
Structural Engineering and Mechanics, Vol. 30, No. 1 (2008) 119-129 119

The elastoplastic formulation of polygonal element 
method based on triangular finite meshes

Yong-chang Cai† and He-hua Zhu‡

Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, 

Department of Geotechnical Engineering, Tongji University, 200092, P.R. China

Sheng-yong Guo‡†

Ertan Hydropower Development Company, Ltd., 98 Shuanglin Road, Chengdu, 610021, P.R. China

(Received September 13, 2007, Accepted July 15, 2008) 

Abstract. A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is
developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are
constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can
directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating
polygonal elements. The Wachspress rational finite element basis function is used to construct the
approximations of polygonal elements. The incremental variational form and a von Mises type model are
used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are
presented to verify the advantages and the accuracy of the numerical formulation.

Keywords: elastoplasticity; polygonal finite element method; Wachspress basis functions; meshless
methods.

1. Introduction

The original idea of finite element was proposed by Courant in 1943. As an important tool for

solving Partial Differential Equation (PDE) boundary value problems, Finite Element Method

(FEM) has become a ubiquitous tool in scientific research and engineering practice (Bathe 1996). In

two-dimensional FEM analysis, the constant strain three-node triangular and the bilinear four-node

quadrangular elements are most commonly adopted by commercial software due to the simple

principle and the mature meshing algorithm in preprocessing.

Recently, Polygonal Finite Element Method (PFEM) has gained much attention, and advances

were made in this aspect. The shape functions on polygons can be mainly represented by the

rational basis function by Wachspress (1975) and natural neighbour-based Laplace interpolation as

well as Sibson interpolation (Sukumar and Moran 2001). Extensions of polygonal element methods
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based on the above methods were seen in Voronoi Cell Finite Element Method (VCFEM) (Ghost

1994), Natural Element Method (NEM) (Sukumar and Moran 1998), Natural Neighbor Galerkin

Method (NNGM) (Sukumar and Moran 2001), Conforming Polygonal Finite Elements (CPFE)

(Sukumar and Tabarraei 2004, Sukumar and Malsch 2006), and etc. The computational advantages

of these interpolations are overwhelming. It satisfies the kronecker-delta property, meets the linear

completeness requirement, and conforms the approximation between elements. It is simple and

efficient in simulating mechanical property of material. It is greatly flexible in meshing of complex

geometry and less sensitive to shear lock. It also has better numerical accuracy and higher rate of

convergence over triangular element and quadrangular element.

Although research on polygonal element has progressed in recent years, it is at its enfant stage

compared with conventional FEM and many problems need to be further studied. In this work, the

polygonal elements are constructed based on traditional triangular finite meshes. The construction

method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and

reduce the difficulty in generating polygonal element. A small strain elastoplastic formulation of

Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. Several

small strain elastoplastic numerical examples are given to demonstrate the accuracy of the proposed

method.

This paper is organized as follows: Section 2 describes the algorithm to generate polygonal mesh

based on triangular finite element; Section 3 introduces the Wachspress interpolation on polygons

and the mapping method from irregular polygonal element to canonical element; Section 4 provides

the small strain elastoplastic formulation; Section 5 gives several numerical examples to

demonstrate the accuracy and efficiency of the proposed method; Section 6 brings out the

conclusion.

2. Constructing algorithm for the polygonal elements

To directly construct polygonal mesh for an arbitrarily shaped analysis domain, like that of

triangular meshing or quadrangular meshing in FEM, was a most daunting task due to the

complexity of meshing algorithm. As the Voronoi diagram can be constructed through some

relatively mature algorithm, a commonly adopted method was to construct the polygonal element by

adjusting the Voronoi diagram of the analysis domain and then use the treated polygonal mesh for

analysis (Sukumar and Tabarraei 2004, Sukumar and Malsch 2006). However, some Voronoi

vertices could be very close to each other, and thus the polygonal mesh could become distorted.

Also, it is a rather complicated procedure when the polygonal element is to be constructed on the

boundary of the analysis domain by using Voronoi diagram. Therefore, it becomes practically

difficult to construct acceptable polygonal element by employing Voronoi diagram.

The following is the procedure used to construct polygon mesh in this paper.

For an arbitrary analysis domain, firstly we generate finite element mesh shown in Fig. 1 by using

mature triangular meshing algorithm. With today’s technology, this is realized without any difficulty.
Let the coordinate of the vertices of triangle be  respectively and the

central point of element is defined as . In Fig. 1, for any interior

point i, all six of its surrounding triangles could be found, such as <1>-<6>. Connecting the central

points of these triangles one by one, a polygonal element can be formed. 

For any given node k on the boundary in Fig. 1, its surrounding elements are (1), (2) and (3). A

x1 y1,( ) x2 y2,( ) x3 y3,( ), ,
x1 x2 x3+ +( )/3 y1 y2 y3+ +( )/3,( )
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polygonal element with vertices surrounding k is formed when the centers of the associate elements

and the mid points of the associate sides (k-e and k-f ) are connected.

