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On the limit cycles of aeroelastic systems with 
quadratic nonlinearities
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Abstract. Limit cycle oscillations of a two-dimensional airfoil with quadratic and cubic pitching
nonlinearities are investigated. The equivalent stiffness of the pitching stiffness is obtained by combining
the linearization and harmonic balance method. With the equivalent stiffness, the equivalent linearization
method for nonlinear flutter analysis is generalized to address aeroelastic system with quadratic
nonlinearity. Numerical example shows that good approximation of the limit cycle can be obtained by the
generalized method. Furthermore, the proposed method is capable of revealing the unsymmetry of the
limit cycle; however the ordinary equivalent linearization method fails to do so.
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1. Introduction

Aeroelastics considers structures subjected to structural, aerodynamic and inetia forces. Structures

such as airfoils (Lee et al. 1999a, Chowdhury and Sarkar 2004), bridges (Gu et al. 2001, Ding et al.

2002a) and beam structures (Wang 2003) can oscillate stably or unstably induced by the wind. The

complex statics and dynamic behaviors of structures in the wind/air have stimulated the interests of

many reseachers and engineers (Gu et al. 2001, Ding et al. 2002b, Moon and Lee 2002).

A nonlinear aeroelastic system of airfoil, mainly considered in this paper, is one of the typical

self-excited systems. As the flow velocity increases beyond the linear flutter speed, the airfoil

oscillates with a limited amplitude, namely, the limit cycle oscillation. Predicting amplitude and

frequency of flutter oscillations via analytical or numerical techniques has been an active research

area for many years. Harmonic balance (HB) method has been extensively used to analyze

nonlinear aeroelastic systems (Lee et al. 1999a). The equivalent linearization method (ELM), as

another version of the HB method (Liu et al. 2006), was also widely applied in nonlinear flutter

analysis. Using the ELM, linearized systems of the considered nonlinear problems can be obtained,

and then the traditional methods for linear flutter analysis can be employed. The effectiveness of the

ELM has been validated by many authors. Using this method, Liu and Zhao (1992) studied the

bifurcation of an airfoil with a cubic pitching nonlinearity. Yang (1995) studied the flutter models of

a two-dimensional wing and a delta wing with external stores. Tang et al. (1998) addressed the limit

cycle behavior of an airfoil with a control surface. Also, Shahrzad and Mahzoon (2002) employed
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the ELM to investigate three flutter models, i.e., the steady linear, steady nonlinear and unsteady

nonlinear models.

Note that all the above-mentioned studies considered only cubic nonlineaities. Actually, the ELM

can work well for the aeroelastic systems with only odd nonlinearities. Well known, even

nonlinearities exist in many aeroelastic systems. For example, they may arise as structural

nonlinearities (Coller and Chamara 2004, Chamara and Coller 2004) or come from aerodynamic

forces, e.g., the nonlinear steady flow flutter model (Shahrzad and Mahzoon 2002). However, the

ELM fails to deal with the systems containing even nonlinearities because the equivalent stiffness

corresponding to even stiffnesses cannot be obtained at its present state (Shahrzad and Mahzoon

2002). To this end, it is necessary and worthwhile to generalize the ELM for studying aeroelastic

systems with both quadratic and cubic nonlinearities.

In this paper, we consider an aeroelastic system containing both quadratic and cubic pitching

nonlinearities. Firstly, we employ a new analytical method for nonlinear oscillators i.e., practicing

the linearization prior to the harmonic balancing (Lim and Wu 2003), to propose an approach for

obtaining the equivalent stiffness of the pitch stiffness. This pitch stiffness consists of a linear part

and quadratic as well as cubic nonlinearities. Then, the equivalent stiffness is introduced to modify

the ELM for the limit cycle of the studied nonlinear aeroelastic system.

2. Equation of motions

An aeroelastic model of a two-dimensional airfoil in unsteady flow is inherently infinite

dimensional. Dimension-reducing of the aeroelastic model has stimulated the interest and curiosity

of many authors. For example, Lee et al. (1999b) reduced the aeroelastic model as a system of eight

first order ordinary differential equations. Coller and Chamara (2004) derived a lower order flutter

model with only six first order ordinary differential equations, which is equivalent to the one

obtained by Lee et al. (1999b). Besides, Hall et al. (2000) and Thomas et al. (2004) developed an

orthogonal decomposition technique for transonic unsteady flows. In order to present the

generalized ELM more explicitly, we consider only the steady flow model (Liu and Zhao 1992).

Fig. 1 Sketch of a two-dimensional airfoil
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The physical model shown in Fig. 1 corresponds to a two-dimensional airfoil oscillating in pitch

and plunge. The pitch angle about the elastic axis is denoted by α, positive with the nose up, and

the plunge deflection is denoted by h1, positive in the downward direction. The elastic axis is

located at a distance ahb from the mid-chord, while the mass center is located at a distance xαb from

the elastic axis. Both distances are positive when measured towards the trailing edge of the airfoil.

