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Abstract. This paper presents a comprehensive approach to the evaluation of macroscopic material
parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a
meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of
both basic components, as well as the impaired cohesion and tensile strength on the interface between the
blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a
suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material
parameters of individual constituents either experimentally or running a mixed numerical-experimental
problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive
strengths and fracture energy. 
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1. Introduction

Masonry structures have been extensively used in the whole history of mankind, mainly due to a
wide availability of the material as well as its good mechanical properties. In the past, the design and
construction of these structures were based on a balanced combination of experience and trial-and-
error methods. Even nowadays, in spite of the progress in constitutive and numerical modelling, the
fact remains that the engineering approach to these structures builds upon a number of simplifying
assumptions and phenomenological relations, see e.g. (Lourenço 2002) for further discussion.

However, the limitations and even the inadequacy of such assumptions call for more advanced
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constitutive models to provide a solid prediction of the mechanical response of masonry structures.
Material models, already developed in the distant past, can be broadly classified into two main
categories. The first category is characterized by closed-form macroscopic constitutive laws (Pande
et al. 1989, Lourenço et al. 1997, Papa and Nappi 1997). In the second category, a mesoscopic
approach is used by interpreting each of the constituents (i.e., stone blocks and mortar joints) as an
individual body, endowed with specific geometric and material properties (Hart et al. 1988,
Lourenço and Rots 1997, Giambanco et al. 2001, Wang et al. 2006). This category also includes a
novel methodology of modelling masonry on a mesostructural scale using the partition of unity
concept of finite element shape functions presented by De Proft and Sluys (2005). While big
savings on a computational effort constitute the main benefit of the first concept, the lack of a well-
founded mechanical basis, however, could be one of its crucial drawbacks. 

Most modern approaches are therefore based on the conjunction of both concepts. They may be
regarded as essentially continuous models enriched with a deep micromechanical insight, and could
be referred to as multi-scale approaches, see (Anthoine 1995, 1997, Phillips 1998, Smit et al. 1998,
Michel et al. 1999, Kouznetsova et al. 2001, Massart et al. 2007) and references therein. Therein,
the so-called standard multi-scale method that intrinsically couples both the mesoscopic and
macroscopic scales of representation is introduced. However, its application is restricted to situations
in which the principle of the separation of scales is preserved. It means that the mesoscopic
characteristic length is much smaller than the length scale associated with the variations of fields on
the macro-scale. Masonry structures are, unfortunately, a typical example where such an assumption
may fail. A promising solution to this problem is introduced in (Massart et al. 2007) where a multi-
scale approach relying on the first-order homogenization framework is enhanced in such a way that
both scales are fully coupled in the entire structural computation and a finite width of the damage
band model is added to the macroscopic description in order to allow the treatment of macroscopic
localization resulting from a damage growth in the constituents. 

Regardless of the material systems being investigated, the above-mentioned solution strategy was
applied exclusively to two-dimensional structures. When referring specifically to masonry structures,
only simple 2D panels made up of regular brickwork were analyzed. A straightforward extension of
fully coupled multi-scale strategies to real, generally large three-dimensional, masonry structures

Fig. 1 (a) A view of a typical bridge arch showing a regular arrangement of stones in masonry, (b) a crack
running both across stone and along a head joint 
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still appears computationally unfeasible. It therefore follows that, in typical applications of
engineering practice, the analysis on individual scales would likely be kept entirely independent. An
assessment of three masonry towers subjected to different loading conditions, studied in (Carpinteri
et al. 2006), supports this opinion. Such a methodology, promoted by a recent need for a repair and
rehabilitation of Charles Bridge in Prague, is also adopted in the present contribution. While a fully
three-dimensional structural (macroscopic) nonlinear analysis is performed to provide estimates of
the current state of damage and to unveil the main sources of possible failure of complex historical
structures, see e.g., Fig. 1(b), a detailed independent mesoscopic analysis is used for the predictions
of homogenized (macroscopic) material parameters. As a result of such a sequential multi-scale
computational approach the timetable, computational cost and reliability of the expected results can
be well balanced.

Once the homogenized material parameters are available, the subsequent macroscopic structural
analysis becomes a relatively standard task. We therefore limit our attention to the first step
concerned with the formulation of a reliable method estimating material parameters characterizing
the effective mechanical properties, including fracture energy, of the masonry to be analyzed.
Special attention is focused on the homogenization of quarry masonry and masonry with an
irregular geometry. 

