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A 2-D four-noded finite element containing a
singularity of order A
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Abstract. A 2-D four-noded finite element which contains a A singularity is developed. The new element
is compatible with quadratic standard isoparametric elements. The element is tested on two different
examples. In the first example, an edge crack problem is analyzed using two different meshes and
different integration orders. The second example is a crack perpendicular to the interface problem which
is solved for different material properties and in turn different singularity order A. The results of those
examples illustrate the efficiency of the proposed element.
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1. Introduction

In a wide range of fracture mechanics applications, especially in the field of composite materials,
the displacement at the crack tip varies as r*, where r is the distance from the crack tip and
A is the order of the singularity. The value of A (0<A<Z1) depends on the geometry of the
problem and the material properties. In case of an homogeneous material A is equal to 0.5.
Frequently occurring cases are kinked cracks (Williams 1952) and cracks perpendicular to the
interface (Cook and Erdogan 1972). The use of a special crack tip element at the singular point
permitted us to get a good approximation of the field variable and its derivatives near the vicinity
of the singular point and to avoid the need of an extremely fine mesh.

Many singular elements have been developed throughout the literature. For cracks in homoge-
neous materials, the quarter point singularity element which has been introduced by Barsoum
1976, is widely used. However, this element is not suitable for non homogeneous material (unless
an extremely fine mesh is used) where A can takes values other than 0.5. Akin (1977) has generated
two-dimensional singularity elements (three node singular triangle, four node singular quadri-
lateral, and six node triangle) from standard conforming elements. Unfortunately, those elements
are not compatible with conventional finite element and in turn convergence is not guaranteed.

Tracy and Cook (1977) have developed a 3-noded triangular element which is compatible
with the conventional linear element (3-noded triangular or 4-noded quadrilateral). Recently Ro-
chdi El Abdi (1991) has proposed a degenerated triangular element for which the shape functions
are derived from those of standard isoparametric elements. This 4-noded element is compatible
with the six noded triangle or the 8-noded quadrilateral.

We present here an element which has a variation of the displacements of r* along the crack
face and hence a variation of the derivatives of r*~'. The interpolation functions of the dis-
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placements are assumed to be of lower order in ¢ ( where ¢ is a natural coordinate) than that
of the coordinates. Based on this assumption a 4-noded singular element is derived. This element
can be easily connected to quadratic standard finite element, thus, convergence is guaranteed
in case of an active singularity. Convergence is studied in the first example, an edge crack
problem, by increasing the order of integration and by refining the mesh. A crack perpendicular
to the interface problem is presented to illustrate the application to a A singularity crack problem
with different A values. The results are compared to existing ones in the literature.

2. Mathematical formulation

Fig. 1 shows the 4-noded element in the (£, ) and the (x. y) planes. The crack tip is located
at node 1. Two different shape functions are assumed for the interpolation of the coordinates
and the displacements, ie.;

[X]=> N [x,] (1)
[UT=>N, Lu,] Q2

where [ X] and [ U] are the coordinate and displacement vector, respectively, ie. [ X1 =[x y]
and [UJ"=[u, u,]. [u,] represents the nodal displacements and [x,] represents the nodal
coordinates. Introducing a singularity A along the ¢ direction, the relation between ¢ and r, where
r is another local parameter measuring the distance from the crack tip with its orngin (r=0)
at the crack tip and r=a at the face 2-3, is given by:

r A
26 ®
Now the shape function N’ and N can be introduced as:

N;—_—l_tflu
Ni=&(1—n)(1—2n)
N3=&" n2n—1)
Ni=4¢" " n(1—n)
N=1—¢&
N,=¢&(1—m(1—2n)
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N;=¢{n(2n—1)
Ny=4&n(1—n) 4
The Jacobian matrix [J] is evaluated as:
m:[ DN e x, ZN:.,;y,-]
ZN;wxi ZN;,U}’/

ox oy Zd—N'xiZﬂyf ,
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on on 2 on’ 2. on”'
The inverse of [J] is obtained as:
71_i Jzz —le
[J] _J[“le JII:' (6)

where J is the determinant of the Jacobian matrix.
The global strain displacement matrix [ B] can be calculated as follows:

[B]=[J]'LDN] ()

where the matrix [ DN] contains the derivatives of the shape functions N with respect to &
and 7.
The element stiffness matrix is finally obtained as:

EKJZJ' (BI'LD]LB JdA @)

Eq. (8) should be numerically integrated. The following quadrature rule is used (Robert, er al.
1982);

where w; is the weighting factor at the point where ¢ is evaluated. However, to be able to use
the integration rules of Eq. (8) the function ¢ should be written in terms of the area coordinates
(Li, Ly L;) in stead of ¢ and 5. Thus, The matrix [B] in Eq. (7) is transformed to the area
coordinates using the following relations:

&=1-L,
L

Fig. 2 shows the different integration options.

It can be easily shown that the elements has a stress singularity at node 1 of order A—1.
It has continuity along sides 1-2 and 1-3 with the similar singular elements while along side
2-3 with 8-noded quadratic standard isoparametric finite elements.

3. Numerical results

The new 4-noded element has been introduced in a finite element computer program CALM
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Fig. 2 Integration rules.

