Structural Engineering and Mechanics, Vol 3, No.4 (1995) 373-382 373
DOI: http://dx.doi.org/10.12989/sem.1995.3.4.373

Weighting objectives strategy in multicriterion
fuzzy mechanical and structural optimization

C.J. Shiht

Department of Mechanical Engineering, Tamkang University, Tamsui, Taiwan 25137, China

K. C. Yut

Center of Vehicle Design and Development,
Yeu Tyan Machinery Manufacturing Company, Chang-Hwa, Taiwan 51500, China

Abstract. The weighting strategy has received a great attention and has been widely applied to multicri-
terion optimization. This paper examines a global criterion method (GCM) with the weighting objectives
strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals.
constraints and variables. Most of the constraints are originated from analysis of engineering mechanics.
The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and
mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM),
In the design process a weighting parameter with fuzzy information is introduced into the design and
decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design
space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical
spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise
solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides
a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves
the final design.
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1. Introduction

A decision maker often encounters a design problem that attain more than one objective
or goal. Those objectives are apparently non-commensurable and fuzzy. The design constraint,
design environment and even design variable are frequently imprecise to define. A wonderful
article by Hwang, Paidy and Yoon in 1980, had pointed out that the development of methods
for “fuzzy” area which combines multicriterion optimization would be a topic for future research.
Today, one can see many successful developments of method and application of fuzzy logic
in optimization. Nevertheless, the combination of the fuzzy theory and multicriterion optimization
has not been fully explored yet.
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The father of fuzzy theory, Zadeh (1965), gave the first guidance in dealing with a model
containing vague and imprecise nature. We may appreciate the earlier work of single objective
structural optimization done by Brown and Yao (1993) who studied several civil engineering
designs with application of the fuzzy theory. Wangs (1985) initiated the well-known level-cut
method using fuzzy logic. Then it was improved by Xu (1989) with the bound search algorithm.
Perhaps Rao’s paper in 1987 was the first work that apply fuzzy logic to multiple design goals
in structural engineering. A comparative study of the level-cut approach (Wang 1985) and the
A-formulation (Rao 1987) was investigated with the designs of a 3-bar and a 25-bar truss. The
conclusion was that the level-cut approach provides a parametric form and the A-formulation
yields a compromise solution. Three models of fuzzy goal programming were presented (May
1992) by Rao, Sundararaju, Prakash and Balakrishna. They concluded that the simple additive
model with or without fuzzy constraints will result the better or the more balanced compromise
design.

The simple additive model described above is the first appearance that uses the weighting
technique in fuzzy multicriterion structural design. Other weighting strategies developed by Shih
and Lai (1994) were discussed in an environment of fuzzy and multiple goals. However if the
design space contains a mix of integer. discrete and real continuous variables, what is the formula-
tion and algorithm for solving such fuzzy and multiple objectives problems. The algorithm of
branch-and-bound has been widely recognized as a reliable method for obtaining a solution
to the crisp optimization problem with mixed variables. Typical efforts are the works of Gupta
& Ravindran (1983) and Sandgren (1990). The main disadvantage is that an unestimated number
and a large amount of nonlinear subproblems are generated in this method. A technique called
the maximum-partial derivative branching was developed by Shih and Chi (1992) to overcome
this shortage. This paper introduces the combining algorithin of FGCM and modified branch-
and-bound for dealing with multicriterion fuzzy problems in mixed design space. People are
also interested in what will happen when the weighting parameters contain fuzzy information
in continuous or mixed design space.

We first examine the design of a 3-bar truss with the simple additive method and the global
criterion method (Osyczka 1984). Then a mechanical structural problem is studied which shows
the effects of fuzzy objectives/constraints and also fuzzy relative priority of objectives. An optimum
design of mechanical spring stacks in fuzzy mixed variables space with crisp or fuzzy weighting
techniques is introduced at later section. All the above methods, algorithms and numerical results
are presented and discussed in this paper subsequently.

2. Comparison of simple additive and global criterion method

A function describes the global criterion is a measure of “distance to the ideal vector of
f47. A preferred relative L,- metric form defined as follows (Osyczka 1984):

LX) =X
SEHX)
The global criterion method with L, (f) metric is commonly called the min-max approach. Usually
the min-max approach can be considered as a scalar optimization problem. By minimizing
this function, one can obtain a Pareto optimal solution or a set of such solutions with weighting

objectives method. The mathematical formulations in a continuous design space are:
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Where the vector of design variables is X="[x,, xa, -~ xy. $]" contains (N+1) real continuous
parameters, and @(20) are the weighting coefficients representing the relative importance of
the design goals.