In particular, the solution procedure relies on a well founded first-order homogenization strategy
outlined, e.g., by Michel et al. (1999). In view of historical masonry structures, its application
requires the solution of three specific problems:
• Formulation of a periodic representative volume element (RVE) for a masonry structure with a

disordered geometry. The respective PUC results from matching geometrical statistics related to
the original structure and the idealized cell, respectively. A brief review of this concept is
outlined in Section 2.

• Derivation of local material parameters that appear in the selected material model. Here, the
constitutive model implemented in the ATENA commercial computer code ( ervenka et al.

2002), which allows us to treat both basic components as quasi-brittle materials, is adopted.
While material parameters of individual constituents are easily provided by standard
experiments, see e.g. (Novák et al. 2006), the behaviour along their interfaces, crucial for
reliable estimates of the homogenized response, is likely to be predicted from a combined
numerical – experimental analysis. This new insight into the mesoscopic modelling of historic
masonry is presented in Section 3.

• Nonlinear homogenization at the level of the PUC providing the desired homogenized effective
material properties such as elastic stiffness, the macroscopic tensile and compressive strengths
and in particular the macroscopic fracture energy. This step is addressed in Section 4.
A homogenization-based approach to the prediction of the macroscopic fracture energy is further
validated through an independent study that draws on a series of numerical representations of
the macroscopic wedge splitting test assuming specimens of variable ligament lengths. Further
applications of both linear and nonlinear analysis at the level of the PUC can be found in, e.g.
(Anthoine 1995, 1997, Massart 2007). 

In this work, symbols a, a and A denote a scalar, a column vector and a matrix, respectively.
Moreover, the standard Voight notation is employed for the representation of symmetric second- and
fourth-order tensors, see e.g. (Bittnar and Šejnoha 1996). 

C
ê
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2. Mesoscopic geometrical modelling: Definition of PUC

When adopting the sequential multi-scale modelling approach, the specification of the geometry
on the mesoscale is provided by a notion of the Representative Volume Element (RVE), which
corresponds to the statistically equivalent sample of the analyzed part of the structure. In the context
of historical masonry structures, three typical material morphologies can be identified:

Fig. 2 Typical masonry morphologies and corresponding unit cells: (a) regular periodic masonry, (b) non-
periodic texture, (c) irregular quarry filling 
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• Regular periodic stone masonry, Fig. 2(a), characterized by a Periodic Unit Cell with
geometrical parameters specified by on-site measured parameters

• Masonry with a non-periodic arrangement of individual blocks, Fig. 2(b). In this case, the
geometry of the real-world material is specified by a Statistically Equivalent Periodic Unit Cell,
derived by a methodology proposed by Povirk in (Povirk 1995) and further extended by Zeman
and Sejnoha (2001, 2007). The procedure is based upon replacing the complex and possibly
non-periodic structure by a simpler PUC, which still optimally resembles the original material in
the sense of selected geometrical statistical descriptors. Note that this approach is well-suited for
the current application as it allows a direct use of digitized photographs of real-world structures;
see (Cluni and Gusella 2004, Zeman and Šejnoha 2007) for more details related to the
application to irregular masonry structures.

• Irregular filling (quarry masonry) of selected parts of the bridge. In this case, a representative
volume element is an expert estimate based on the elementary statistical characterization
obtained from dug holes, such as size distribution of individual stones and basic shape
characterization. An example of such a structure is shown in Fig. 2(c). 

Once an appropriate geometrical model, the PUC, of a given material system is specified, the
subsequent homogenization analysis can be executed for each system independently. Owing to space
limitations, in the subsequent sections we focus on the most complicated system, quarry masonry,
shown in Fig. 2(c).

3. Local material parameters: Mixed experimental and numerical modelling and

model calibration

Unlike material parameters of individual constituents, which can be derived from conventional
laboratory experiments, the estimates of model parameters along the common interface represent a
rather delicate task. The problem becomes particularly important realizing the quasi-brittle character
of both the mortar and stone phase, manifested by strain softening which emerges once the tensile
strength has been exceeded. This leads (in dependence on the fracture toughness of stone and
mortar) to the localization of inelastic strains mainly into the mortar joints between stone blocks. 

