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Approximate discrete variable optimization of plate
structures using dual methods
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Abstract. This study presents an efficient method for optimum design of plate and shell structures,
when the design variables are continuous or discrete. Both sizing and shape design variables are con-
sidered. First the structural responses such as element forces are approximated in terms of some interme-
diate variables. By substituting these approximate relations into the original design problem, an explicit
nonlinear approximate design task with high quality approximation is achieved. This problem with
continuous variables, can be solved by means of numerical optimization techniques very efficiently,
the results of which are then used for discrete variable optimization. Now, the approximate problem
is converted into a sequence of second level approximation problems of separable form and each of
which is solved by a dual strategy with discrete design variables. The approach is efficient in terms
of the number of required structural analyses, as well as the overall computational cost of optimization.
Examples are offered and compared with other methods to demonstrate the features of the proposed
method.

Key words: approximation; continuous variable; discrete variable; optimization; plate and shell; dual
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1. Introduction

It is well known that the optimum design of structures can be posed as a mathematical progra-
mming problem in which the objective function reflecting the weight or cost is minimized while
the design constraints are satisfied. The objective and the constraints are expressed in terms
of the design variables. Examples of the design variables are the radius, thickness and cross
sectional dimensions. The design constraints are bounds on stresses, displacements, etc.

Mathematically, an optimization problem can be stated as follows:

minimize F(X) (1
subject to; g(X)<0 j=l. m )
X' <X, <X" i=1.n (3)
XD, (4)

where F(X) and g;(X) are the objective function and constraints, respectively, and X is the
vector of design variables. X} and X% are the lower and upper bounds on the design variable
X. m is the number of constraints and » is the number of variables. D, is the set of discrete
variables which may be different for each design variable.
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The problem given by Eqs. (1)(3) is, in general, a non linear programming problem and
there are various techniques to solve this optimization problem (Vanderplaats 1984). Most optimi-
zation algorithms require that an initial set of design variables, X, be specified. Beginning from
this starting point, the design is updated iteratively. Probably the most common form of this
iterative procedure is given by

Xt=X*""4 oS!t 5)

where k is the iteration number and S is the vector of search direction. The scalar quantity
a defines the distance that we wish to move in direction S to improve the design. There are
a wide variety of methods for determining the search direction, S, as well as for finding the
value of a (Vanderplaats 1984). In numerical optimization techniques, these methods require
evaluations of the objective and constraint functions as well as their gradients. As the overall
iteration process is iterative, thus to reach the optimum solution, we often require hundreds
of function evaluations and gradient calculations. Each function evaluation needs an analysis
of the structure under consideration. Thus, dealing with large scale optimization problems, a
great number of finite element analyses of the structure is required to complete the process,
thereby making the process very inefficient.

In order to solve the problem efficiently, an attempt should be made to create a high quality
approximation to the design problem and solve the approximate problem completely, without
actually performing any finite element analyses. Because it is an approximation, it must be
repeated so that at least a few detailed finite element analyses will be needed. The key to efficiency
is the creation of a high quality approximation, thus reducing the number of structural analyses.

In the past, attempts have been made to reduce the computational burden by introducing
some approximation concepts (Schmit and Miura 1976, Schmit and Fleury 1980 and Salajegheh
1984). The number of the design variables was reduced by linking. This idea is reasonable as
in practice some of the variables are the same. The number of constraints was also reduced
by considering only the critical or the near critical constraints at each iteration. Most important
of all, the number of structural analyses was reduced by employing some approximate functions
to represent the constraints. A first order Taylor series expansion was used to generate the approxi-
mation forms of the constraints in terms of design variables (intermediate variables) or their
reciprocals. The reason for using the reciprocal variables is due to the fact that structural response
quantities such as stress and displacement are approximately linear with respect to the reciprocal
variables. However, as the design constraints are, in general, highly nonlinear in terms of the
design variables or their reciprocals, the quality of linearization may be poor, thus the number
of structural analyses required to achieve an optimum design can be increased.

A second generation approximation techniques was developed by Salajegheh and Vanderplaats
(1986, 1987), and Vanderplaats and Salajegheh (1988, 1989), by which the highest quality approxi-
mation can be achieved. The implicit structural responses such as forces, displacements, frequen-
cies, etc., appearing in the optimization problem, are first approximated. By substituting these
approximate functions into the original problem, a nonlinear explicit problem is created, the
solution of which, often requires less than ten analyses of the structure. This method is very
robust and efficient for large structures, where the computational cost of the analysis is high.
The same idea was used by Vanderplaats and Thomas (1993) to achieve the continuous optimum
solution of plate structures.