The additive formulations of the fuzzy goal programming with weighting objectives strategy
are:

maximize F(X)= i Ui (X) )
subject to

g0, J=120m 8
hi (X)<0, k=12:gq 9
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where f“(X) is the ideal solution of the objective function and u;(X) represents the following
form:

y,;(X):—f'ﬂJM’, i=12:+p (13)
where b, t; and d; are the ideal solution, the fuzzy zone of tolerance and the tolerance limit
of ith design goal, respectively.

A 3-bar truss shown in Fig. 1 is considered as the example comparing the effect of both
fuzzy goal and global criterion approaches. The definition and mechanics of this problem are
the same as Rao’s paper, 1987. The minimum structural weight f, and the displacement f, of
a loading point are two design goals. The optimum results are summarized in Table 1, where
o is calculated by following formula:

iy 0.6 .
o= — — =12, 14

= , (9
Table 1 shows that both methods have the same results. The sum of ¢, and @, is the same

as (u;+ uy2). Therefore, these two formulations are exchangeable. We prefer to use the global
criterion method with weighting strategy because of its simplicity.
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Fig. 1 A three-bar truss for multicriterion design.

Table 1 Results of a 3-bar truss by the additive fuzzy goal and the GCM with weighting objectives

strategy

Weightings Global criterion approach Additive fuzzy goal

o o S p @ @ S i Mt e
00 10 19.142 1.657 0.0000 1.0000 19.142 1.657 1.0000
02 08 7.840 2477 0.6846 0.9370 7.845 2477 1.6213
03 07 6.217 2871 0.7829 0.9067 - 6217 2871 1.6896
04 06 5934 3.042 0.8001 0.8936 5.935 3.041 1.6937
05 05 5418 3409 0.8313 0.8653 5419 3.409 1.6966
06 04 4.943 3.836 0.8601 0.8326 4942 3.836 1.6927
07 03 4710 4082 0.8742 0.8137 4.708 4.084 1.6879
08 02 3.996 5086 09175 0.7365 3.996 5.086 1.6540
10 00 2.634 14.672 1.000 0.000 2634 14.672 1.000

3. Weighting strategy and fuzzy constraints in FGCM

For a problem containing fuzzy design and side constraints, we need to establish the member-

ship functions, ys of scalar objective and u, of constraint.

3.1. Crisp weighting objectives method

The formulations of FGCM combined with crisp weighting technique are written as:

maximize A
st A< up(X)

AS:ug/(/Y)

(15)
(16)

(17)

and other constraints which are the same as Eqgs. (4)-(6). The vector of design variables is X=[x,,

X0 xw B AL
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Fig. 2 Structural model of a uniform spindle for weighting strategy in real continuous design space.

Table 2 Fuzzy optimum results of a machine-tool spindle with crisp degree of importance

Weightings Design variables Fuzzy optimization Crisp optimization
®y  Ow Dy(m) D+(m) fe(rad) Wr(kg) A Su(rad) Wrkg)
045 0.55 0.1018 0.0832 02126E—35 21.25 0.66 0.2158E—5 22.15
0.50 0.50 0.1020 0.0824 0.2074E—5 21.96 0.72 0.2146E—5 22.19
060 040 0.1031 0.0820 0.1872E—5 24.04 0.85 0.1983E—5 24.60
070 030 0.1047 0.0818 0.1679E—5 26.36 0.76 0.1795E--5 2822

3.1.1. Design of a machine-tool spindle

A simple model of a uniform machine-tool spindle is shown in Fig. 2. The loading conditions
are torsional moment M, and normal cutting force F. Minimization of static torsional compliance
/. 1s the same as minimization of static bending compliance f;, for design D, and D,. For compre-
hensive description please refer to Yoshimura, et al. (1983). The present problem minimizing
both the total weight Wr and f, is formulated as follows:

2 2
minimize Wy= 7oL T(li' D:) (18)
... . 320,
minimize f, == e (19)
st D~D,..<0 (20)
D,,,,-,,—Dlﬁo (21)
2tin— (D1 —D»)<0 (22)

Numerical data that were used are L;=10m, D,,;,,=005m, D,,..=0.1 m, t,;,=001 m, p=7.85(10")
kg/m*® and G=8.04(10'") N/m’. The problem assumes a 20% fuzzy zone of constraints. Final
designs of the fuzzy and crisp optimization are shown in Table 2. It is obvious that the two
goals in fuzzy formulation are smaller than that in crisp formulation. A larger weighting of
machine-tool spindle yields a smaller objective value.

