for box girder. A rectangle plate in plane stress

Table 1 The coefficients of the matrix [H] and [G] in the hypersingular boundary integral equation (E =
211×109 Pa, ν = 0.3 and α = 0.5)

H71 H72 H77 H78 H79 G71 G72 G77 G78 G79

0.35843E
+10 

-0.16852E
+08

-0.13181E
+11

0.52555E
+02

-0.24216E
+11

-0.74844E
-01

0.14937E
-01

-0.50000E
+00

0.16162E
+00

0.83267E
-16

Table 2 The coefficients of the matrix [H] and [G] in the Cauchy singular boundary integral equation (E =
211×109 Pa, ν = 0.3, α = 0.5)

H71 H72 H77 H78 H79 G71 G72 G77 G78 G79

-0.58193E
-01 

0.10139E
-01

0.50000E
+00

0.16162E
+00

0.00000E
+00

-0.18635E
-11

0.39143E
-12

0.26456E
-11

0.10198E
-11

0.15808E
-11

Table 3 Comparison of the stresses at internal point calculated using the Cauchy singular boundary integral
equation (CBIE) and the hypersingular boundary integral equation (HBIE) (α = 0.5)

Coordinates (4.025,2.0) (2.025,2) (3.025,2.0)

CBIE
σx

σy

τxy

0.49850980E+09
0.25505309E+09
0.20288364E+09

0.49851005E+09
0.25505284E+09
0.20288387E+09

0.49850996E+09
0.25505228E+09
0.20288326E+09

HBIE
σx

σy

τxy

0.49851646E+09
0.25505493E+09
0.20288461E+09

0.49851646E+09
0.25505493E+09
0.20288461E+09

0.49851646E+09
0.25505493E+09
0.20288461E+09

Exact 
σx

σy

τxy

0.4985164836E+09
0.255054951E+09
0.2028846154E+09
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state is taken as a model to gain physical insight into the shear lag effect. A rectangle under

distributed shear loading shown in Fig. 4 is taken as an example for the shear lag analysis. The

distributed shear loading on AB and CD varies according to

(31)

The resulting shear loading given in Eq. (31) can be obtained as

(32)

Eq. (32) shows that the shear loading is independent of n, the order of the polynomial of the

distributed shear load. From the elementary theory of the mechanics of material of axially loaded

member, we can be obtained the unit normal stress on BC as

(33)

The hypersingular boundary integral equation with the integrals evaluated using the exact

integration is used to analyze the problem shown in Fig. 4 under the shear loading given Eq. (31)

for different n. The elastic modulus is E = 211 × 109 Pa and the Poisson ratio is ν = 0.3. The

collocation factor is taken as α = 0.5. The length of the plate is L = 10 m, the width is b = 3 m, and

τ x( )
n 1+( )τ0

2
---------------------

x1

L
----⎝ ⎠
⎛ ⎞

n

=

T τ x( ) xd
τ0L

2
--------=

0

L

∫=

σ
τ0L

b
--------=

Fig. 3 Quadrilateral domain under prescribed displacement boundary condition

Fig. 4 The rectangle plate under shear loading along the boundary for shear lag analysis
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the problem is assumed to be in the state of plane stress.

The boundary is discreitzed with 80 discontinuous quadratic elements with each side having 20

elements. To verify the correctness of the exact integration, the Cauchy singular and the

hypersingular boundary integral equations are used to analyze the problem with n = 1. Fig. 5 shows

the unit normal stress along BC calculated by the two methods, and Fig. 6 gives the error defined as

(34)

where the quantity with superscript HBIE represents the results obtained by the hypersingular

boundary integral equation, and that with CBIE denotes the results obtained from the Cauchy

singular boundary integral equation. Fig. 5 shows that results obtained by the HBIE and CBIE are

in good agreement. Fig. 6 gives the absolute error by CBIE and HBIE. Large oscillation can be

found in the vicinity of points B and C. This is due to the high stress gradient near the two ends of

the boundary, which is also observed in Zhang and Zhang (2004) for Cook problem analysis. It lays

the foundation for adaptive boundary element analysis (Liang et al. 1999, Paulino et al. 2001).

The unit normal stress σ11 along BC calculated using different n is shown in Fig. 7. It can be seen

that the shear lag effect becomes pronounced with the increase of n. The unit normal stress σ11

along BC obtained with different mesh discretization are also considered and Fig. 8 compares the

results obtained with 80 and 160 discontinuous quadratic elements for loading n = 100 in Eq. (31).

They are in good agreement.

σ11Δ σ
HBIE

σ
CBIE

–=

Fig. 5 The calculated unit normal stress σ11 along the boundary BC shown Fig. 1 using HBIE and CBIE

Fig. 6 The absolute error of the unit normal stress σ11 along the boundary BC shown in Fig. 1 given by the
HBIE and CBIE
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6. Conclusions

In this paper, the hypersingular boundary integral equation is derived based on the integral

representation of boundary stresses. The boundary is discretized by the straight segment, and the

physical variables are approximated by discontinuous quadratic interpolation function. The exact

integration of the hypersingular boundary integral equation analysis is derived in a closed form. It is

proven that the singular and the hypersingular integrals in the CPV and HFP can be accurately

calculated using the exact integration without special treatments; this greatly simplifies computer

code. Two examples are implemented to prove the correctness of the exact integration. 
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Fig. 7 The unit normal stress σ11 distribution along the boundary BC shown Fig. 1 under different loading conditions

Fig. 8 The calculated unit normal stress σ11 distribution along the boundary BC shown in Fig. 1 under loading
condition (n = 100 in Eq. (31)) using different discretizations
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Appendix

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

In Eqs. (A1)-(A12), k3 and k5 are given in Eq. (3), and Ci, Di (i = 1, 2) are given in Eqs. (9)-(12), J0 is the
Jacobian of the transformation given in Eq. (4), Fi (i = 1~6), Gi (i = 1~6) and Ki (i = 1~6) are given as follows

(A13)

(A14)

S111

i

k5 2C12 C1Gi D1Gi 1++( ) 4 C1

3
Ki 3C1D1Ki 1+ 3C1D1

2
Ki 2+ D1

3
Ki 3++ + +( )–[ ]{=

 2D2 C1

2
Gi 2C1D1Gi 1+ D1

2
Gi 2++ +( ) D2Fi+ }+

S211

i
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2
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2
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2

+( )Ki 2+ D1

2
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 4υD2 C1C2Gi C1D2 C2D1+( )Gi 1+ D1D2Gi 2++ +( ) 2 1 2υ–( )D1 C1

2

Gi 2C1D1Gi 1+ D1
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2
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S112
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2
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2
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2υD1 C1

2
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(A15)

where a, b, c and Ci, Di(i = 1, 2) are those given in Eqs. (9)-(12), and Fi (i = 1~6), Gi (i = 1~6) and Ki

(i = 1~6) can be obtained explicitly as follows 
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(A29)

(A30)
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