In similar approach, polygonal mesh shown in Fig. 2 could be constructed on the basis of

triangular mesh as is shown in Fig. 1. The black dots in Fig. 2 are nodes of polygonal element. The

number of the polygonal elements equals to the number of the nodes of triangular mesh in Fig. 1.

This simply states that fewer polygonal elements in Fig. 2 are generated than triangular elements.

3. Wachspress interpolation

Rational basis function was firstly developed by Wachspress (1975) to build shape function on

irregular polygons. The Wachspress interpolation based on perspective geometry satisfies the

kronecker property and precisely linearity and continuity on boundary side. However, due to its

complicated construction process, it has received limited attention long time after.

The past several years has seen the rising interests on improving the Wachspress function which

helps to improve the usability of Wachspress interpolation (Dasgupta 2003, Dikshit and Ojha 1991,

Dikshit and Ojha 2002, Elisabeth and Gautam 2004, Floater 2003, Laydi and Aoubiza 1995, Meyer

and Lee 2002, Powar and Rana 1991). In this paper, a generalized barycentric co-ordinate for n-

gons by Meyer and co-workers (Meyer and Lee 2002) was used to calculate the shape function of

polygonal element according to the following. 

, , (1)

 
In the above equation,  is the signed area of triangle , and γi and δi are show in

Fig. 3(a).

Meyer and co-workers derived the coordinate expression for  and  where ,

Φi x( )
wi x( )

Σj 1=

n
wj x( )

-------------------------= wi x( )
A pi 1– pi pi 1+

, ,( )
A pi 1– pi p, ,( )A pi pi 1+

p, ,( )
------------------------------------------------------------

cotγi cotδi+

x xi–
2

----------------------------= =

A a b c, ,( ) a b c, ,[ ]

cotδi cotγi a1 a2,( )

Fig. 1 Triangular finite element mesh for an arbitrary
analysis domain

Fig. 2 Construction of polygonal mesh for an arbitrary
analysis domain
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 and  denote the co-ordinates of the vertices of triangle  and come to the

following

(2)

and  can be calculated in the same manner. 

Expression (1) and (2) are only applicable to calculate Wachspress shape functions for convex

polygons. Whereas the polygonal element obtained by the proposed method are of arbitrary

geometry and convex requirement might be violated. Thus the isoparametric map by Sukumar and

Tabarraei (2004) is utilized in this paper. For instance, an arbitrary polygonal element shown in

Fig. 3(a) was mapped to canonical element shown in Fig. 3(b). The Wachspress shape functions was

evaluated first in canonical element and then the interpolation was obtained for physical element.

The isoparametric mapping between Fig. 3(a) and Fig. 3(b) are determined by 

, (3)

In the above equation, n is the number of vertices of polygons and xi, yi denotes the coordinates

of vertices.

The rational function based on Wachspress interpolation on polygon is expressed as

(4)

Noting that except for the above Wachspress interpolation, the Point Interpolation (Liu and Gu

2001), the Radial Point Interpolation (Liu et al. 2002), and other meshless approximations (Lu et al.

2006, Most and Bucher 2005) can also be employed to construct the approximation of the

polygonal element in Fig. 3(a) and Fig. 3(b) and are capability of developing different types of

PFEM.

b1 b2,( ) x y,( ) pi pi 1+
p, ,[ ]

cotδi

pi 1+
pi–( ) p pi–( )⋅

pi 1+
pi–( ) p pi–( )×

-------------------------------------------------
b1 a1–( ) x a1–( ) b2 a2–( ) y a2–( )+

b1 a1–( ) y a2–( ) x a1–( ) b2 a2–( )–

--------------------------------------------------------------------------------= =

cotγi

x Φi ζ η,( )xI

i 1=

n

∑= y Φi ζ η,( )yi

i 1=

n

∑=

u
h
x( ) Φi ζ η,( )ui

i 1=

n

∑ Φ a⋅= =

Fig. 3 The calculation of Wachspress shape function for an arbitrary polygonal element
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4. Small strain elastoplastic formulation

Consider a two-dimensional problem with small displacements on the domain Ω bounded by Γ.

The elastoplastic problem can be described in incremental variational form

(5)

Where  is the stress tensor for the time t;  is the body force vector for the time t;  is the

traction boundary for the time t; Δε and Δu are the incremental strain and displacement for the

time t.

The incremental form of Eq. (4) is

(6)

The discretized system can be obtained by substituting Eq. (6) into Eq. (5)

(7)

where 

, ,

and 

(7a)

(7b)

(7c)

B is the strain matrix;  is the external load vector;  is the internal load vector;

 is the elastoplastic matrix.

The linear isotropic hardening law and the von Mises yield criterion are employed in this work.

