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Abstract. T-splines are recently proposed mathematical tools for geometric modeling, which are
generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not
the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be
combined easily without special techniques. In the present study, an analysis framework using T-splines is
proposed. In this framework, T-splines are used both for description of geometries and for approximation
of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this
approach, CAD models are directly imported as the analysis models without additional finite element
modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis
framework.

Keywords: Non-Uniform Rational B-Splines (NURBS); T-splines; isogeometric analysis; finite element
method; Computer-Aided Design (CAD); Computer-Aided Engineering (CAE).

1. Introduction

Finite element methods are versatile tools in the field of CAE. Although they have originated in

1950’s, they have become nearly universal tools in industries and academies. They are essential

tools for design of products such as automobiles, airplanes, vessels, etc. On the other hand, CAD

has originated in 1970’s. B-splines or NURBS are the primary mathematical tools to describe

geometries in CAD while polynomials are mainly used in most finite element modeling. This
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inconsistency makes the design process to be more complicated. In the conventional design process,

CAD models are created first by designers according to function and productivity as well as

aesthetics. These models are described by B-splines, NURBS, etc. and cannot be directly employed

for engineering analysis owing to the inconsistency of mathematical expression of geometries.

Therefore, engineers create analysis models separately. This modeling job entails discretization of

geometries. This discretization is called meshing, a very cumbersome and time-consuming work. In

the design process, the modification of CAD models frequently occurs and FE models should be

reconstructed accordingly every time the CAD models are modified. The modification of FE models

is also considerably expensive. In the design process of an automobile, a great deal of time and

efforts are spent in the communication between CAD and CAE.

Another important point in the analysis is that the geometric exactness of CAD models is lost in

the finite element modeling process. Curves or surfaces defined by splines in CAD models, are

approximated by polynomials in FE models. This approximation of geometries can sometimes affect

the accuracy of analysis.

These ineffectiveness and inaccuracy are originated from the different ways of geometric

description in CAD and CAE. The reasonable solution to these problems is to unify languages of

designers and engineers, namely their mathematical tools for geometric description. From the

viewpoint of effective geometric modeling, the mathematical tools of CAD have more advantages.

Geometric modeling is an intrinsic objective of CAD. Also, CAD industries are much larger than

CAE. From these consideration, CAD based unification is more logical. By this unification, the

process of product design can be innovated. Figs. 1 and 2 represent information flows in the

conventional and CAD/CAE integrated product design, respectively. In the integrated approach, the

finite element modeling is not necessary. CAD models can be directly used for engineering analysis.

Reversely, the modification of geometries by means of design optimization could be reflected in

CAD models at first hand. Communication between CAD and CAE is fairly easy since all

geometries can be expressed using the same mathematical tools. In the engineering analysis,

geometries are described exactly. Therefore, the errors of solutions which are generated from the

Fig. 1 Information flow in the conventional product design

Fig. 2 Information flow in the CAD/CAE integrated product design
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geometric approximation could be avoided.

Various approaches have been attempted to integrate CAD with CAE for certain structural

analysis. Moore et al. (1984) introduced a quadrilateral shell element, in which the element

geometry is described by rational B-spline functions in curvilinear coordinate system, while the

displacement field is approximated by bi-cubic Hermite polynomials in Cartesian coordinates. Shen

and Kan (1991) and Pengcheng and Peixiang (1995) developed multivariable spline element for the

plate bending analysis. Fan and Luah (1993) have reported results of plate analysis as a special case

of the B-spline finite element method restricted to cubic approximation. Cho and Roh (2003), and

Roh and Cho (2004, 2005) proposed a framework that directly links shell finite element to B-spline

surface geometric modeling. In their first works, NURBS surface data were used to calculate

geometric properties such as curvature tensor. Later, NURBS were employed for even basis

functions. This concept in which the solution space for dependent variables is represented in terms

of the same functions which represent the geometry was named as the concept of isogeometric

analysis by Hughes et al. (2005). Bazilevs et al. (2006), Cottrell et al. (2006, 2007) and Zhang et al.