Recently, the same approximate technique has been applied by Salajegheh and Vanderplaats
(1993a) to the design of skeletal structures, where some or all the design variables are chosen
from a prescribed set of values (discrete variables). The discrete optimum design of structures
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is achieved by combining the approximate techniques and branch and bound method. For
practical design problems, where the design variables are linked and the number of independent
design variables is chosen reasonably, the method can be used efficiently.

The same approximation concepts are used by Salajegheh and Vanderplaats (1993b) and Salaje-
gheh (1993a) to achieve the optimum shape of two and three dimensional truss structures. In
addition to the sizing variables, the coordinates of joints are also considered as design variables.
In this case, the numerical results also indicate that, the optimum configuration of pin jointed
structures with discrete shape variables, in conjunction with response approximation, can be
achieved at little computational cost.

To further increase the efficiency of the technique for problems with great number of discrete
variables, a dual strategy is used for truss type structures with sizing and shape design variables
(Vanderplaats and Salajegheh 1994, Salajegheh 1993b, 1994b). The discrete variable optimization
is achieved after the completion of the continuous variable optimization. The method was exten-
ded to frame structures by the same author (Salajegheh 1994a).

In the present study, the idea of force approximation presented by Salajegheh and Vanderplaats
(1986. 1987) and Vanderplaats and Thomas (1993) is employed to achieve the optimum design
of plate and shell structures, when the design variables are discrete. After the completion of
the continuous variable optimization, dual methods are used to achieve the discrete solution.
The numerical results show that both continuous and discrete solutions of plate type structures
can be achieved very efficiently. This is basically due to the fact that approximating the element
forces and then exp11c1t1y calculating the approximate element stresses from these yields a more
accurate approximation function than direct approximation of the element stresses for plate
type structures. The use of these highly accurate approximations leads to rapid convergence
in the design process. Also the use of duality theory reduces the overall computational cost
of discrete variable optimization.

2. Approximation concepts

The concept of choosing the functions to be approximated and the intermediate variables
to be used to create a high quality approximation is fundamental to the overall efficiency and
reliability of the optimization process. This is best understood by considering stress constraints
for beam elements. Consider a simple rectangular beam element of width B and height H.
These are the physical design variables that to be determined in an optimization problem. The
maximum stress used in evaluating a stress constraint is
Mc P

7 57 (©)
where ¢=H/2, I=BH*/12 and A=BH are simple functions of B and H. M is the bending moment
and P is the axial force. A traditional linearization would be to create a Taylor series approxima-
tion to stress as

=+

o=o0 °+Z X (X~ X") ()

where X"=[B, H]. However, it is clear that the stress is highly nonlinear in the design variable
B and H, so the approximation of the stress given by Eq. (7) is not accurate and a very small
move limit would be necessary during the solution of the approximate problem.
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Now consider how we might better approximate the stress. First 4 and I are considered as
intermediate variables. Let the vector of the intermediate variables be as Y'=[4, I]. Next, the
gradients of M and P (intermediate responses) are calculated with respect to Y. M and P are
approximated as

~ - oM
M=M"+ —
Z 2y, VD) (8)
5 & OP
= 0—{— — Y
P=pP Z oy, 0D )

where r is the number of intermediate variables. When we need the value of stress, first 4
and I are calculated explicitly as functions of B and H. Then, the approximate member forces,
M and P are evaluated. Finally, the stress and constraint are recovered in the usual fa-
shion.

With the use of such intermediate variables and responses, we achieve two important goals.
First, we allow the engineer to treat the physical dimensions B and H as design variables. Second,
we retain a great deal of the non linearity of the original problem explicitly. This allows us
to make very large changes in the design variables during a design iteration.