(Geyskens, et al. 1991). Two examples are studied below to illustrate the effectiveness of the
proposed elements. The first example is the edge crack sample assuming plane strain condition.
The problem configuration is shown in Fig. 3. The crack length to the plate width ratio is
0.3. The new singular element is used to approximate the displacement and the stress field
in the first row around the crack tip with a A value of 0.5, while 8-noded quadratic standard
isoparametric elements are used elsewhere. Two rather coarse meshes, which are shown in Figs.
4a) and 4(b), are used for this problem. Due to symmetry only half of the problem has to
be analyzed.

The crack tip element size to the crack length is 1:6 in mesh 1 and 1:12 in mesh 2. The
stress intensity factor is extrapolated to the crack tip using the crack face displacement. For
plane strain problem the following expression could be used:

_ E\/2nm
K—gjlfvi):ﬁu (1

where u; is the opening displacement of the point i on the crack face. E and v are the Young's
modulus and the Poisson ratio, respectively.
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Fig. 3 Edge crack sample.
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Fig. 4 Edge crack problem.

The results are given in Table 1. The stress intensity factor is calculated in dimensionless
form, i, K/o(m)". The analytical solution of this problem is 1.6629 (Rook and Cartwright
1976).

The percentage differences of the computed values from the reference value are given in paren-
thetic. By refining the finite element mesh from 1 to 2, convergence is achieved. The SIF value
computed by one-integration point is less accurate than the other integration schemes. In general,
the results are in good agreement with the reference value.

The second example is a crack perpendicular to the interface problem taken from Lin and
Mar (1976). The problem configuration is shown in Fig. 5. The crack length (2a) is 2 inch,
lying in panel 1 (material 1), and perpendicular to the interface of the two panels. Due to symme-



388 MM. Abdel Wahab and G. de Roeck

Table | Edge crack problem - convergence study

Int. K/o(na)”
Scheme Mesh 1 Mesh 2
1 1.626(2.2%) 1.635 (1.7%)
3 1.655(0.4%) 1.6229(0.03%)
4 1.656(0.4%) 1.6637(0.05%)
6 1.655(0.4%) 1.6630(0.006%)
7 1.654(0.5%) 1.6620(0.05%)
13 1.656(0.4%) 1.6625(0.02%)
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Fig. 5 Crack perpendicular to the interface problem.

try, only one half of the model is analyzed. The finite element mesh is shown in Fig. 6. The
crack tip at the interface will be denoted as tip 2, and the other tip in material 1 will be denoted
as tip 1. This problem has been solved analytically in Cook and Erdogan (1972) for an infinite
plate with pressure loading at the crack surfaces. However, in the present analysis, the stresses
o, and o, in both materials are prescribed according to 6,,=E,/E, o, to ensure constant
strain &, in plane stress condition.

The stress intensity factors are computed using the following expression:

K= lim 22 aMelE T (12)

where

(=2 (mt k) (20 (1 mky)
HE= pm (mt k) (L mk)sina A

U1, u,=the shear moduli for material 1 and 2, respectively; m=u,/u; k,=3—4v, for plane
strain condition and (3—v;)/(1+ v;) for plane stress condition; u ,;(7, 7)=the opening displacement
at a position i on the crack face.

The present singular elements are used in the first row around tip 2 with the appropriate
A value (depending on the material properties of both materials (Cook and Erdogan 1972), and
around tip 1 with A equal to 0.5. 8-noded quadratic elements are used in the second row around



STRUCTURE

A 2-D four-noded finite element

I —

389

Fig. 6 (a) Finite element mesh; (b) Details near the crack tips.

Table 2 Stress intensity factors at tip 1

/ 2 Kif(gi a"®)
M Present Elem. Cook and Erdogan Lin and Mar
(234 d.o.f) 1972 1976 (244 d.of))
0.5 05 0.8343 0.871 0.833
(.0433 0.5 0.8458 0.879 0.855
1.0 0.5 09816 1.00 0.995
23.08 0.5 1.370 1.353 1.371
13846 0.5 1.5450 1.509 1.529
Table 3 Stress intensity factors at tip 2
/ il Ky/(gna'h
it Present Elem. Cook and Erdogan Lin and Mar
(234 d.olf) 1972 1976 (244 d.of)
0.0072 0.7335 4.866 4922 4978
0.0433 0.711 4.113 4.176 4241
1.0 0.5 09816 1.00 0.995
23.08 0.1758 0.097 0.074 0.095
138.46 0.0749 0.0197 0.0079 0.0196

the crack tips, then they are reduced to linear elements. The crack tip element size to the crack
length ratio is 1:16. The total numbers of degrees of freedom used in the current model are
234. The results are presented in Table 2 and 3. The current results are compared to that of
Cook and Erdogan (1972) and Lin and Mar (1976). The values between parenthetic are the
numbers of degrees of freedom used by the present model and by Lin and Mar (1976). In
Lin and Mar (1976), a hybrid smgular element was used to model the singularity near the

crack tips of this problem.

From Tables 2 and 3, it could be shown that although a coarse mesh has been used for
this problem, the current results are in good agreement with the two references values.
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4. Conclusions

A 2-D singular finite element was developed. The element is compatible with the quadratic
standard isoparametric elements. The interpolation functions of the displacements were assumed
to be in lower order than that of the coordinates. The element has been successfully used in
computing the stress intensity factors for problems of an edge crack and a crack perpendicular
to the interface. These case studies have indicated that convergence can be reached in case
of an active A singularity problem.
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