Let rαb be the radius of gyration of the airfoil with respect to the elastic axis, and ωh, ωα
 be the

eigenfrequencies of the constrained one-degree-of-freedom system associated with the linear

plunging and pitching springs, respectively. cα and ch are the coefficients of damping in pitch and

plunge, respectively.

In terms of non-dimensional time  (t1 is the real time) and non-dimensional plunge

displacement , the coupled motions of the airfoil in incompressible steady flow can be

described as (Zhao and Yang 1989, Liu and Zhao 1992)

 (1)

where the superscript denotes the differentiation with respect to t. The symbol V above represents

the potential for the elastic restoring forces

(2)

Thus, we consider a pitch spring with quadratic and cubic nonlinearities. The values of the

parameters are listed as follows: , , , , ,  =

0.2,  and the damping terms 0.1 , 0.1  (Liu and Zhao 1992). Substitutions of these

values into Eq. (1) result in

(3)

where  is called the generalized flow speed and the restoring force in pitch degree of

freedom (DOF) is given by

(4)

Rewrite  as  and take  as an illustrative

example to validate the proposed method, that, we have k1 = 0.5, k2 = 2 and k3 = 20.

3. Equivalent stiffness

The free oscillations of the airfoil in the uncoupled pitching mode can be described as

, (5)
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where the coefficients k1, k2 and k3 are the same as mentioned above, the initial displacement A is a

constant. Without loss of generality, we suppose that A > 0. Letting keq be the equivalent stiffness

and ω be the fundamental frequency of the solution of Eq. (5), we have (Caughey 1963)

 (6)

Under the transformation , Eq. (5) becomes

(7)

where the superscript denotes the differentiation with respect to τ. The solution of Eq. (7) is

periodic. Considering the initial conditions, we let

(8)

be the initial approximation of , where  is described as (Lim and Wu 2003)

(9)

and  is referred to as the correction part. Note that both  and  are functions of τ

with the period as 2π.

Substituting Eqs. (8) and (9) into (7), then expanding (7) as Taylor series of  and retaining

only the first power, we obtain

(10)

Choose the correction part as
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initial conditions described in (5). Substituting Eq. (11) into (10), then expanding (10) as Fourier
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Eliminating c1 and c2 and after some algebraic manipulations, we have

(13)

where  and  

.

Two solutions of Eq. (13) with respect to ω2 (considered as an independent unknown) can be

solved, i.e.,

(14)

Substituting ri,  and sj, j = 1, 2 into Rk, k = 0, 1, 2, letting A approach 0 we can

obtain the following equations

(15)

 (16)

 (17)

where the symbol O(Ai),  denote small quantities at the same order of Ai. Substitutions

of Eqs. (15)-(17) into (14) provide us with

, (18)

Eq. (18) means that ω1 converges to the exact frequency solution of Eq. (5) as A approaches 0. It

is shown in Fig. 2 that the approximations obtained by ω1 are in good agreement with the exact

frequency solutions. Therefore,  is chosen as the equivalent stiffness corresponding to the

pitching stiffness. 

R2ω
4

R1ω
2

R0+ + 0=

R2 8 r1A s1+( ), R1– s1 2r1 r2 r5– 8r3–+( ) A r2r5 r1
2

+( ) 8s2r1+ += = R0 s1 r1r3( r1r4– r2r3+–=

r4r5) s2 r1
2

r2r5+( )–

ω1

2 R1– R1

2
4R2R0––

2R2

--------------------------------------------= , ω2

2 R1– R1

2
4R2R0–+

2R2

---------------------------------------------=

i 1 2 … 5, , ,=

R0 k1A O A
2( )+[ ] 4k1

2
O A( )+[ ] O A

2( )+– 4k1

3
A– O A

2( )+= =

R1 O A
2( ) A 4k1

2
O A( )+[ ] 8 k1A O A

3( )+[ ] 2k1 O A( )+[ ]+ 20k1

2
A O A

2( )+=+=

R2 8 2k1A O A
2( )+[ ]– 16k1A– O A

2( )+= =

i 1 2 …, ,=

ω1

2

A 0→

lim k1= ω2

2

A 0→

lim
k1

4
----=

keq ω1

2
=

Fig. 2 Frequency of the free oscillation in uncoupled pitching mode. Real line: exact solution; dashed line:
ω1(A)
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4. Equivalent linearization method

Next, the equivalent stiffness  is employed to generalize the ELM for system (3). The

restoring force  is replaced by the equivalent restoring force .

A schematic representation of limit cycle oscillation in pitch DOF is presented in Fig. 3, where A0

denotes the distance from the center of the phase plane to the origin and A1 denotes one half of the

distance from the negative to the positive extreme of α. In addition, we let P(A) = A and −N(A) be

the positive and negative extremes of α, and call P(A) and N(A) as the positive and negative

amplitudes of the limit cycle oscillation in pitch DOF, respectively. Likewise, we can define H0 and

H1 for the limit cycle oscillation in plunge DOF. Consequently, the solutions of the limit cycle

oscillations can be approximately described as

, (19)

where Ω is the frequency of the limit cycle oscillation. It is worth pointing out that Ω is different

from ω (i.e., the frequency of the free oscillations in uncoupled pitching mode). Here, α denotes the

limit cycle solution of pitch while in Section 3 it denotes the free periodic solution of the oscillation

of the airfoil in the uncoupled pitching mode. Thus, α is defined as a function of τ = ωt above,

while of Ωt here.

