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Abstract. The concept of “Saturation Impulse” for rigid, perfectly plastic structures with finite-deflections
subjected to dynamic loading was put forward by Zhao, Yu and Fang (1994a). This paper extends
the concept of Saturation Impulse to the analysis of structures such as simply supported circular plates,
simply supported and fully clamped square plates, and cylindrical shells subjected to rectangular pressure
pulses in the medium load range. Both upper and lower bounds of nondimensional saturation impulses
are presented.
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1. Introduction

Over the past four decades, the dynamic plastic response and failure of structures subjected
to large dynamic loading have been studied extensively (Jones 1989, Yu 1992) because of their
practical applications. However, as structural configurations have become more varied, the require-
ments to determine their dynamic plastic behavior and failure have begun to increase dramatically
(Zhao, et al. 1993, 1994b, Zhao 1994).

The concept of Saturation Impulse was put forward by Zhao, Yu and Fang (1994a), which
concerned the dynamic plastic response of simply or fully clamped beams with finite-deflections
subjected to rectangular pressure pulses in both medium and high ranges. To avoid ambiguity,
we firstly define the term saturation impulse. The saturation impulse is the critical value after
which the final deflection of the structure will not increase with further continuously applied
load. In the example of a simply supported beam subjected to medium rectangular pressure
pulse, this can be explained as follows. It has been shown by many experiments that the collaps
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Fig. 1 Load-deformation relation for actual structures.

Fig. 2 Yield conditions.

loads for stable structures become larger with increase of the deflection (Yu 1989), as shown
in Fig. 1, and this is why the deflection of a stable structure could not be infinite under its
rigid, perfectly plastic collapse load. Once the pulse ratio is determined for a rectangular pressure
pulse, an increase of the impulse means an increase in the duration of the applied load alone.
When its deflection is large enough, the beam will be strengthened by the axial forces to such
a extent that the continuously applied load will not produce further deflection, and then the
deflection of the beam will remain constant.

This paper extends this concept to analyze other structures such as simply supported circular
plates, simply supported and fully clamped square plates, and cylindrical shells subjected to
rectangular pressure pulse in the medium range. The secondary effect of finite-deflections is
also taken into account in each case.

2. Simply supported and fully clamped beams

Using the approximate square yield curve in Fig. 2, the lower bound of the nondimensional
saturation impulse for a rigid, perfectly plastic simply supported beam subjected to uniformly
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Fig. 3 Rectangular pressure pulse.

distributed medium rectangular pressure pulse (illustrated in Fig. 3) is (Zhao, et al. 1994a).

m

I[ow'_ \/64 A., (l)
where 1 =—\[%[_%, A= l% , Do ZQLMZO is the static collapse load of the simply supported
beam, u the mass density per unit length of the beam, and L and H are half length and thickness
of the beam, respectively.

As shown in Fig 2 that an exact yield curve relating the nondimensional bending moment
and membrane force lies everywhere inside a square having sides of magnitude 2, while a square
with sides of length 1.236 lies everywhere inside the exact yield curve (e.g. Jones 1967). Therefore,
the actual collapse pressure p, is given by

0618 po<p.<po 2

It is easy to show that the upper bound of the nondimensional saturation impulse is given
by

1
= =172
L=~ 75675 T =127 T 3)

It should be noted that the above analysis incorporates the restriction
1<AL3 4

To show the validity of the present model, here we only need to compare the upper and
the lower bounds presented in this paper to the results given by Schubak, er al. (1989) for pulse
ratio A=2, and as shown in Fig 4. It is evident that the point becoming horizontal in the
curve is just between the lower and upper bounds given by this paper.

For a rectangular pressure pulse, the magnitude of the pulse is constant, and so the lower
and the upper bounds of saturation duration of pressure pulse may be expressed respectively
as

Tlow - —;——6—_ (53)

T =127 Ti (5b)

The lower and the upper bounds of the saturation impulse for a fully clamped beam subjected
to a rectangular pressure pulse are given by
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Fig. 5 Yield condition after Hodge.
L= —\% A (6a)
1,=127 L., (6b)
where /= \/Z Zp ., Po= 42/21" is the static collapse load of the fully clamped beam.
0

Similarly, the lower and the upper bounds of the nondimensional saturation duration for
the clamped beam are

Tiow = 7}7? (7 a)
T =127 Tio (7b)

respectively.