(2007) applied isogeometric analysis for various problems such as linear elasticity, fluid mechanics

and dynamic problems. Natekar et al. (2004), Zhang and Subbarayan (2006), Zhang et al. (2007)

and Rayasam et al. (2007) proposed partitioned, hierarchical analysis methodology called

Constructive Solid Analysis (CSA). Inoue et al. (2005) performed shell analysis based on the

NURBS representation. On the other hand, B-splines or NURBS are not necessary tools in

isogeometric analysis. Cirak et al. (2000, 2001) and Cirak and Ortiz (2001) proposed the use of

subdivision surfaces as a common foundation for modeling, simulation, and design in a unified

framework. 

Although B-splines or NURBS are the most widely used mathematical tools in computer graphics,

they have certain limitations due to the use of parametric coordinates. When B-splines or NURBS

are used, local refinement can be awkward and inefficient for both modeling and analysis. In the

refinement process, many unnecessary control points are generated. For geometric modeling, those

unwanted control points are quite annoying and for analysis, they induce unnecessary consumption

of computational costs. Moreover, B-splines or NURBS are based on a rectangular parametric

domain for the two-dimensional case. Because of this rectangle-shaped domain, B-spline or NURBS

surfaces in the physical domain should have three- or four-sided geometries. Therefore, complex

geometries consist of more than one patch. In this case, the interfaces between the patches should

be seamless and have the same parametric spans. If not, many unnecessary control points should be

generated to combine the patches. These limitations of finite element analysis using NURBS have

to be solved in order to successfully apply it to industrial problems. In this paper, the use of T-

splines is proposed both for description of geometries and for approximation of field variables. T-

splines were proposed by Sederberg et al. (2003, 2004). A T-spline surface is a NURBS surface

with T-junctions and is defined by a control grid called T-mesh. Details of T-splines will be

reviewed later. The T-junctions enable T-spline surfaces to be refined locally. With this property,

even patches with unmatched boundaries can be combined seamlessly.

This paper is organized as follows. In Section 2, we briefly introduce B-splines, NURBS and their

properties. In Section 3, T-splines and their advantages will be reviewed. This is followed by

description of an analysis framework based on NURBS and T-splines in Section 4. Some numerical

examples and their results will be demonstrated in Section 5. Conclusions are summarized in

Section 6.
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2. B-splines and non-uniform rational B-splines (NURBS)

In this section, we briefly introduce B-splines, NURBS and their properties. Details can be found

in (Piegl and Tiller 1997, Mortenson 2006, Rogers 2001). The properties of B-spline basis functions

and rational basis functions presented here are very important because they are shape functions for

finite element analysis as well as basis functions for geometric description.

2.1 B-spline basis functions

Let  be a nondecreasing sequence of real numbers, i.e., , .

The si are called knots, and S is the knot vector. The ith B-spline basis function of p-degree (order

p+1) denoted by Ni, p, is defined as

(1a)

(1b)

Fig. 3 shows the generation of B-spline basis functions by this recursive formula. Here, important

properties of the B-spline basis functions are presented. Assume degree p and a knot vector

.

(1) Local support property;  if s is outside the interval . This is illustrated

by the Fig. 3.

(2) Partition of unity; for an arbitrary knot span, ,  for all

.

(3) Smoothness; at a knot,  is  times continuously differentiable, where k is the

multiplicity of the knot.

S s0 … sm, ,{ }= si si 1+≤ i 0 … m 1–, ,=

Ni 0, s( )
1 if si s≤ si 1+<

0 otherwise⎩
⎨
⎧

=

Ni p,

s si–

si p+ si–

-----------------Ni p 1–,
s( )

si p 1+ +
s–

si p 1+ +
si 1+–

----------------------------Ni 1+ p 1–,
s( )+=

S s0 … sm, ,{ }=

Ni p, s( ) 0= si si p 1+ +
, )[

si si 1+, )[ Σj i p–=

i
Nj p, s( ) 1=

s si si 1+, )[∈
Ni p, s( ) p k–

Fig. 3 The recurrence formula of B-spline basis functions and its support
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2.2 B-spline curves

A pth-degree B-spline curve is defined by

(2)

where the  are control points, and the  the pth-degree B-spline basis functions

defined on the nonperiodic knot vector .