Substituting Eq. (19) into (3), we obtain

(20)

Letting the coefficients of  in Eq. (20) be zeroes, a flutter determinant can be obtained

(21)

Additionally, let the constant terms in the first equation of Eq. (20) be 0, i.e.,

(22)
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Fig. 3 Sketch of the phase plane of the limit cycle oscillation in pitch DOF
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Substituting Eq. (22) into the first equation in (20), we have

(23)

Separating the imaginary and real parts of Eq. (21) results in

(24)

which means

(25)

Substituting Eq. (25) into the first equation of (24), the relationship between Q and A can be

obtained. Thus, the positive amplitude of the limit cycle oscillation in pitch DOF is determined as

long as Q is given. However, the negative amplitude N(A) is still not determined. To this end, we

assume that P(A) and N(A) still satisfy the solution of Eq. (5), i.e.,

, (26)

where c1(A) and c2(A) can be obtained by solving Eq. (12) with .

Moreover, according to Eq. (19), the positive and negative extremes of  are  and

, respectively, which implies that

, (27)

According to Eqs. (26) and (27), A0 and A1 can be solved. Substituting A0 into Eq. (22) and A1

into (23), H0 and H1 can then be determined, respectively. Considering that H0 is a real quantity

while H1 is complex, we know the positive and negative amplitudes of the limit cycle oscillation in

plunge DOF are  and , respectively.

5. Results and discussions

Solving Eq. (21), the flutter speed can be found as Qf = 4.08. The following analysis is restricted

for the case when the generalized flow speed is lower than the static divergence speed Qd, because

the static divergence has to be avoided in aircraft engineering. Here, Qd can be found from the

second equation of Eq. (3). Letting  and  be 0 and α approach 0 results in ,

thus the static divergent speed is Qd = 12.5.

When the ordinary ELM is used, the terms  are replaced by  (Liu

and Zhao 1992). However, the quadratic nonlinearity does not play any role in constructing the

linearized system. Moreover, it assumes that both the positive and negative amplitudes are A, which

is reasonable only if the nonlinear pitch stiffness  represents an odd function (e.g., with even

nonlinearities).

Figs. 4 and 5 show the amplitudes in pitch and plunge DOF, respectively. The positive amplitudes
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the negative amplitudes by N(A) and . We can see, when Q increases through Qf, a

limit cycle arises. Thus, Qf is a supercritical Hopf bifurcation point. As is shown by Figs. 4 and 5,

both the ordinary ELM and the generalized ELM can predict the bifurcation exactly. But, the

generalized method improves the accuracy of the amplitudes both in pitch and plunge DOF.

Noticing that, the accuracy of the approximate solutions in pitch DOF is somewhat higher than that

of solutions in plunge DOF. One possible reason is that more errors are accumulated in the

derivations of the amplitudes in plunge DOF solution, e.g., H0 and H1 are roughly determined based

on A0 and A1, respectively.

H0 H1–( )–

Fig. 4 Amplitudes of limit cycle oscillation in the
pitch DOF, real lines: numerical solutions;
dashed lines: generalized ELM; dot line:
ordinary ELM

Fig. 5 Amplitudes of limit cycle oscillation in the
plunge DOF, real lines: numerical solutions;
dashed lines: generalized ELM; dot line:
ordinary ELM

Fig. 6 Phase planes of the limit cycle oscillations of system (3) with Q = 5 for (1-2) and Q = 7 for (3-4)
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Interestingly, the generalized ELM can reveal the fact that the positive amplitude is unequal to the

negative one. For example, the negative amplitude in pitch DOF is lager than the positive one as

shown in Fig. 4. The situation for plunge DOF, shown in Fig. 5, appears to be just the reverse.

However, the ordinary ELM just provides the positive amplitude because the negative amplitude is

assumed be the same as the positive one.

Without loss of generality, we obtain the phase planes of the limit cycle oscillation by numerically

integrating Eq. (3) with Q = 5 or Q = 7. Fig. 6 shows clearly the positive and negative amplitudes

in both pitch and plunge DOFs. The unsymmetries are in accordance with the predictions by the

generalized ELM. 

6. Conclusions

We have generalized the equivalent linearization method for studying the limit cycle behavior of

airfoil with both quadratic and cubic nonlinearities. The equivalent stiffness for the nonlinear

stiffness is obtained by combining the linearization and harmonic balance method. With the

obtained equivalent stiffness, the ELM is then generalized. The proposed method not only improves

the accuracy of the ELM, but also reveals a new characteristic of the limit cycle oscillation caused

by the quadratic nonlinearity. These imply that we would expect the proposed method is applicable

in other aeroelastic systems, especially those with even nonlinearities.
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