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Abstract. In this paper, a new iterative method for solving vehicle-bridge interaction problems is
proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to
update the system matrix for a given wheel location, and the method can be applied for a new type of car
or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is
eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast
stiffness is included in the interaction forces and the geometric compatibility at the contact points are used
as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface
irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper
system having many degrees of freedom depending on the number of axles. The pitching effect, which is
the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge,
is also considered in the formulation including extended ground boundaries having surface irregularity and
ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.
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1. Introduction 

The vibration of bridges under moving vehicles or trains has long been an interesting subject for

† Researcher, E-mail: meshless@poscoenc.com
‡ Assistant Professor, E-mail: hjung@kaist.ac.kr
‡† Assistant Professor, Corresponding author, E-mail: hjk@knu.ac.kr

DOI: http://dx.doi.org/10.12989/sem.2008.30.2.165



166 Ji-Seong Jo, Hyung-Jo Jung and Hongjin Kim

many structural engineers in consideration of the design of bridges and railway. The vehicle-bridge

interaction analysis is very a complex dynamic problem because there are many factors affecting the

dynamic behavior of bridges such as the type, natural frequencies, and damping ratios of bridges,

surface roughness, ballast stiffness, the number of vehicles, vehicle characteristics, path, speed, and

the position of wheels. A state-of-the-art review of the research conducted on the vibration of

bridges under moving vehicles and trains was presented by Au et al. (2001). 

Methods to obtain dynamic behavior of bridges can be categorized in two aspects. First, they can

be categorized by the modeling method of the interaction system. The moving-force model (Smith

1988), the moving-mass model (Ichikawa et al. 2000), the moving-sprung-mass model (Smith 1988,

Yang and Yau 1997) and the moving-vehicle model (Yang and Fonder 1996, Lou 2005, Yang and

Wu 2001) are four developed models for interaction systems. The moving-vehicle model can

include the inertia of a vehicle, the bouncing effects of moving mass, and the pitching effect of a

car body, and thereby overcomes the drawbacks of the others (Au et al. 2001).

Second, the methods can be divided into iterative and non-iterative methods depending on the

interaction force calculation. In the non-iterative method, the interaction force between bridge and

moving vehicle is obtained once for a given wheel location of moving mass. However, it is

necessary to update the system matrices such as mass, stiffness and damping matrices of the system

at each time step according to wheel locations. Yang and Yau (1997, 2001) developed a vehicle-

bridge interaction element to analyze the interaction system using the finite element method. Lou

(2005) proposed a vehicle-track-bridge interaction element considering vehicle’s pitching effect.

Because the formulation of the non-iterative methods depends on both the bridge and vehicle

models, all coefficients must be changed and they are complicated to establish if a new type of car

or bridge is introduced (Yang and Fonder 1996). 

On the other hand, the iterative method uses the same system matrices regardless of wheel

location but estimates the interaction force iteratively for a given wheel location until a convergence

criteria is satisfied. Iterative methods have advantages over the non-iterative methods in that it is not

necessary to update the system matrix for a given wheel location, and the method can be used for a

new type of car or bridge with minor or no modifications. Despite its advantages, only a few

iterative methods have been developed recently. Chatterjee et al. (1994) analyzed the vibration of a

suspension bridge under a moving vehicle considering surface roughness. Interaction forces are used

as convergence criteria, and relaxation or Aiken acceleration are also used when convergence was

not achieved. Yang and Fonder (1996) proposed a new iterative algorithm using bridge

displacements at the wheel position as the convergence criteria. Those methods, however, do not

consider ballast stiffness that may be important for railway bridges.

Recently, analytical and experimental evaluation of dynamic effects for existing bridges were

performed by Kwasniewski et al. using sophisticated FEM 3D model of truck and bridge interaction

systems with over half a million elements (Kwasniewski et al. 2005, 2006, Li et al. 2005).

Kwasniewski et al. showed that the actual dynamic responses of a real bridge are very complicated

and longitudinal or transverse behavior may be different from numerical results (Kwasniewski et al.

2006, Li et al. 2005).

In this paper, a new iterative method for solving vehicle-bridge interaction problem is proposed.

Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact

points is used as a convergence criterion. The bridge is considered as an elastic Bernoulli-Euler

beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle

mass-spring-damper system having many degrees of freedom depending on the number of axles.
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The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle

begins to enter or leave the bridge, is also considered in the formulation including extended ground

boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method

is illustrated in the numerical studies. 

2. Equations of motion for vehicle-bridge interaction system

2.1 Modeling of vehicle, surface condition, and bridge

A typical vehicle-bridge interaction system is shown in Fig. 1. The vehicle is modeled as a car

body and multi-axle mass-spring-damper system. The car body is modeled as a rigid body with a

mass mc and its transverse velocity is indicated by v(t). The rotational mass moment of inertia Jc

about the transverse horizontal axis through its centroid is also included in the modeling of the car

body in order to consider the pitching effect. Each axle and car body are interconnected by a

spring of stiffness ki (i = 1, …, n) and a dashpot of damping coefficient ci (i = 1 …, n) where the

mass of each wheel is indicated by mw, i (i = 1 …, n). The rigid car motion is described by the

vertical displacement zc and rotation θc about its centroid. It is assumed that each wheel set is

represented by one vertical DOF, and the vertical displacement of the wheel is described by zi (i =

1 …, n). To represent surface or railway conditions, the surface irregularity r(x) and ballast

stiffness kb(x) are also included. These two surface conditions are extended to outside of the bridge

to ease difficulties due to pitching effects when some axles are on the bridge and the others are

outside the bridge. 