2.3 B-spline surfaces

A B-spline surface is obtained by taking a bidirectional net of control points, two knot vectors,

and the products of the univariate B-spline functions

(3)

with , . S and T have

a + 1 and b + 1 knots, respectively.

2.4 NURBS curves and surfaces

Although polynomials offer many advantages, there exist a number of important curve and surface

types which cannot be represented precisely using polynomials, e.g., circles, ellipses, hyperbolas,

cylinders, cones, spheres, etc. They can be represented using rational functions, which are defined

as the ratio of two polynomials. A rational curve in n-dimensional space can be represented by

perspective mapping of a polynomial curve in (n+1)-dimensional space. By this mapping, a pth-

degree NURBS curve can be represented as

(4)

where the {Pi} are the control points, the {wi} the weights, and the  the pth-degree B-

spline basis functions defined on the nonperiodic (and nonuniform) knot vector ,

.

Setting

(5)
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the Eq. (4) can be expressed in the form

(6)

The  are the rational basis functions. They are piecewise rational functions on .

The  have the following important properties.

(1) Partition of unity;  for all 

(2) Local support;  for .

(3) Smoothness; All derivatives of  exist in the interior of a knot span. At a knot,  is

 times continuously differentiable, where k is the multiplicity of the knot.

(4) If  for all i, then  for all i, i.e., the  are the special cases of the

.

Rational basis functions for NURBS surfaces can be defined in an analogous way.

(7)

And the NURBS surface can be written as

(8)

C s( ) Ri p, s( )Pi

i 0=

n

∑=

Ri p, s( ){ } s 0 1,[ ]∈
Ri p, s( )

Ri p, s( )
i 0=

n

∑ 1= s 0 1,[ ]∈
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, )[∉
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Ri p, s( )
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l 0=

m

∑
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n

∑

--------------------------------------------------------=
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m

∑
i 0=

n

∑=

Fig. 4 An example of a bicubic NURBS surface: (a) parametric domain; (b) control net in physical domain;
and (c) a NURBS surface
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Fig. 4 shows an example of a bicubic NURBS surface. NURBS are the most widely used

mathematical tools in computer graphics. Nonetheless, they have certain limitations. As stated

before, local refinement is awkward and inefficient. Fig. 5 shows clearly this limitation of NURBS

surfaces. When we try to refine a local area represented by a circle, knots are propagated from the

local area to the boundaries of a domain. In this process, many superfluous control points are

generated. It could be a burden for both modeling and analysis. Fig. 6 represents patch-merging

process for NURBS surfaces. In this case, the two merging patches don’t have the same knot spans

in the merging boundary. During the merging process, knots are also propagated from one patch to

the other, and unnecessary control points are created. These limitations of NURBS cast a shadow

for the application of CAD/CAE integrated approach to industrial problems. In the following, we

propose the use of T-splines instead of NURBS. Using T-splines, the limitations of NURBS can be

removed completely.

Fig. 5 Unwanted knot propagation of a NURBS surface for local refinement

Fig. 6 Unwanted knot propagation of a NURBS surface for merging of patches
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3. T-splines

T-splines were proposed by Sederberg et al. (2003, 2004). They are some sort of PB (Point-

Based)-splines. No topological relationship between control points exists for PB-splines. In this

section, T-splines are briefly reviewed. The advantages of T-splines which NURBS doesn’t have

will be explained. Details of T-splines and their application for computer graphics can be found in

(Sederberg et al. 2003, 2004, Song and Yang 2005, Guthe et al. 2005, Li et al. 2006).

3.1 T-spline surfaces

A T-spline is a NURBS surface with T-junctions and is defined by a control grid called T-mesh.

The T-mesh is similar to a NURBS control grid except that T-junctions are allowed in the T-mesh.