Now the same approximate strategy is applied to the optimum design of plate and shell
structures. Considering a four-noded plate element with 6 degrees of freedom per node (3 transla-
tions and 3 rotations) as presented by Zienkiewicz and Taylor (1989). Thus we have 24 nodal
forces in the element. As it was suggested by Vanderplaats and Thomas (1993), only the 6 com-
ponents of the forces at the center of the element (element forces) are approximated. Then the
approximate stresses can be calculated using these approximate forces. At the starting point
of each iteration, the nodal displacements of the structure are known from the finite element
analysis. The vector of element forces P® at the starting point is determined as;

P°= DBu* (10)

where D is the element material matrix in the element coordinate system, B is the strain-displace-
ment matrix and #° is the nodal displacement vector of the element. We are now able to approxi-
mate the element forces using a Taylor series expansion in the intermediate design variables.
The intermediate design variables for plate structures are the shape design variables, the plate
thickness 7, and bending stiffnesses D, where D=r"/12. Let the six approximate element forces
in the element be as follows

=| M, (11)

M\'y

The approximate surface stresses are then calculated using
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where z is the fiber distance at any point.

Finally the approximate principle, maximum shear, and Von Mises stresses can be calculated.
For example, the approximate Von Mises stress is

omw=\/0: +aol —o,0,+37, (13)
This can be used to establish the approximate stress constraint as

gX)=—12e <0 (14)

where o, is the allowable stress.
2 1. Constraint deletion

In practical design problem, there are a great number of constraints involved and a large
percentage of these constraints may never be critical during a design cycle, and so could be
excluded from the constraint set in that cycle. This is done to decrease the cost of sensitivity
analysis (gradient calculation) and to reduce the size of the approximate optimization problem.
The simplest approach for constraint deletion would be to just ignore any constraint which
is not within, say, 30% of being critical. In addition, if a number of constraints are active in
one region of the structure, say near a stress concentration, only a small number of most critical
constraints in that region is retained. In general, it is reasonable to reduce the number of retained
constraints to 2~4 times the number of design variables. Any constraints not retained, which
become active or violated as a result of the design changes during this cycle, will be retained
on future design cycle.

3. Gradient calculation

In this approach, the gradients of element forces with respect to intermediate variables are
required. First the gradient of the nodal displacements are evaluated by using equation

Ku=w (15)

where K is the global stiffness matrix, # is the displacement vector and w is the external load
vector. Differentiation of this equation with respect to the intermediate variables Y yields

Ou _ | ow K
oy~ K [W’_ oY u] (16)

Now the gradients of the element forces with respect to Y, are easily calculated from the relation-
ship



364 Eysa Salajegheh

P°= DBu‘= Hu°* (17)
das

oP° OH . ., ou*

dx=§iu+H£c (18)

where H is a known matrix and its derivatives can be evaluated and Jdu®/dY; are the gradients
of the nodal displacements associated with this element and are recovered from Eq. (16).

4. Discrete variable optimization

Having established the approximate explicit relations for the element forces, we now proceed
to solve the optimization problem. By substituting these approximate equations into the original
implicit problem, an approximate explicit nonlinear problem is obtained, which can be solved
by numerical optimization techniques very easily, without performing the analysis of the structure.
Since this is an approximation to the original problem, move limits should be imposed on
the design variables and the intermediate variables to insure the quality of the approximation.

Let g, represent the approximated form of the jth constraint and J, indicate the set of retained
constraints. Then the general form of the approximate problem, in each design cycle, can be
expressed as

minimize F(X) (19a)
subject to; £,(X)X0, jEeJ, (19b)
X <X <X i=1l, n (19¢)
Y! <y, <Yy" i=1,r (19d)
X, €D, (19)

In this study, for all of the numerical examples a move limit of 80% to 100% on the initial
design is used at the start of the optimization process. At the end of each approximate problem
solution, if any of the constraints is more violated than the previous iteration, the move limits
on each of the design variables are reduced by 50%. Move limits are never reduced less than
10%.

Ignoring Eq. (19¢) the approximate explicit problem given by Egs. (19a)4(19d) is solved. When
the optimum solution is obtained, the solution is taken as the starting point for the next iteration
and the process is repeated, until the problem converges. The final result is a continuous solution.

However, there are many occasions in design of structures, where the design variables must
be selected from a list of discrete values. The design variables such as cross sectional areas
of members, the thicknesses of plates and shells fall into this category.

The most common way of achieving a design with discrete design variables is to round-off
the optimum values of the design variables, obtained from the continuous solution, to the nearest
acceptable discrete values. It can be observed that such a solution may neither be optimum
nor feasible.