A reasonably simple approach allowing for the prediction of material parameters of the interface
transition zone (ITZ) relies on an appropriate numerical-experimental analysis. There is a variety of
techniques of how to optimize the input data. One approach is very simple and starts from a set of
input parameters based on the “trial and error” procedure. The calculated loading path is compared
with that obtained experimentally. The least square method applied to minimize the difference
between the calculated and measured loading force (the test is controlled by displacement) then
yields the optimized model data. Another way, adopted in the present contribution, stands to benefit
from sets of randomly generated input data using Monte Carlo or LHS Sampling methods. The best
choice of the optimized input data again takes advantage of the least square method. 

3.1 Description of material test 

When examining heterogeneous materials it is rather difficult to reach the correspondence of the
results obtained experimentally and using computational simulations. As for quarry masonry the
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problem consists in both the common texture of random character and somewhat vague material
properties of the interfacial transition zone between the mortar joints and stone blocks, see
(Vandoros and Dritsos 2006) for a related study. Lower values of cohesion and tensile strength are
mainly affected by two phenomena: First, suction in the pores of dry blocks changes the water
content in mortar causing incomplete hydration of the bonding agent. The second detrimental source
of impaired contact properties are air bubbles in the pores of dry stone blocks. This is the reason
why the strength of the masonry made up of blocks saturated with water before blocklaying (i.e.,
with no bubbles in the pores of blocks) distinctively increases when compared with the masonry
made up of dry blocks.

All the reported computational simulations are performed similarly to our preceding works with
the aid of the ATENA commercial software utilizing a plastic-fracturing NonLinearCementitious
model exploiting the mesh-adjusted softening modulus in the smeared-crack approach to avoid the
mesh dependent results ( ervenka 2002, ervenka et al. 2002). The code allows us to account for
the reduced cohesion and tensile strength of the ITZ by means of contact elements. The material
model assumes the Mohr-Coulomb criterion with a corresponding yield surface cut-off by a tensile
and compressive cap. The random texture of masonry generally tends to be described by means of
the SEPUC (Povirk 1995, Zeman and Šejnoha 2007). However, in this section the actual image of
the sample used for the experimental examination has been subjected to the finite element
discretization, see Fig. 3.

Loading in compression was selected because in this particular case the satisfactory
correspondence of the computationally obtained results with experimental outputs is rather difficult
to achieve. The load vs strain diagrams obtained by the loading test are displayed in Fig. 4 and
serve as bases for the calibration of the computational model. The positions of strain gauges 1-4 are
evident from Fig. 3. 

A detailed finite element discretization is displayed in Fig. 5. The proposed model with contact
elements along the contours of individual stone blocks is depicted in Fig. 5(a). Fig. 5(b) shows
simplified mesostructural modelling in which the blocks are enlarged up to the middle surface of the
mortar joint and the interconnection between the two adjacent blocks is performed by contact
elements of zero thickness.

C
ê

C
ê

Fig. 3 Crushing test of a quarry masonry sample
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3.2 Model verification and results of solution

Two variants of the solution are applied to solve this problem. The plots presented in Fig. 6
pertain to the enhanced model with contact elements situated along the boundary between the stone
blocks and mortar (see Fig. 5(a)). Similar results, based on the trial and error strategy, were

Fig. 4 Loading paths: Load vs strain (ε1  to ε4) curves

Fig. 5 Finite element mesh of a quarry masonry sample: (a) enhanced model, (b) simplified model
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obtained by applying the simplified approach and substituting the real mortar texture by a set of
expanded stone blocks interconnected with contact elements (see Fig. 5(b)). The material parameters
of individual components of the model are summarized in Table 1. Note that the quasi-brittle
characteristics of stone blocks and mortar were determined from a series of experimental tests
executed at the Klokner institute, CTU in Prague (Novák et al. 2006), and kept constant during the
identification procedure. The parameters of the interface, on the other hand, are calibrated using an
experimental-numerical approach.

To select the optimal solution, the least square method is applied to the objective function in this
simple form

(1)F ε pi,( )[ ] F ε( )–{ }
2

dε
0

ε
max

∫ min.=

Fig. 6 Calibration of the enhanced model (random population)

Table 1 Material parameters of individual components

Stone

E [GPa] ν [−] fc [MPa] ft [MPa] GF [N/m]

20.21 0.16 71.02 8.34 85.50

Mortar

E [GPa] ν [−] fc [MPa] ft [MPa] GF [N/m]

5.30 0.18 6.10 1.31 6.70

ITZ

c [MPa] ϕ [−] ft [MPa]