At T-junctions, a row or column of control points is terminated inside parametric domains. It is not

possible for NURBS surfaces. Without T-junctions, T-spline surfaces are exactly the same as

NURBS surfaces. Therefore, T-splines are generalizations of NURBS. The T-junctions enable T-

spline surfaces to be refined locally. That is, it is possible to add a single control point to a T-spline

control grid without propagating an entire row or column of control points and without altering the

surface. The T-mesh is also associated with knot information of the T-spline, which is expressed

using knot intervals indicating the difference between two knots and assigned to the edges of the T-

mesh. The equation for a T-spline surface is

(9)

where the  are the control points, the  the weights of control points. The T-spline basis

function corresponding to control point Pi is  which is defined as follows:

(10)

where  are the cubic B-spline basis functions associated with the knot vectors

, respectively. The knot vectors si and ti are

extracted from the T-mesh neighborhood of Pi. NURBS is a special case of a T-spline. Therefore,

the properties of rational basis functions of T-splines which are defined as

(11)

follow the properties of NURBS.

Refer to Fig. 7 for an example of a T-spline surface. Fig. 7(a) shows the T-mesh in the parametric

domain where we can find two T-junctions. Fig. 7(b) shows its mapping image to the physical

domain. Figs. 8-10 shows the advantages of T-splines. Firstly, Fig. 8 demonstrates flexibility of T-

splines for local refinement. When we try to refine a local area represented by the circle, knots are

propagated across the global domain in the case of NURBS. In this process, superfluous control

S s t,( )

Bi s t,( )wiPi
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n

∑

Bi s t,( )wi

i 0=

n

∑
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points are generated. The geometry is described by 234 control points in this case. Using T-splines,

the area represented by the circle is only refined and propagation of knots are not caused. In this

case, the geometry is described by only 174 control points. Although the difference in the number

of control points here is not great, it could be tremendous for complex geometries. This

effectiveness of T-splines for local refinement can greatly reduce inconvenience caused by

superfluous control points in geometric modeling. Moreover, computational cost can be greatly

decreased in analysis because control points represent DOFs. Fig. 9 represents patch-merging

process using T-splines. This merging process for two NURBS surfaces yields one T-spline surface.

As demonstrated in the figure, propagation of knots doesn’t happen and no control points are

generated. The unmatched knots in the merging boundary are treated by T-junctions. Fig. 10 also

shows patch-merging process. In this case, geometries as well as knot spans of merging boundary

are different for merging patches. As demonstrated in the figure, patches with unmatched knots and

boundaries can be also easily combined. In this merging process, a compatibility problem doesn’t

exist. In industrial problems, complex structures with many sub-structures are sometimes designed

by several people. In this procedure, there are many cases in which the interface of sub-structures is

not matched. In conventional analysis, special techniques are needed to solve this problem. Using T-

Fig. 7 An example of a T-spline surface

Fig. 8 Comparison of T-spline and NURBS surfaces for local refinement
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splines, analysis of complex structures with many sub-structures can be easily performed without

special techniques.

The authors and their collaborators (Kim 2007, Kim et al. 2007, Uhm et al. 2007) applied T-

splines to the finite element analysis for the first time. The developed T-spline finite element

method is based on the CAD/CAE integrated approach and is the basis of this current study.

4. The analysis framework

The analysis framework used in the present study basically adopts the concept of isogeometric

analysis by Hughes et al. (2005). It will be reviewed in this section. The analysis framework based

on NURBS or T-splines for CAD/CAE integration consists of the followings.

(1) Expression of the geometry: The control points associated with the basis functions define the

geometry. The geometry is represented in the parametric form. There exist the parametric

domain and the corresponding physical domain. Fig. 11 represents the relation between the

domains.

(2) Approximation of field variables: The fields are represented by the same basis functions as the

geometry. Every control point has each basis function. The coefficients of the basis functions

are the degrees-of-freedom, or control variables.

(3) Meshes and elements: A mesh is defined by the product of knot vectors, and elements are

defined by knot spans. The shaded area as shown in Fig. 11 represents an element in the

parametric and physical domains.

Fig. 9 Merging of two NURBS surfaces into one T-spline surface

Fig. 10 A seamless patch merging process using T-splines
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(4) Support of basis functions: The support of basis functions is determined by the degree of basis

functions and knot vectors. For example, a B-spline basis function  of p-degree has

non-zero value only if s is within the interval .