3.2. Fuzzy weighting obfective method

In this case, the weighting coefficients are taken as design variables with fuzzy tolerance.



378 CJ. Shih and KC. Yu

Table 3 Fuzzy results of a machine-tool spindle with fuzzy degree of importance

Weightings Design variables Fuzzy optimization
Wy ow Dy(m) Dy(m) fu(rad) Wr(kg) A
0.448 0.552 0.1023 0.0839 0.2114E-5 2124 0.63
0.513 0487 0.1033 0.0843 0.2007E—5 21.90 0.74
0.610 0.390 0.1039 0.0831 0.1850E—5 23.85 0.80
0.715 0.285 0.1060 0.0839 0.1653E—5 25.87 0.70

It is nature to do so because the relative importance of objectives is frequently not precisely
defined. If a linear membership is assumed, then it can be expressed as:

po=—EEEEA i g <0<+ 5 (23)

R

MHowi= _C‘)Q%dﬁ > if 0.~ 6 Lwlw,. i=12:p 24
L

where @, represents the weighting value, and has the highest satisfaction. § and & represent
the allowable fuzzy interval on the left and right-hand side, respectively. Thus, the formulation
of fuzzy multicriterion with fuzzy weighting strategy can be written as Egs. (15)(17), (4)-(6), (23).
(24). A £ 5% of weighting range is assumed to be fuzzy, optimum results are listed in Table
3.

We see the results of £, and Wr in Table 3 are smaller than that in Table 2. Since the weighting
coefficients are relaxed it yields a better result.

4. Weighting strategy and FGCM in mixed design space

A nonlinear design/analysis space often contains a mixture of integer, discrete, continuous
variables, or even simply zero or one. A task usually requires us to optimize two or more criteria
simultaneously in such a mixed design domain. The mathematical formulation of this category
is similar to Eqgs. (15)-(17) and (4)-(6) except the set of design variables represented as:

X—_-[Xh Xow "o Xy o X s XN ﬁ, /‘l,]T X,‘,SX,'.<_XJ; (25)

in which the design variable contain L nonnegative discrete variables, M —L nonnegative integer
variables and N—M positive real variables. In this paper, a modified branch-and-bound algorithm
(Shin and Chi 1993) is applied to FGCM to solve the optimization problem in a mixed design
space.

4.1. Crisp weighting objective method
For the entire description and the crisp weighting objectives method please refer to the recent

work of Shih, Lai and Chang (1994). We use an example to illustrate the function of this merging
method.
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Fig. 3 Belleville spring stacks for weighting strategy in mixed design space.

4.1.1. Design of mechanical belleville spring stacks

A detail of a single disk spring under external loading and associated mechanics is available
in the handbook of mechanical spring. The geometrical shape of a series belleville spring stacks
is shown in Fig. 3. The applied load uniformly around the end of the stack for a prescribed
deflection of 0.75h is to be maximized. Total weight W7 of this stack and the total height Hr
of the stack have to be minimized. The thickness of a single disk spring # (mm), outside diameter
D, (mm) and internal diameter D; (mm) are the variables of discrete type. The number of indivi-
dual spring in this stack N is an integer variable. The cone angle 6 (deg.) is a variable of the
continuous type. The design problem is formulated by three design goals and six inequality
constraints as follows:

maximize P= —(l—jvé’y)M—R—’ La—y/2)(h—y)t+7] (26)
minimize W;=NpV,+V,+V;+V,) 27
minimize H;=N[Rsin8+tcos8—(D,/150)sinfcosb] (28)
subject to
21=15D;/D,—1<0 (29)
£:=D./(25D,)—1<0 (30)
2:=40/Ny—1<0 (31

84=3S/S\a—1<0 (32)



380 CJ. Shih and KC. Yu

Table 4 The crisp optimization for belleville spring stacks with crisp weighting coefficients

Optimized Weighting Coef. Design variables
OBJ. (P. Wr, Hy) ! D, D; N 6"
P=81702.8N
Wr=113.28N (033, 0.33, 0.33) 749 200 94 8 4041
Hr=11436N