In this study, a dual strategy is used to achieve the discrete solution. The approximate nonlinear
problem given by Egs. (19) is again approximated, using conservative approximations (Fleury
and Braibant 1986). In fact, a second level approximation is used to convert the first level approxi-
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mation, into a problem of separable form. Now, the second level approximate problem can
be mathematically stated as

minimize F(X) (20a)
subject to; £,(X) <0, jed, (20b)
X' <X<X" i=1. n (20c)
X.<D, (20d)
where
Fon=Fx+ Y 2E00 (vt
it x02FXY 5 21
i a/‘/’
or
- wGFXY (11 :
Fon=roenys § AL (-3, Joy
i x02EXD) 22)
i ox,
also
- n o X0
Z00=g(x0+ Y -BE) (- x)
(YO
if Xﬁ’—@gg%l >0 23)
_ _ n ey 0 1 ,
or Bo0=goeys 3 - (L oy
» 0
if X%%%l<0 (24)

It can be seen that Egs. (21) and (23) are a direct linear approximation and Egs. (22) and
(24) are reciprocal approximations. The bar symbol (—) denotes first level approximation and
tilde (~) represents second level approximation. In addition, if X} or X; are near zero or if
X; may cross zero (in case of shape optimization), a direct approximation is always used.

It can be seen that both F(X) and g(X) are separable functions, that is

FOO= 3 J(X) 25)

g(X)= Z Zi(X) (26)

The Lagrangian function can now be written as follows:

n

LX. )= 2 0+ 3 4 3 8ln) @

=, 0=
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Using duality theory, L(X, A) is minimized with respect to X and then maximized with respect
to A, subject to non-negativity constraints on the dual variables. Also, using the property that
the minimum of a separable function is the sum of the minimums of the individual parts.
we can state the dual problem as

n

maximize L(A)= ; r;iiﬂ [E(Xf)+ ZJ A,’g,,»(X,-)] (28a)

subject to; A,20 JEJ, (28b)

It can be seen that a number of one dimensional minimization is carried out with respect
to primal variables X;, the results of which is a continuous solution. Now, the next lower and
upper discrete values to X;, are found and whichever minimizes the one dimensional function
will be the discrete solution for X;. The process of minimizing the one dimensional functions
of X; and maximizing the unconstrained function given by Eq. (28) with respect to A is repeated,
until the problem converges. For details of the one dimensional minimization and the maximiza-
tion of dual problem, the paper by the same author (Salajegheh 1994a) can be consulted.

Thus, the overall process is composed of two level approximations. In the first level, all the
functions that are computationally expensive to evaluate, are approximated. These functions -
include element forces, displacements, etc. Then, by substituting these approximate functions
into the original problem, an approximate design problem will be achieved. In the second level
approximation, the approximate problem obtained in the first level, is again approximated to
achieve a convex and separable problem. This problem is now can be solved by dual methods
for continuous and discrete variables.

The main characteristic of a discrete optimization problem is that in general, the discrete
design space is disjoint and non convex. Thus, the optimum solution may be a local optimum.
There is no guarantee that the final solution is a global optimum. To assure that the solution
is a local optimum, there are various methods to check the optimality. One such method is
that the Kuhn-Tucker conditions (Vanderplaats 1984) should be satisfied at the optimum point.
However, in discrete design problems, any of the constraints may not be active at the optimum
point, as the constraints may not pass through the discrete points. So, even local optimality
of the solution cannot be assured, unless a great amount of search is performed. In the present
study, different starting points have been used and the results are also compared with those
of branch and bound method and it is observed that satisfactory results are obtained.

The only methods that are capable of finding the global optimum are simulated annealing
and genetic algorithms (see the review paper by Arora, er al. 1994). However, these methods
are not efficient as there are a great number of function evaluations involved.

5. Continuous-discrete optimization process

The overall optimization procedure is summarized as follows:

(1) Perform an analysis of the structure with the proposed design.

(2) Evaluate all the constraints and retain only the critical or near critical constraints.

(3) Calculate the gradients of the structural responses (forces, etc.) with respect to the interme-
diate variables for the responses included in the objective function and the retained
constraints.

(4) Using these gradients, construct the approximation of the responses, and evaluate the appro-
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ximate stresses. Also create the approximate explicit nonlinear problem.

(5) Solve the approximate continuous variable optimization problem with the imposed move

limits.

(6) Check for convergence to the continuous optimum; if satisfied, proceed to discrete variable

optimization. Otherwise update the problem and repeat from Step (1)

(7) Solve the current approximate problem with discrete variables by dual methods with move

limits.