(5) Mesh refinement: Global and local refinement can be done. Using NURBS, classical h-

refinement can be performed by knot insertion. Elevating the degree of NURBS or T-splines,

p-refinement also can be done. Using T-splines, control points can be inserted locally.

(6) Imposition of B.C.s: The Kronecker delta property is not satisfied by NURBS and T-splines.

Nonetheless, imposition of essential B.C. is not a big problem. In our approach, we consider

only nonperiodic (or clamped or open) knot vectors, in which their first and last knots appear

p + 1 times. Using nonperiodic knots, the Kronecker delta property is satisfied at the boundary

and essential B.C.s can be imposed easily. Natural B.C.s can be imposed in the same way as in

the standard finite element method.

(7) Integration: The integration is performed by the classical Gaussian quadrature within a master

element. Fig. 11 shows the mapping relation among the master element, the element in the

parametric domain and the element in the physical domain. Hughes et al. (2005) referred to

the rule of thumb to use the lowest-order rule that would exactly integrate the integrand

assuming the NURBS are B-splines of the same polynomial order and the Jacobian

determinants are constants. In the present study, we propose to use higher-order rule instead of

the lowest-order rule because NURBS or T-splines are the rational functions and cannot be

exactly integrated with the same-order rule as for polynomials. More research needs to be done

for robust quadrature rule.

The NURBS or T-spline finite element method follows the basic line of a classical finite element

method. To clarify the differences and similarities between the two methods, they are compared in

Table 1.

The general procedure for spline-based finite element methods is shown in Fig. 12. Firstly,

geometric information is taken from CAD data and information for analysis is given. Then, global

Ni p, s( )
si si p 1+ +
, )[

Fig. 11 Mapping relation between domains
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or local refinement is performed. Refinement is generally necessary because enough control points

for analysis is not obtained with only CAD models. In our study, global refinement of NURBS

surfaces by knot insertion is preceded. Then, the conversion of NURBS surfaces into T-spline

surfaces is performed. Local refinement of T-spline surfaces by addition of control points follows.

After refinement, the extraction of knot vectors for every control points is done for the case of the

T-spline finite element method. Finally, the finite element analysis is performed using spline-based

basis functions.

For NURBS and T-spline finite element methods, there are gains and losses in terms of

computational efficiency. In these methods, the shape functions of control points must be computed

for each control point while it doesn’t change in the conventional finite element method. The shape

functions have the rational polynomial form in these methods, and higher quadrature rule may be

Table 1 The comparison of the conventional and spline-based FEM

Conventional FEM Spline-based FEM 

Nodal points Control points 

Mesh Knots 

Polynomial NURBS or T-splines 

Approximate geometry Exact geometry 

Partition of unity (O) Partition of unity (O) 

Compact support (O) Compact support (O) 

Kronecker delta prop. (O) Kronecker delta prop. (X) 

Fig. 12 General procedure of the spline-based finite element method
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used for exact integration. For T-splines, there is one more step in the analysis procedure, that is,

the extraction of knot vectors from T-mesh. These factors demand more computational efforts than

the conventional finite element method does. There are also gains in the computational efficiency.

Generally, less DOFs are required for the same level of accuracy by using NURBS or T-spline finite

element method. It means that the time for solving linear equations can be reduced with relation to

the conventional finite element method. For the quadratic case, meshes in the NURBS and

conventional finite element methods are compared in Fig. 13, where each mesh is composed of the

same number of elements. For the NURBS finite element method, DOFs are approximately

proportional to  while they are approximately proportional to  for the

conventional finite element method, where n is the number of elements. Therefore, the smaller

number of DOFs are required to construct the mesh with the same number of elements in the case

of NURBS finite element method. The problem of the infinite plate with a circular hole of Fig. 14

is solved by the NURBS and conventional finite element method, and the computational time and

accuracy are compared in Table 2. For the same number of elements, approximately three times

more DOFs are required in the conventional finite element method. To construct the stiffness

matrix, roughly three times more time is required for the NURBS finite element method. This is

n 2+( )2 2n 1+( )2 n
2

–

Fig. 13 The comparison of the (a) NURBS and (b) conventional finite element meshes for the quadratic case