P=70149.09N
Wr=110.69N (0.30, 035, 0.35) 7.10 201 91 8 4088

Hr=11436N
P=702094N
Wr=10549N (0.25, 035, 040) 7.10 200 97 8 3980
H;=11045N
P=60610.6N
Wr=91.84N (0.20, 0.30, 0.50) 6.50 205 94 7 4411
H;=9881IN

Table 5 The fuzzy optimization for belleville spring stacks with crisp weighting coefficients

Optimized Weighting Coef. Design variables Design degree
OBJ. (P, Wr, Hr) t D, D, N & A
P=89685.0N
Wr=102.38N (0.33, 0.33, 0.33) 7.49 202 93 7 4409 0319
Hr=104.88N
P=88577.0N
Wr=101.07N (0.30, 0.35, 0.35) 749 201 93 7 4347 0438
H;=103.88N
P=79067.0N
Wr=9835N (0.25, 035, 040) 7.10 203 93 7 4492 0.380
Hr=10342N
P=76804.0N
Wr=96.17N (0.20, 030, 0.50) 7.10 214 93 6 4.580 0.400
Hr=9209N
gs:Sz/Szarlﬁo (33)
86=83/S:4— 120 (34)

Table 4 and 5 summarizes optimum designs obtained by using crisp and fuzzy design constraints,
respectively. A 15% fuzzy transition zone is allowed for the constraints and it is expressed by
a linear membership function.

Apparently the fuzzy optimum solutions result in a larger loading force, a smaller total weight
and a smaller total height. This shows an obvious design improvement exists in the fuzzy optimi-
zation.

4.2. Fuzzy weighting objective method

A £ 5% of fuzzy transition zone on weighting coefficients is given in the problem formulation.
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Table 6 The tuzzy optimization for belleville spring stacks with fuzzy weighting coefficients

Optimized Weighting Coef. Design variables Design degree
OBI. (P. Wr, Hr) t D, D, N 6° A

P=87531.0N
Wr=100.36N (0.309, 0.345, 0.346) 749 200 92 7 4.302 0.511
H7=103.10N

P=877450N
Wr=99.78N (0.288, 0.338, 0.374) 749 200 93 7 4.295 0.503

Hr=103.02N
P=T776540N
Wr=97.64N (0.240. 0352, 0.408) 7.10 202 92 7 4428 0.518
Hr=102.02N
P=83439.0N

Wr=101.28N (0.226, 0.305, 0.469) 749 204 99 7 4.110 0.380
Hr=101.84N

The other formulations are the same as that in section 4.1. The results are presented in Table

6.
Comparing the results of Table 5 and Table 6, we see that there is some improvement on

total weight and total height. The degree of satisfaction can be dramatically increased sometimes.

5. Observations and discussions

In the additive model of fuzzy goal programming, Eq. (11) restricts the relative degrees of
importance of objectives. The relative degree of importance is defined as the closest distance
to the individual ideal objective. This provides a best definition and meaning for weighting
objectives method.

Comparing Table 2 and Table 3, we found out that fuzzy weighting strategy gives a better
objective result than that in crisp weighting strategy. The relaxation of weighting parameters
is positively beneficial to the final design in continuous design space. However, it is not positively
efficient in a mixed design space. That is reasonable because a discrete space cannot provide
a .continuous variation of variables. Generally the degree of overall satisfaction A in Table 3
is smaller than that in Table 2. Nevertheless, in Table 6 it is generally larger than that in Table
5.

6. Conclusions

We have introduced the weighting objectives strategy into fuzzy goal programming for structural
design. And the results are the same as the fuzzy global criterion method. The optimum design
of a uniform machine-tool spindle depicts the fuzzy global criterion method with the fuzzy
weighting information. The results suggest that fuzzy weighting strategy is superior to the crisp
weighting strategy in continuous design space. However, the general degree of design level is
not certainly increased.

The degree of design level in mixed design space of fuzzy weighting is larger than that in
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crisp weighting environment. In this situation, some design goals are improved and some are
not. All of them show the advantage of fuzzy weighting strategy is to provide more alternatives
in decision making.

This paper also shows the feasibility of the fuzzy global criterion method with weighting
objectives technique in both the continuous design or mixed design space. If the weighting is
not given, it 1s the case of equal important of objectives. Any assign weighting coefficient in
FGCM always results in a solution within Pareto solutions. The proposed weighting strategy
in fuzzy global criterion method can be applied to other engineering discipline and analy-
sis.
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