3. Simply supported circular plate

If the limited interaction yield surface proposed by Hodge in 1960 (illustrated in Fig. 5) is
used, the final deflection at the center of the circular plate subjected to a uniformly distributed
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medium rectangular pressure pulse is given by

W,_1 —ens 2L\ —
= 2[\/1+2,1(1 cos= J(a-1) 1], ®)
__pr . : : : _p
where [ i is the nondimensional impulse, A by

Similar to Zhao, et al (1994a), the lower bound of the nondimensional saturation impulse
for a simply supported circular plate under medium load is given by

=74 ©)

In the same manner as the beams, the upper bound of the nondimensional saturation impulse
is taken as

L,=127 I, (10)
It should be noted that the restriction for the pulse ratio 1s
1<AL2. (11)

For a rectangular pressure pulse in medium range, the lower and upper bounds of corresponding
nondimensional saturation duration of pulse are

r,owzg (12a)

Ty =127 Tipe (12b)
respectively.
4. Simply supported and fully clamped square plates
Consider a rigid, perfectly plastic square plate of width 2L which is either simply supported

or fully clamped around the outer boundary. If the plate is subjected to a medium rectangular
pressure pulse, the maximum transverse displacement at the centre is (Jones 1971).

Wn_1 21
= ——2-[\A+2/1(1—cos——/1 )(1—1)—1], (13)
for a simply supported square plate, and

Do :\A+2,1(1—cosALfI J(A-1)-1 (14)

for a fully clamped square plate.
Similarly, the nondimensional saturation impulse for a simply supported square plate is

L= gzl (15a)

1,=127 Ly, (15b)

The restribution for the pulse ratio is 1<AX2. Obviously, the corresponding lower and upper
bounds of the nondimensional saturation duration for a rectangular pressure pulse are
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Fig. 6 Illustration for a circular cylindrical shell.
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Fig. 7 Yield condition after Hodge and Shield.

Tlow ™= g ( 1 63.)

z'up: 127 Tlow (16b)

respectively.
The nondimensional saturation impulse for a fully clamped square plate is

I,W:% A. (17a)

1,=127 I, (17b)
And

Tiow 7’% (18a)

T =127 Tipw (18b)

are the corresponding lower and upper bounds for fully clamped square plates subjected to
rectangular pressure pulse in the medium range.
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5. Cylindrical shelis

Consider an infinitely long circular cylindrical shell reinforced by equally spaced reinforcing
rings (Fig. 6) and subjected to a uniformly distributed radial rectangular pressure pulse. For
simplicity, the linearized yield surface for a cylindrical shell after Hodge and Shield (illustrated
in Fig. 7) is used. From the Appendix we know that the permanent transverse displacement
at the midspan is

(% )max:%[\[‘FZ/l(l—COS‘@ )(/1—1)*1} (19)
pT

where /=—*~=— 1is the nondimensional impulse, and the meaning of other symbols are
ViHp, P £ Y

explained in the Appendix.
Similarly, the lower and upper bounds of the nondimensional saturation impulse is

T

Ly, = ‘\73 A (20a)
Ly =5z Ao =127 I (20b)

It should be noted that the following inequalities must be met
1<AL3. (#3))

The corresponding lower and upper bounds of the saturation duration of the cylindrical shell
subjected to a rectangular pressure pulse in the medium range are

r,wz—ﬁ (22a)
T =127 Tio (22b)

respectively.