0.13 0.30 0.10
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In Eq. (1), pi, , represent three material parameters of the contact, i.e., the cohesion c,
the tensile strength ft and the angle of internal friction ϕ. These parameters fundamentally influence
the dependence of the applied force on the prescribed displacement of the upper support, see Fig. 3.
Considering the arrangement of the experimental test, the strain ε1 (Figs. 3 and 4) has been inserted
into Eq. (1) instead of the absolute displacement of the upper support. To reach a better agreement
of the predicted loading path with that obtained experimentally, especially in the elastic phase, it is
expedient to adjust by the back analysis also some of the material parameters pertaining to basic
materials, e.g., the Young modulus of stone blocks.

i 1 2 3, ,=

Fig. 7 Verification of both model variants

Fig. 8 Distribution of cracks pertinent to the maximum of experimentally prescribed strain: (a) enhanced
model (loading step 146), (b) simplified model (loading step 40), magnified twice
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The optimized load-strain diagrams obtained by both model variants are compared with
experimental results, in particular with the strain measured in the loading direction in Fig. 7. The
distribution of cracks, which corresponds to the maximum experimentally prescribed strain, is
shown in Fig. 8 again for both variants of the computational model. The experimentally observed
crack pattern is depicted in Fig. 3 for further comparison.

4. Prediction of effective properties in quarry masonry

Estimates of the ultimate load bearing capacity of historical structures often require a complex
nonlinear full scale analysis. Clearly, introducing all geometrical details of the meso-structure within
a macroscopic computational model would be prohibitively expensive. The crucial step thus appears
in the derivation of the estimates of macroscopic or homogenized effective properties (Torquato
2002, Milani 2004). 

In particular, having derived the relevant local material parameters this task is accomplished with
the help of the first-order homogenization technique based on periodic fields. The theoretical
formulation is briefly reviewed in Section 4.1. With reference to the application of periodic fields, no
objections represented by the PUC are expected when estimating the elastic effective properties, see
e.g. (Michel et al. 1999). However, when it comes to material parameters describing failure one may
argue that the concept of homogenization based on periodicity assumptions and the existence of
uniform fields is objectionable, especially if dealing with quasi-brittle materials prone to localized
rather than distributed damage. In the present approach, however, when the analysis on two relevant
scales is totally uncoupled, the homogenized properties are introduced directly into the macroscopic
constitutive law. As no back reference to the actual heterogeneous meso-structure is made, the
evolution of a highly localized failure zone due to strain softening is correctly captured by the
macroscopic model. As an example of this approach, in Section 4.2 we present numerical predictions
of macroscopic fracture energy. Section 4.3 finally provides validation of the applicability of the
homogenization technique by comparing the results derived from the periodic unit cell analysis and
those found from a numerical simulation based on the concept of the macroscopic wedge splitting
test often used in experimental determination of macroscopic fracture energy (RILEM 1985,
Brühwiler and Wittmann 1990, Bažant and Kazemi MT 1991, Šejnoha et al. 2006).

 
4.1 First-order homogenization - theoretical formulation and boundary conditions 

Consider a heterogeneous periodic cell Y subjected to a uniform macroscopic strain E. In view of
the periodicity of the cell, the strain and displacement fields in the PUC admit the following
decomposition

, (2)

The first term in Eq. (2a) corresponds to a displacement field in an effective homogeneous
medium which has the same overall response as the composite aggregate; see e.g. (Michel et al.

1999) and references therein. The fluctuating Y-periodic displacement u* and the corresponding
strain ε* enter Eq. (2) as a consequence of the presence of heterogeneities. Note that the periodicity
of u* further implies that the average of ε* in the unit cell vanishes. The local stress fields σ in the
PUC are constrained by equilibrium conditions 

u x( ) E x⋅ u
*

x( )+= ε x( ) E ε* u
*

x( )( )+=
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(3)

together with appropriate constitutive laws. Note that the symbol ∂Τ denotes the “equilibrium”
operator matrix (Bittnar and Šejnoha 1996). Combining Eqs. (3) and (2) and the stress-to-strain map
allows us to determine the distribution of the fluctuating displacement u* within the cell as a
function of E and subsequently to evaluate the macroscopic average stress Σ in the PUC. This
procedure yields the homogenized constitutive relation in the form

(4)

In the present work, the Finite Element-based homogenization is based on the concept of
controlling points introduced by Teplý and Dvo ák (1998) see also (Kouznetsova et al. 2001,
Massart et al. 2007). In this context, the macroscopic strain load E is imposed on the cell by
prescribing the values of displacements u and v in points 1, 2, and 3 as indicated in Fig. 9. For this
particular choice, the following relation between the controlling displacements and the macroscopic
strain components holds