The bridge is modeled as a simply supported uniform Bernoulli-Euler beam with span length L. It

is assumed that the horizontal distance of contact point between vehicle and beam is xi (i = 1 …, n)

from a given origin O. The upward vertical displacements and clockwise rotation of the vehicle and

the bridge are taken as positive and they are measured with reference to their respective static

equilibrium positions.

Fig. 1 Model of vehicle-bridge interaction system



168 Ji-Seong Jo, Hyung-Jo Jung and Hongjin Kim

2.2 Equations of motion for the vehicle and bridge

The equations of motion for the vehicle (Fig. 2) can be written as 

 (1)

 (2)

(3)

where g is gravitational acceleration and fi is interaction force at i-th wheel position. Eqs. (1) to (3)

can be expressed in the matrix form as
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Fig. 2 Interaction forces of the vehicle-bridge system
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(6)

(7)

are the mass, damping and stiffness matrices of the vehicle part, respectively, and 

(8)

are displacement and interaction force vectors, respectively.
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(9)

where Mb, Cb and Kb 
are the mass, damping and stiffness matrices of the bridge, respectively, u is a

displacement vector of the bridge, and L is an interaction force location matrix (Yang and Wu

2001).

3. Interaction force and convergence criterion

3.1 Interaction force

The interaction force at the i-th wheel position can be written as (Yang and Yau 1997)

(10)

where  and  are the interpolation function and displacement vector for the bridge element

contacting with the i-th wheel. The Eq. (10) can be rearranged as

 (11)

Differentiating the above Eq. (11) with respect to time yields

(12)

(13)

Using Eq. (3) and Eqs. (11) to (13), the interaction force can be obtained as

(14)

For the iterative scheme, the interaction force and its time derivatives in the left side of Eq. (14)

are approximated as following
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When the i-th wheel is outside of the bridge, the Eq. (14) becomes

(18)

where the conditions  are used. If r(x) = 0 and kb(x) = ∞, Eq. (18) represents the

case of the condition with no surface irregularity and ballast stiffness.

3.2 Convergence criterion

The convergence of the solutions at a given time t is achieved using the geometric compatibility

at the wheel position. The wheel displacement zi from vehicle part should be equal to the bridge

displacement including surface irregularity and ballast deformation at the wheel position.

The displacement for bridge part, , can be obtained as

(19)

where  is the displacement of the bridge,  is the surface irregularity and is

ballast deformation at the i-th wheel position. Then, the geometric compatibility can be written as

(20)

Using Eq. (20), the convergence criteria can be introduced as

Norm  (21)

where

and ε is a given tolerance. The tolerance, ε, can be taken as a value sufficient to obtain the solution

with reasonable accuracy (e.g. 1.0×10−5~1.0×10−8). 

4. Numerical examples

Two numerical examples are considered to verify the proposed method. The first case is a simple

2D beam subjected to a moving vehicle without surface irregularity and ballast stiffness (Yang and

Wu 2001) and the second one is a simple 2D beam with surface irregularity and ballast stiffness. As

indicated by Kwasniewski et al. (2006) and Li et al. (2005), a simple 2D beam is sometimes very

effective to capture major physical phenomena though it can not show the exact behavior of a real

bridge.
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4.1 Simple beam subjected to moving vehicle without surface irregularity and ballast stiff-
ness (Yang and Wu 2001)

Fig. 3 shows a simply supported beam subjected to a moving vehicle, where the vehicle mass mv

is supported by dashpot-springs with spring constant ki (i = 1, 2) and dashpots with damping

coefficient ci (i = 1, 2), which are further supported by a wheel mass of mi (i = 1, 2). For

illustration, the effect of the dashpot damping and wheel mass are neglected. 

The displacement and acceleration of the midpoint of the bridge are presented in Fig. 4 and the

pitching and acceleration of the vehicle are plotted in Fig. 5. The analytical solution is obtained

using only the 1st mode of the bridge and the moving-force model presented in Smith (1988). For

Fig. 3 Interaction forces of the vehicle-bridge system

Fig. 4 Mid-span displacement and acceleration of the bridge 
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the comparison with a non-iterative method, the results obtained with a moving-mass model of

Ichikawa et al. (2000), which are denoted as moving mass, are presented along with analytical

solutions. The results of the proposed method are denoted as moving vehicle. It can be seen in

Figs. 4 and 5 that the proposed method matches well with the analytical solution. 