Fig. 14 (a) Infinite plate with a circular hole under a uniform tension and (b) its 1/4 model
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attributed to the factors as stated before. For the time to solve the linear equation, only half time is

enough for the NURBS finite element method because the number of DOFs is much less. In this

problem, the domain-wise multi-frontal solver (Kim et al. 2005) is employed for solving the linear

equation. The L2-norm of stresses for the two methods is comparable. The only difference in the

analysis procedure between the NURBS and T-spline finite element methods is the extraction of

knot vectors from the T-mesh. This is not a costly job, and the overall properties of the T-spline

finite element method in terms of computational efficiency are similar with the NURBS case.

5. Numerical examples

Consider a 2-D linear elasticity problem in the domain Ω bounded by Γ. The equilibrium

equations are

in Ω (12)

where  is the Cauchy stress tensor and bi is the body force. The boundary conditions are as

follows:

on Γt (13)

on Γu (14)

where  is the prescribed traction on a surface, and  the prescribed displacement field, nj the unit

outward normal to the boundary Γ. Γt and Γu are complementary subsets of Γ.

5.1 Infinite plate with a circular hole under a uniform tension

In this two-dimensional example, the effectiveness of local refinement using T-splines is

demonstrated. Fig. 14(a) describes this problem in which the infinite plate with a circular hole is

loaded under a uniform tension. The exact solution of this problem can be found in the Reference

[Timoshenko and Goodier 1987, pp.90-92].

(15)

(16)

σij j, bi+ 0=

σij j,

σijnj t i=

ui ui=

t i ui
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2
--- 1

a
2
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2

-----–⎝ ⎠
⎛ ⎞ S

2
--- 1

4a
2
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--------–
3a

4

r
4

--------+⎝ ⎠
⎛ ⎞cos2θ+=
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⎛ ⎞ S
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4
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4
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Table 2 The comparison of computational efficiency for the NURBS and conventional FEM

Conventional FEM NURBS FEM

The number of DOFs 49922 17292

Time for constructing the stiffness matrix 0.1281 (s) 0.3422 (s)

Time for solving the linear equation 1.8563 (s) 0.9218 (s)

The relative L2-norm of stresses 4.010E-4 4.109E-4
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(17)

where S is the magnitude of the applied tensile stress. Because of the symmetry, only 1/4 model is

considered as shown in the Fig. 14(b). L is the length of the finite quarter plate, a the radius of the

hole. In this problem, we use L = 4, a = 1, and S = 10. For material properties, E = 105 and ν = 0.3

are used. At the point P in the Fig. 14(b), stress concentration is anticipated. From the exact

solution, σx = 30 is expected at this point (at r = a, θ = 3π/2) of the infinite plate.

This problem is solved by NURBS and T-spline finite element methods. Fig. 15 shows the

respective mesh configurations. Using T-splines, local refinement is performed around the point of

stress concentration. This local refinement is not implemented adaptively, but done empirically. The

systematic adaptive local refinement is our future work. Using NURBS, h-refinement by knot

insertion is done. It is refined globally. The first mesh configurations of T-splines and NURBS are

the same. As stated before, a T-spline is a generalization of NURBS. With no T-junctions, T-spline

surfaces are exactly NURBS surfaces. In all the problems in this study, cubic NURBS and T-splines

are used. Fig. 16 shows the contour plot of σx and deformed shape obtained from the analysis.

Stress concentration is observed at the point P. Detailed numerical results are summarized in

Table 3 and the convergence of two methods is compared in Fig. 17. As demonstrated in Fig. 17

and Table 3, the spline-based finite element methods converge faster than the conventional finite

element method. Comparing the results for T-splines and NURBS, the T-spline finite element

method converges faster than the NURBS finite element method. This result shows the great

effectiveness of T-splines. Using T-splines, only necessary control points can be locally added in the
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Fig. 15 (a) Meshes produced by local refinement of T-splines and (b) Meshes produced by h-refinement of
NURBS
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right place. With NURBS, unnecessary control points are added together with the necessary ones.