(5)

where H and L are the dimensions of the rectangular PUC shown in Fig. 9. The periodic character
of the fluctuating part of the displacement u*, recall Eq. (2), is introduced using linear constraints
between the homologous edges of the unit cell

(6)

which can easily be introduced in the majority of commercial codes. 
Finally, using the equilibrium conditions on the corresponding edges of the PUC, the values of the

∂
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Fig. 9 Scheme of a PUC and controlling points
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macroscopic stresses can be directly extracted from the reaction forces acting on the selected
controlling points (see (Teplý and Dvo ák 1998, Kouznetsova et al. 2001, Massart et al. 2007) for
further details)

(7)

where t is the thickness of the PUC and, e.g.,  stores the reaction force at node 1 in the x axis
direction.

4.2 Prediction of macroscopic fracture energy from homogenization 

A methodology for evaluating the size independent fracture energy GF from homogenization was
discussed in detail in (Novák et al. 2005, Zeman and Šejnoha 2007). It was shown that, in the case
of a straight crack perpendicular to the principal strain, Exx, this quantity can be expressed as the
area under the macroscopic stress-strain curve displayed in Fig. 10(a) and multiplied by the length
of the periodic unit cell L as

(8)

where Wc is the assumed macroscopic crack opening displacement. 
Generalization of Eq. (8) suitable to a more complicated crack pattern of Fig. 11 (typical of quarry

masonry), and yet consistent with the RILEM work-of-fracture relation (11) introduced in (RILEM
1985), reads

(9)

where a represents the total length of traction free surfaces. 
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Fig. 10 PUC analysis: Macroscopic stress-strain curves: (a) tensile loading, (b) compressive loading
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A similar approach can also be employed for the yy-direction. Providing the two values of
fracture energies  and  vary due to their inherited orthotropic behaviour one may accept the
single value fracture energy to be introduced in the macroscopic constitutive law, generally assumed
isotropic, in the form

(10)

Note that the elastic limit point on the stress strain curve in Fig. 10(a) represents the homogenized
(macroscopic) tensile strength. The results of the compression test plotted in Fig. 10(b) then serve to
extract the corresponding macroscopic compressive strength.

4.3 Effective fracture energy from macroscopic simulations - wedge splitting test

The specific fracture energy  determined as the total work of fracture divided by the
projected fracture area

(11)

may experience, owing to the variation of the fracture process zone, a certain size dependence
(RILEM 1985, Brühwiler and Wittmann 1990). Recall that parameters W, a and B in Eq. (11)
represent the specimen depth, the initial crack length (wedge depth) and the specimen thickness,
respectively, see also Fig. 12(a). The specific fracture energy Gf can be expressed as the mean value
of the local fracture energy  as

(12)

Assuming a bilinear form of gf depicted in Fig. 12(c), the relationship between Gf and the size

GF
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GF GF
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=
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gf x( )

Gf a( ) 1
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------------- gf x( )dx gf a( )≤

0

W a–
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Fig. 11 PUC analysis: Distribution of cracks for irregular arrangement of blocks: (a) onset of cracking, (b)
ultimate failure
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independent fracture energy GF is given by, see (Duan et al. 2003)

, (13)

(14)

where al stands for the transition ligament size, see Fig. 12(c). The least square method is usually
called for to derive the two unknown parameters GF and al from a series of tests with a different
notch to depth ratio as long as .

Moreover, (Karihaloo et al. 2003) promoted the possibility of deriving the two unknown
parameters from a single size specimen with only two notches to depth ratios providing they are
well separated. This particular option was also examined in the present study. Nevertheless, four
specimens with variable notch to depth ratios, Fig. 12(b), were analyzed first to confirm the
variation trend of the size dependent fracture energy Gf, Fig. 12(c), together with the applicability of
Eqs. (13) and (14).

The finite element discretization of two specific samples with the smallest and the largest notch to

Gf a( ) GF
W a–

2al

-------------= a W al–≥

Gf a( ) GF 1
al

2 W a–( )
--------------------– ,= a W al–≤

W a–( ) al>

Fig. 12 Wedge splitting test: (a) experimental setup, (b) view of selected notches, (c) graphical representation
of fracture energies
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Fig. 13 Wedge splitting test: Geometry and finite element mesh: (a) shallow notch, (b) deep notch

Fig. 14 Wedge splitting test: Distribution of cracks: (a) shallow notch, (b) deep notch

Fig. 15 Wedge splitting test: (a) macroscopic response, (b) estimated fracture energy
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depth ratio appears in Fig. 13. The complicated crack patterns for the two specimens are displayed
in Fig. 14. 