(8) Check for convergence. If converged terminate. Otherwise update the discrete problem

and repeat Steps similar to (1), (2), (3), (4) and (7).

The efficiency of the method is based on the number of required analyses of the structure
during the optimization process. The method has been applied to a number of problems for
discrete sizing and shape variable optimization and the numerical results indicate that the app-
roach is very efficient as compared to the results obtained in a previous study using branch
and bound for the discrete solution (Salajegheh 1994¢). Computationally, the numerical results
show that the duality theory approach is typically one to two orders of magnitude more efficient
than the branch and bound approach for problems of more than twenty discrete variables.
Thus, it is concluded that duality theory is normally the preferred approach.

6. Examples

Three examples are offered here to demonstrate the efficiency of the method. The DOT (VMA
1992) program is used to solve the continuous variable optimization and to maximize the dual

problem. For comparison of the results, the problems are chosen from Vanderplaats and Thomas
(1993), Salajegheh (1994c) and Moore and Vanderplaats (1990).

6.1. Cantilever plate

This example consists of finding the minimum mass of the 20 element cantilever plate shown
in Fig. 1. The plate is loaded with a 450.0 in-lb moment at the tip and has material properties
of Young's modulus E=100 E6 psi, Poisson’s ratio v=0.3, and weight density p=0.298 Ib/in’.
The 20 element thicknesses are the design variables. The initial element thicknesses are all 1.0
inch. There is a displacement constraint on the tip of 0.5 inches and bending stress constraints
on the elements of 30000 psi. The discrete set for all the design variables are considered as

£ E1030, 031, 032, 033} (in)

The continuous solution to this problem was obtained by Vanderplaats and Thomas (1993).
This problem is statically determinate if a beam model is used and nearly statically determinate

450 in b

]
’

>l -
£ — re
t X ;

] Ou . ]

Fig. 1 Cantilevered plate.
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Table 1 Results for cantilever plate

Design  Continuous Discrete Discrete
variable optimum  optimum (B & B)*  optimum (dual)

| 0430 043 043

2 0425 043 043

3 0420 042 042

4 0413 042 042

5 0.406 0.40 041

6 0.398 040 0.40

7 0.392 0.40 040

8 0.387 0.38 0.39

9 0.379 0.38 0.38

10 0.369 0.37 0.37
11 0.360 0.36 0.36

12 0.350 0.35 0.36
13 0.350 035 0.35
14 0.328 0.33 0.33
15 0.315 0.31 0.31
16 0.300 0.30 0.30
17 0.300 0.30 0.30
18 0.300 0.30 0.30
19 0.300 0.30 0.30
20 0.300 0.30 0.30
Mass (Ib) 1.076 1.077 1.078

*Branch & Bound

with the plate model. Therefore, approximations of the displacement with respect to the reciprocals
of the design variables and element forces and the corresponding element stresses with respect
to the design variables are nearly exact. The continuous optimum solution is achieved in nearly
one design cycle. In fact, two iterations are performed, the results of both are almost similar.
The discrete solution is also obtained in one cycle. Again two iterations are carried out, the
results of which are the same. Thus 4 analyses of the structure are required to complete both
the continuous and discrete solutions, 2 of which are used only to check the feasibility of the
solutions and the assurance of the convergence. The results for this problem are presented in
Table 1. The results are close to those of branch and bound method (Salajegheh 1994c), however
the computer time required to complete the discrete solution by dual approach is about 1/15
of the time needed by branch and bound.

6.2. Cantilever shell

This example consists of finding the minimum volume of the cantilever shell shown in Fig,
2. The shell has a distributed load of 7848 1b applied to the free end and material properties
of E=29E7 psi and v=03. The half model of the structure shown in Fig. 3 was used with
symmetric boundary conditions for the optimization. This model has 12 thin plate elements
along the 90 degree arc and 48 elements along the length of the structure (the same as Vanderplaats
and Thomas 1993). Initially the shell thickness is 1.0 inch and the radius of each end is 2.5
inches. The design variables are considered as the thickness and radii of the fixed and free
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Fig. 2 Cantilevered shell.