5.2 Bending of a curved bar by a force at the end

The problem setup is presented in Fig. 18. A curved bar is under bending by a force at the end.

The other end is fixed. In this problem, a = 2, b = 3 and P = 10 are used. For material properties, E

= 105 and ν = 0.3 are used.

Fig. 19 shows the mesh configuration used for analysis. It is generated from local refinement of a

NURBS surface. Fig. 20 shows the analysis results, the contours of Von-Mises stresses and the

deformed shapes of the curved bar. The maximum Von-Mises stress from the T-spline finite element

method is 194.3. This result is very similar to the one from conventional finite element method. The

maximum Von-Mises stress from the conventional finite element method is 193, and quadratic

Fig. 16 The contour plot of σ
x
 and the deformed

shape obtained from the analysis
Fig. 17 The comparison of convergence for the T-

spline and NURBS finite element methods

Table 3 Numerical results from the spline-based and conventional FEM

Case # of DOFs σ
x

T-spline FEM 1 240 36.72

T-spline FEM 2 254 36.12

T-spline FEM 3 264 35.59

T-spline FEM 4 348 35.42

NURBS FEM 1 240 36.72

NURBS FEM 2 380 35.89

NURBS FEM 3 552 35.66

NURBS FEM 4 992 35.45

Conventional FEM 1 266 36.16

Conventional FEM 2 1290 36.05

Conventional FEM 3 2562 35.96

Conventional FEM 4 5642 35.90
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elements are used for comparison.

5.3 Clevis under a uniform tension

This problem shows the effectiveness of patch-merging process using T-splines. The problem

specification is shown in Fig. 21. A clevis is under a uniform tension (P = 10). Because of

symmetry, only 1/2 model is considered. The homogeneous essential B.C. is imposed in the inner

hole of the clevis. For material properties, E = 105 and ν = 0.3 are used. In this problem, the half

model of the clevis have six sides. To make this with one NURBS patch is inconvenient. This is

modeled with two NURBS patches as shown in Fig. 22(a). The knot spans in the merging boundary

is not matched in this case. For analysis, the two patches should be merged, or some special

Fig. 18 The bending of a curved bar by a force at
the end

Fig. 19 The mesh configuration produced by local
refinement

Fig. 20 The contour plots of Von-Mises stresses and the deformed shapes of the curved bar from the (a) T-
spline and (b) conventional FEM
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techniques are needed. Using NURBS, the two unmatched patches are merged as shown in the

Fig. 22(b). In this merging process, propagation of knots from one patch to the other is caused.

Consequently, the model is described by 740 control points. Using T-splines, the model can be

represented by only 474 control points as demonstrated in the Fig. 22(c). In this problem, the

analysis is performed using T-splines and the result is shown in Fig. 23(a). It shows the contour of

Von-Mises stresses and the deformed shape of the clevis. No jump of stresses and no incompatible

modes are observed in the merging boundary. Once again, this result is compared with the one from

the conventional finite element method as shown in Fig. 23(b). The maximum Von-Mises stress is

15.91 for the T-spline finite element method and 15.90 for the conventional finite element method.

They show almost identical results. Merging of subdomains or patches is often required for the real

problems of industries. The T-splines finite element method again shows its great ability in these

kinds of problems.

Fig. 21 The clevis under a uniform tension

Fig. 22 The comparison of patch-merging process for NURBS and T-splines
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6. Conclusions

In the present study, an analysis framework using T-splines was proposed. In this framework, T-

splines are used to describe geometries and approximate field variables. The key feature of T-splines

is the ability of local refinement. Moreover, patch merging can be flexibly implemented. These

flexibility and effectiveness of T-splines were applied to finite element analysis. In this analysis,

CAD models were directly used without additional finite element modeling. Some numerical

examples were presented. More research needs to be done to apply this analysis framework to

industrial problems. A scheme of adaptive local refinement should be developed. Various analysis

problems including three-dimensional or shell problems need to be solved. Complex structures

comprised of many sub-structures need to be treated effectively. In conclusion, this analysis

framework using T-splines has considerable potential in practical problems and is a very promising

alternative to conventional analysis framework.
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