6. Conclusions

This paper extends the concept of Saturation Impulse to the analyses of structures such as
simply supported circular plates, simply and fully clamped square plates and cylindrical shells
subjected to rectangular pressure pulses in the medium range. Since approximate yield surfaces
are used, both lower and upper bounds of the saturation impulses for such structures are presented.
In case of rectangular pressure pulses in the medium range, once the magnitude of the pulse
is given, the saturation impulse is, therefore, equivalent to saturation duration of the pulse. It
should be noted that this paper only deals with one special pulse shape, namely rectangular
pressure pulses, and that the phenomenon of saturation impulse may exist for other kinds of
pulse shape in the medium range; in these cases the saturation impulses are not equivalent
to the saturation durations of the pulse.
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Notations

H  thickness of beam or plate

1 pT/~\/ uHp,, nondimensional pressure pulse
L half span of the beam and cylindrical shell, or half width of a square plate
i MX/M)

M, axial bending moment

M, o©H/A

n.s N.o/Ny nondimensional axial forces

N.¢ axial and circumferential bending moments
Ny CoH

P magnitude of the rectangular pressure pulse
po  collapse load

ty duration of response

T pulse duration

u axial displacement

w transverse deflection

A p/po, pulse ratio

u mass density

o uniaxial yield stress

Y ﬁ] T. nondimensional duration of pressure pulse

.
0 20
) 20
Subscripts:

low lower bound
up  upper bound
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Appendix
Dynamic plastic behavior of cylindrical shells to medium rectangular pressure pulse

This problem is a axisymmetrical one, and the equations of motion for a cylindrical shell illustrated
in Fig. 6 are (Jones 1970)

o e od o UL e o ﬂN‘Oi =0 (Ala)
vy A B dng o piw
M S T HR My T My = (Alb)

where mx=—AAjl!—;, nn,9=NT\’}0h9 , M, is the bending moment, and N, and N, are axial and circum-

ferential membrane forces, respectively. w is the transverse displacement, ¢ denotes the mass density

of the shell per unit length. ( )'=—aix—( ), (°)=~7a[- () My= 00‘{{1 . No=0)H, and 0, is the tensile

yield stress.
It is assumed that.

a=i'=i=0. (A2)

The response of the cylindrical shell under a rectangular pressure pulse in the medium range is
divided into two stages

(1) first stage [0, 7l;

(2) second stage r&[t, t/].

For simplicity, the linearized yield surface for a cylindrical shell after Hodge and Shield (shown in
Fig. 7) is used. If it is assumed that the shape of the displacement field under dynamic loading in
the medium range which produces finite-deflections is the same as that developed for the corresponding
static collapse load, then

w(x, D=Wy(t) (1—x/L) when t[0. ] (A3a)

and
w(x, D=W\() (1—-x/L) when r&lt, ¢/] (A3b)

Substituting (A3a) and (A2) into (Ala)b) and neglecting higher-order terms containing w' gives

AW p() A w o X
=yt — Bl e i W[ x 2L) (Ad)

It should be noted that n,=rn,=1 has been used in the derivation of (A4).
Integrating (A4) and noticing m,=1 at the midspan between two adjacent reinforcing rings yields
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_A W, _p)xX, 4 X u X _x
mEETL Y M, 2 HR 2 M, 2(1 3L)+1 (AS)

By using the boundary condition m.=—1 at x=L, we obtain the differential equation of Wy(r) in
the first stage as follows

Wt @ Wo=—5, [p()-p]. (A6)
where
— 3N()
W= L
and _No . 4My 4M,
Po= R LZ

po is the static collapse load of the cylindrical shell.
By using w=w=0 at r=0, the solution of Eq. (A6) may be written in the following form

wx 1)2%(/1—1)(lvcoswt)(l*x/L) (A7)
The corresponding differential equation of W,(?) is
. ) 3

Wi\tw W = __2'; Po (A8)

By using the requirements of the continuity conditions for displacements and velocity at t=r,

then a dimensionless deflection w(x.1) is

H
l%—iL 1uoswt+/1(coswt—l)c.oscot+/1%mwrsma)t—l}<l %) (A9)
The response time f; can be obtained by using w(x, ¢,)=0, thus
1 Asinwt
= ptan 14+ A(coswt—1) (A10)
The permanent transverse displacement at the midspan is
W“ \/+2,1 (1-cos )(;L -1 (All)
_ T : T
where [ -———\/-m is the nondimensional 1mpulse.
It should be noted that the pulse ratio A must satisfy the following inequalities
1< AL3. (A12)

It may be shown that these solutions are both statically and kinematically admissible.