The von Mises yield criterion is written as follows

(8)

where Sij denotes the stress deviator tensor and σY denotes the yield stress;  indicates effective

plastic strain.

Using the associated flow rule and the consistency condition, we get

(a) the plastic matrix Dp for plane stress case as

(9)
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where, ; ; E is the Young’s modulus;

μ is the Poisson’s ratio; H' is the tangent modulus.

(b) the plastic matrix Dp for plane strain case as

(10)

where  is the shear modulus.

Assume that at the time t, the stress state is in an elastic state and enters into an plastic state in

the time t + Δt. In such a case, there exists a scaling factor r which can be decided by

(11)

where the trial stress increment . Hence, the stress increment can be obtained as

(12)

The explicit method or implicit method can be used for the evaluation of the above integrations.

For ideal plasticity materials, we needn’t to compute the integrations of Eq. (12).

For the purpose of numerical integration of Eq. (7), the quadrature rules on a triangle are used by

sub-dividing the polygonal element V0 in Fig. 3(b) into sub-triangles. The polygonal element in

Fig. 3(b) is a canonical element in a local coordinate system  with (0,0) as its center, and

hence the canonical element V0 can be easily divided into n sub-triangles as shown in Fig. 3(b). The

numerical integration for a function  over Vi (a n-gons) is written as

(13)

where, Aj is the jth sub-triangle in Fig. 3(b) and wj is the weight of the quadrature point. In the

present work, three Gaussian points are used in each sub-triangle.

Newton-Raphson method is used for solving the nonlinear Eq. (7).

5. Numerical examples

The present Polygonal Finite Element Method (PFEM) is coded in standard C++. Cases are run in

order to examine the PFEM in two dimensional elastoplastic analysis.

5.1 Thick cylinder

Consider an axially restrained thick cylinder of inside radius a = 10 m, outside radius b = 20 m

and thickness t = 1 m as shown in Fig. 4(a). A distributed pressure p = 12 KPa is applied to the

inner boundary of cylinder. The material is ideal elastoplastic with Young’s modulus E = 85570 kPa
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and Poisson’s ratio μ = 0.3. The von Mises yield criterion is adopted and the initial yield stress σs =

. The problem is solved for the plane stress case. The solution to this problem is given as

follows (Chen 2003)

In plastic zone

, (14)

In elastic zone

, (15)

where σr is the radial stress; σθ is the shear stress; rs is the plastic radius and can be determined by 

10 3kPa
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Fig. 4 Thick cylinder: (a) model, (b) triangular meshes, (c) polygonal meshes, (d) plastic zone
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Fig. 5 Comparison of the radial stress for cylinder problem

Fig. 6 Comparison of shear stress for cylinder problem

Fig. 7 Comparison of displacement ur for cylinder problem
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(16)

The traditional triangular elements and the respective polygonal elements produced by the

algorithm of Section 2 are shown in Fig. 4(b) and Fig. 4(c).

The plastic zone (yield integral points) computed by PFEM is shown in Fig. 4(d). The

comparisons of the radial stress and the shear stress are shown in Fig. 5 and Fig. 6. The comparison

of displacement ur is shown in Fig. 7. We can find that the results obtained by PFEM are in good

agreement with the analytical solutions.

p
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rs

a
---

1

2
--- 1

rs

2
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2

-----–

⎝ ⎠
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Fig. 8 Cantilever beam:(a) model, (b) triangular meshes, (c) polygonal meshes, (d) plastic zone
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5.2 Cantilever beam

The second example considered here is a rectangular cantilever beam of length l = 40 m and

height h = 10 m as shown in Fig. 8(a). The beam is fixed at one end and subjected to concentrated

load P = 11 kN at the free end. The material is ideal elastoplastic and the Von Mises yield criterion

is adopted. The material parameters are E = 86670 kPa, μ = 0.3 and σs = . Plane strain

condition is assumed in this case.

The traditional triangular elements and the respective polygonal elements produced by the

algorithm of Section 2 are shown in Fig. 8(b) and Fig. 8(c).

The plastic zone (yield integral points) obtained by PFEM is shown in Fig.8(d). The comparisons

of the displacement uy are shown in Fig. 9.

6. Conclusion

In this paper, a method for polygonal mesh generation based on traditional triangular finite

meshes was adopted. This method can overcome the difficulty in generating polygon mesh and can

serves as a good basis for further research and for the application of polygonal finite element

method. The rational finite element basis function proposed by Wachspress and revised by Meyer

and co-workers, was used to construct the approximations of polygonal element. An incremental

form of small strain elastoplastic formulation of Polygonal Element Method (PEM) is developed for

efficient analysis of two-dimensional solids. Several numerical examples are given to demonstrate

the efficiency and accuracy of the proposed method.
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Fig. 9 Comparison of displacement uy at y = 0 for Cantilever beam
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