Fig. 3 Cantilevered shell model.

ends; X=[1t r, rl. r and r, are the radii of the fixed and free ends, respectively. In fact, in
this problem both sizing and shape design variables are considered. The Von Mises stress on
the top and bottom of each element is considered to be less than 10000 psi. The initial structure
has constraints that are violated by 142.2%.

The discrete values for the design variables are taken as;

1[0, 075, 1.0, 1.5, 20, 2.5.+} (in)
r. r»€{0.1, 02, 03, 04, 0.5} (in)

The continuous optimum design is completed with 4 analyses of the structure and one extra
analysis of the shell is required to obtain the discrete solution. The results are given in Table
2. The results of branch and bound and dual methods are similar and the computer time for
both approaches is nearly the same. This is because there are only three design variables involved
in this problem.

6.3. Pressure loaded plate
This example consists of finding the minimum weight design of a 100X 100 inch clamped

plate subject to a uniform pressure load of 100 psi (Moore and Vanderplaats 1990). The plate
is made of steel with material properties of E=29.0E6 psi, v=0208, and p=0.283 Ib/in’. The
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Table 2 Results for cantilever shell

Design  Continuous Discrete Discrete
variable optimum solution (B & B)* solution (dual)
t 0.72 0.75 0.75
r 5.15 5.20 5.20
r 1.62 1.60 1.60
Weight (in) 81.0 84.8 84.8

*Branch & Bound

Y Design Model

J o o

’———— 50in. —————

Fig. 4 Pressure loaded plate.

initial thickness of the plate is 2.0 in. and the Von Mises stress on each element is considered
to be less than 10000 psi.

The analysis and design model consist of a 25 finite element quarter model of the plate
with the appropriate symmetry boundary conditions and is shown in Fig. 4. The lower and
upper bounds on the plate thicknesses are 0.01 and 10.0 in., respectively. In this problem, the
25 plate thicknesses are linked so that they are controlled by 15 independent design variables
in the configuration shown in Fig. 4. The design model was also used by Moore and Vanderplaats
(1990).

All the design variables are allowed to take the following discrete values:;

1, €001, 002, 05, 10, 1.5, 20, 2.5} (in)

The continuous optimization is completed in 11 structural analyses, and 2 additional analyses
are required for discrete optimization, however, the last analysis is only used to assure the conver-
gence. The results are presented in Table 3. In this problem, there is a significant difference
between the time required by branch and bound and the present method. The computer time
measured in clock time for both approaches and the time required for dual method is about
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Table 3 Results for pressure loaded plate

Design  Continuous Discrete Discrete
variable solution  solution (B & B)* solution (dual)
1 0.01 0.01 001
2 0.01 0.01 0.01
3 2.50 2.50 2.50
4 3.65 4.00 3.50
5 4.75 5.00 5.00
6 0.02 0.02 0.02
7 0.01 0.01 001
8 0.02 0.02 0.02
9 0.02 0.02 0.02
10 2.15 2.00 2.00
11 0.01 0.01 0.01
12 444 4.50 4.50
13 433 4.50 4.50
14 492 5.00 5.00
15 441 4.50 4.50
mass (I1b) 1474.0 1514.0 14904

*Branch & Bound

1/20 of that needed for branch and bound. In addition, the optimum weight obtained by the
present approach is less than that obtained by Salajegheh (1994¢) without violating any of the

constraints. At the optimum point, a final analysis is carried out and the constraints are evaluated.
The feasibility of the solution is checked through the values of the constraints.

In the examples under investigation, the numerical results indicate that for some variables,
the optimum values are the same as round-off solution. This is basically due to the fact that
in these cases the optimum solution is not far away from the continuous solution. The other
reason is that the available discrete values are widely spaced and thus some of the design variables
are forced to choose the nearest discrete values.

7. Conclusions

A two level approximation method is presented to achieve the continuous-discrete variable
optimization of plate type structures. To reduce the number of detailed finite element analyses
of the structure, the element forces are approximated in terms of some intermediate variables.
In order to reduce the cost of discrete optimization, a dual strategy is used after the completion
of the continuous variable optimization. In the process of optimization, only the critical constraints
are retained to reduce the cost of gradient calculation. It is shown that the combination of
force approximation and dual methods in conjunction with the idea of constraint deletion form
the basis of an efficient optimization method. In particular, for plate type structures, with great
number of degrees of freedom and large number of constraints and design variables, the optimum
design is achieved very efficiently. The results are compared with those of branch and bound
and the computational time is reduced substantially.
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