It is worth noting a rather unrealistic long tail in the force-displacement diagram (see Fig. 15) for
some of the specimens. The final plot of fracture energies Gf presented in Fig. 15(b) also
demonstrates the quality of the results noting that numerically obtained values of individual fracture
energies Gf follow the expected trend reasonably well. Finally, the two values for the smallest and
the largest notch to depth ratios were introduced into Eqs. (13) and (14) to estimate the size
independent fracture energy GF and the transition ligament size just to check the imposed constrain
condition, .

To account for the effect of the ITZ, the above analysis was carried out again, but this time the
computational model was enhanced by introducing contact elements along the stone block-mortar
interfaces. The results in Fig. 15(b) clearly show the expected drop of the size independent fracture
energy GF.

The values of fracture energies derived from both approaches considering perfect as well as
imperfect bonds between the stone block and mortar phases are stored in Table 2. A good
agreement between both methods is self-evident thus supporting the applicability of the
homogenization technique even in applications involving strain-softening materials.

5. Discussion and conclusions 

In order to realistically model masonry structures with complex geometries, the non-linear
response of individual components must inevitably be taken into account as described in Sections 3
and 4.

In Section 3 the efficiency of a detailed computational model for quarry masonry has been
compared with that of a simplified model, in which the contacts between the adjacent stone blocks
are conveyed by contact elements of zero thickness. These elements are placed onto the middle line
(in 2D modelling and/or the middle surface in 3D modelling) of the mortar bed. The respective
stone blocks are expanded up to this boundary. The improved model combines the finite elements
when discretizing the mortar joints with contact elements to cover the impaired material properties
of the ITZ. Fig. 7 suggests that both models are viable and applicable in engineering practice. Point
out that the augmented model shows certain merits: (i) a better agreement of the computationally
predicted response with that obtained experimentally, both in the elastic region as well as in the
state with fully developed cracks (plateau of the load – strain diagram preceding the collapse of the
analyzed sample); (ii) the back analysis is restricted to a small set of relatively close and only
slightly scattered curves; (iii) the image of cracks predicted by computational simulations seems to
be a better approximation to the real pattern of cracks, compare Fig. 3 and Fig. 8.

Someone may object that, from the practical point of view, the differences between the presented
results are insignificant. This opinion may perhaps be accepted in the case of mechanical loading.

W a–( ) al>

Table 2 Size independent fracture energies GF [N/m]

Wedge splitting test Homogenization

Perfect bond Imperfect bond Perfect bond Imperfect bond

64 33 67 31
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On the other hand, no simplification of this kind can be made when analysing transport processes in
masonry considering heat and moisture fluxes across the ITZ. In this very important case an
imperfect hydraulic contact on the interface manifests itself by different pore size distributions of
the adjacent porous materials which results in a jump in capillary pressures ( erný and
Rovnaníková 2002). It is plain enough to expect that the jump in capillary pressures yields a
corresponding jump in the temperature field. This easily follows from the application of weak
formulation to the heat balance equation including convective terms. This problem will be discussed
in detail in a forthcoming journal paper.

Clearly, both models are applicable to the non-linear homogenization of effective (macroscopic)
material properties, which are necessary for the integrity assessment of masonry structures. In
Section 4, two specific approaches to the derivation of macroscopic (effective) fracture energy
needed in full scale macroscopic simulations were examined. The first approach exploits the well
known elements of the first order homogenization in conjunction with the statistically equivalent
periodic unit cell, while the second approach draws on the numerical representation of standard
laboratory tests proposed for the determination of size independent fracture energy for quasi-brittle
materials including concrete and masonry structures. A comparison of the results suggests a good
agreement between individual approaches and therefore their applicability for the present problem.
Owing to its relative simplicity over the more tedious wedge splitting test, the former approach
appears to be the more efficient one particularly in the case of virtual (numerical) experiments. 

The macroscopic material data obtained in the way described in Sections 3-4, was used in the
ATHENA 3D code to perform a detailed three dimensional analysis of Charles Bridge in Prague
(Zeman et al. 2008).
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