The maximum and r.m.s. displacement of the bridge and those of a vehicle are summarized in

Tables 1 and 2. In this example, the maximum displacement of the bridge and the vehicle body are

obtained when a moving vehicle model is used. On the other hand, the maximum acceleration of

the bridge and the vehicle body are obtained when the moving mass model is used. This is because

the moving mass model can not consider suspension systems, and thereby causes the overestimation

of the vertical acceleration on the vehicle. Since the maximum or r.m.s value of acceleration have

been taken as a common measurement of the passenger’s riding comfort (Yang and Wu 2001), the

analysis with the moving vehicle model needs to be performed for more accurate results. 

Fig. 5 Pitching and acceleration of the vehicle 

Table 1 Maximum and r.m.s response of the bridge

Model
Analytical Moving mass Moving vehicle

Disp. (m) Acc. (m/sec2) Disp. (m) Acc. (m/sec2) Disp. (m) Acc. (m/sec2)

Max. value 6.641e-004 9.929e-001 6.546e-004 1.128e+000 6.884e-004 8.761e-001

r.m.s value 2.476e-004 2.250e-001 2.321e-004 2.505e-001 2.422e-004 2.062-001

Table 2 Maximum and r.m.s response of the vehicle

Model
Moving mass Moving vehicle

Disp. (m) Acc. (m/sec2) Disp. (m) Acc. (m/sec2)

Max. value 3.653e-003 6.009e-001 4.465e-003 9.884e-002

r.m.s value 1.889e-004 8.865e-001 3.286e-002 2.999e-001
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4.2 Simple beam subjected to moving vehicle with surface irregularity and ballast stiffness

The surface irregularity and ballast stiffness are added in to the same bridge and vehicle

interaction system shown in Fig. 3 in the second example. The following surface irregularity

function proposed in Rohman and Duaij (1996) is adopted

 (17)

where a is the irregularity amplitude in a wave length l1. a = 5.0 × 10−3m and l1 = 1.0 m are used in

this example. The ballast stiffness is taken as a constant value of kb(x) = 124,050 kN/m. For

comparison, a moving vehicle model without ballast stiffness (that is, kb(x) = ∞) is also solved. The

vehicle is assumed to move from the outside of the bridge. 

r x( ) a 1 cos
2πx

l1
---------–⎝ ⎠

⎛ ⎞
=

Fig. 6 Mid-span displacement and acceleration of the bridge 

Fig. 7 Pitching and acceleration of the vehicle 
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The displacement and acceleration of the midpoint of the bridge are presented in Fig. 6 and the

pitching and acceleration of the vehicle are plotted in Fig. 7. It can be notice that ballast stiffness

can affect the dynamic response of the vehicle-bridge interaction significantly. The maximum and

r.m.s. displacement of the bridge and those of the vehicle are summarized in Tables 3 and 4. Similar

to the first example, the maximum displacements of the bridge and vehicle body are obtained when

the moving mass model is used, while the maximum accelerations of the bridge obtained is in the

analytical solution and the maximum vertical acceleration of the vehicle body is obtained in the

moving mass model. 

5. Conclusions

In this paper, a new iterative method for analyzing vehicle-bridge interaction system is proposed.

Iterative methods have advantages over the non- iterative methods in that it is not necessary to

update the system matrix for a given wheel location, and the method can be used for a new type of

car or bridge with minor or no modifications. In the proposed method, the interaction force term

contains the effect of ballast stiffness which is ignored in the previous iterative methods. Further,

the pitching effect, which is the interaction effect between the rear and front wheels when a vehicle

begins to enter or leave the bridge, is also considered in the formulation. This effect could be easily

formulated and solved in general ways using extended ground boundaries and the proposed

interaction forces containing the effects of surface roughness and ballast stiffness.

The versatility and applicability of the proposed method have been demonstrated in the numerical

examples. The first example shows that the proposed method matches well with the analytical

solution. The second example shows that the ballast stiffness can not be ignored for the dynamic

response of the vehicle-bridge interaction.

Table 3 Maximum and r.m.s response of the bridge

Model

Analytical Moving mass
Moving vehicle, 

kb(x) = ∞
Moving vehicle, 

kb(x) = 124,050 kN/m

Disp.
(m)

Acc. 
(m/sec2)

Disp. 
(m)

Acc. 
(m/sec2)

Disp. 
(m)

Acc. 
(m/sec2)

Disp. 
(m)

Acc. 
(m/sec2)

Max. value 6.641e-004 9.929e-001 8.119e-004 6.909e-001 6.727e-004 9.679e-001 7.367e-004 7.647e-001

r.m.s value 2.476e-004 2.250e-001 2.694e-004 1.830e-001 2.414e-004 1.835e-001 2.536e-004 2.284e-001

Table 4 Maximum and r.m.s response of the vehicle

Model
Moving mass

Moving vehicle,
kb(x) = ∞

Moving vehicle,
kb(x) = 124,050 kN/m

Disp. (m) Acc. (m/sec2) Disp. (m) Acc. (m/sec2) Disp. (m) Acc. (m/sec2)

Max. value 6.810e-004 3.470e+000 4.553e-004 7.657e-001 5.373e-004 1.895e+000

r.m.s value 2.245e-004 2.343e+000 1.990e-004 3.678e-001 2.247e-004 1.271e+000
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